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Background: Educational psychology research has linked fluid intelligence (Gf) with
working memory (WM), but it is still dubious whether electroencephalography (EEG)
markers robustly indicate Gf. This study addresses this issue and notes the relationship
between WM task-related EEG markers with Gf and academic performance.

Method: A sample of 62 healthy children between the ages of 9 and 12 years was
selected to perform three tasks: (1) Raven’s Standard Progressive Matrices (RSPM) test
to assess Gf; (2) 2-back task to assess central executive system (CES); and (3) delayed
match-to-sample task to assess short-term storage. These subjects were divided into
high ability (HA) and low ability (LA) groups based on their RSPM scores. Support
vector machine and logistic regression were used to train the EEG candidate indicators.
A multiple regression was used to predict children’s academic performance using P3
amplitude, P2 latency, and θ-ERS.

Results: Behavioral results demonstrated that the correct rate of the HA group is higher
than that of the LA group. The event-related potential results of the 2-back task showed
that the P3 amplitude of the HA group was relatively larger and that the P2 latency was
shorter than that observed in the LA group. For the delayed matching to sample task,
the θ-ERS of the LA group was higher than that of the HA group. However, the area
under the curve of these three indicators for Gf was < 0.75 for each and < 0.85 for the
combined indicators. In predicting academic performance, only P3 amplitude showed a
significant effect.

Conclusion: These results challenge previous findings, which reported that P3,
P2, or theta power might be used in standard psychometric tests to assess an
individual’s intelligence.

Keywords: event-related potentials, event-related synchronization, fluid intelligence, academic achievement,
machine learning
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HIGHLIGHTS

- Both executive and storage components of working memory
were considered in this research at the EEG level.

- Both logistic regression and support vector machine classifiers
were applied to train the EEG data from working memory tasks
to classify the fluid intelligence (Gf) of children.

- Single (area under curve [AUC] < 0.75) or combined
(AUC < 0.85) indicators of three EEG signals (P3
amplitude/P2 latency/θ-event-related synchronization)
all showed moderate AUC in the receiver operating
characteristic analysis of Gf.

- A multiple linear regression of EEG markers to children’s
academic achievement showed that only the P3 amplitude
exhibited an effect (β = 0.017, p = 0.035).

INTRODUCTION

With the development of artificial intelligence (AI), exploring
the relationship between neurophysiological markers and
psychological characteristics has become intensified. Especially
in the fields of information engineering, facial expression
recognition, and smart surgery, an integrated automatic
identification system based on biomarkers is gradually being
established. By collecting and analyzing the information of
specific groups of index, it is possible to recognize and diagnose
certain characteristics, abilities, or attributes of an organism.
Relevant studies from the interdisciplinary fields of medicine and
cognitive neurology have indicated that multiple brain activity
markers extracted from EEG results can be good indicators
of the state of consciousness or the cognitive state of human
beings (Missonnier et al., 2007; Sitt et al., 2014; Engemann
et al., 2018). Specially, compared with other biomarkers, EEG
biomarkers have the advantages of economy, convenience, and
efficiency. Combined with machine learning, EEG biomarkers
can automatically identify and classify various clinical patients,
so they represent the preferred clinical indicators for predicting
treatment response (Engemann et al., 2018).

Fluid intelligence (Gf) has always been the focal topic in
cognitive psychology, as well as in recent years. In many cases,
such as career counseling or clinical application, it is necessary
to assess a person’s level of intelligence. However, presently, the
intelligence test is still based on a pencil-and-paper test; the
era of intellectualization has introduced new requirements for
assessing intelligence. Intelligence scales such as Raven’s and
Wechsler’s have demonstrated good reliability and validity; even
when the testing method is relatively simple, these intelligence
scales are widely used in general intelligence tests; however, when
it comes to the plasticity of Gf and the evaluation of robot
intelligence, these methods appear to be insufficient. How do we
develop a scientific evaluation system based on neurocognition?
How do we carry out targeted intelligent shaping based on
the working mechanism of the brain? Obviously, to solve these
problems, the neural basis of Gf warrants further clarification.
In addition, with the demand of AI for intelligence shaping
and people’s expectations for improving Gf, the current ways

of intelligence assessment are facing new challenges: “Knowing
wisdom and making intelligence, knowing intelligence and
making evaluation” requires cognitive neuroscience to make
further breakthroughs in the understanding of Gf and develop
a more reliable evaluation system. Several previous studies
have applied machine learning methods to explore EEG signals
that were effective in verifying Gf (Neubauer and Fink, 2009;
Itthipuripat et al., 2013; Wronka et al., 2013; Amin et al., 2015;
Dong et al., 2015; Qazi et al., 2017; Wongupparaj et al., 2018), and
some of them revealed that individuals with different Gf levels can
be well distinguished (Amin et al., 2015; Qazi et al., 2017).

Amin et al. (2015) conducted research on 34 healthy adults
(ranging in age from 20 to 30 years) using the visual oddball task.
An analysis of P3 component induced by the visual oddball task
showed that P3 amplitude could significantly predict individual
scores on Raven’s Advanced Progressive Matrices with an area
under the curve (AUC) reaching 0.82. Therefore, P3 amplitude
could be used as a good supportive index in the standard
psychological test for evaluating an individual’s learning or
memory ability (Amin et al., 2015). This study is the first to
test the EEG effect in measuring Gf. Subsequently, Qazi et al.
(2017) also used the visual oddball paradigm as a tool to examine
Gf (marked by Raven’s Advanced Progressive Matrices scores)
and used the support vector machine (SVM) classifier to test
the discriminant ability of delta band to Gf in 34 adult males.
The authors showed that the statistical wavelet features and the
wavelet coefficient features from the frequency bands 0.0–1.875
and 1.875–3.75 Hz resulted in 100 and 98% prediction accuracies,
respectively (Qazi et al., 2017). However, the sample sizes of
these studies were restricted to no more than 40, and the EEG
evaluation index was limited to only one. Additionally, in the
field of EEG markers of Gf, there are few comparable quantitative
analysis studies, and the discriminant effect is easily affected by
the discriminant method. Therefore, it is not robust enough to
arrive at a conclusion; further exploration and verification are
warranted. It is worth noting that while there was less discussion
on the evaluation of EEG indicators in the studies of Gf, in other
research fields such as mild cognitive impairment (MCI) and
consciousness, the discrimination effect of EEG indicators has
been discussed more fully. Missonnier et al. (2006) showed that
the theta event-related synchronization (ERS) during the n-back
working memory (WM) task can distinguish progressive MCI
cases whose θ-ERS power was lower than that in the stable MCI
cases, and the Area Under Curve (AUC) was 76% (Missonnier
et al., 2006). While adding the event-related potential (ERP) index
(P200 and N200), the combination model showed a higher AUC
reaching 0.938 (Missonnier et al., 2007).

A relationship between WM and Gf has been well established.
WM might be fractionated into two components: short-term
memory (STM) storage and the central executive (CE). The CE
is a processing component, which may be fractionated further
into executive functions (EFs) like updating, inhibition, and
shifting: the updating of information temporarily memorized
for processing, the inhibition (or interference control) of
information not or no longer relevant for the current processing
step, and the shifting of the attentional focus between different
task demands. Accordingly, WM-load can be differentiated into
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WM storage-load and WM processing-load (i.e., demanding
STM processes and demanding EFs, respectively). A typical task
to induce WM storage-load is the simple digit span (Dspan) task
(i.e., the short-term memorization of a sequence of digits for
later recall). In contrast, complex span tasks like N-back (N ≥ 2)
tasks are conceptualized to induce WM processing-load (Engel
De Abreu et al., 2010; Scharinger et al., 2017). Notably, even
though STM and WM are theoretically distinct and sometimes
assessed separately, no single task is a pure measure of either of
them; even a seemingly simple task, such as Dspan, is likely to
involve EFs mechanisms (Engel De Abreu et al., 2010).

The relationship between these two components of WM and
Gf can be summed up using three kinds of views (mainly from
the studies of structural equations and path analysis). First,
STM system (the storage component of WM) has a particularly
important connection with general intelligence (Colom et al.,
2005; Gignac et al., 2016). Second, CE function plays a major
role in Gf (Gray et al., 2017; Myers et al., 2017). Third, both
STM (storage function) and WM (EF) are related to intelligence,
and both components produce independent contributions to
Gf, respectively (Unsworth and Engle, 2007; Unsworth et al.,
2014). In all, none of them has completely denied the effect of
WM processing or storage components on Gf; moreover, the
relationship among them at the EEG level is still unclear. So, we
assume that both the storage component (STM) and the non-
storage component (EF) of WM affect Gf, and then we choose
two typical representative tasks: 2-back for EF and delay match to
sample (DSM) for STM in the present study.

Nevertheless, whether there exist EEG markers indicating
Gf robustly is still dubious. Neural efficiency hypothesis and
attentional resources allocation give cues that P3 amplitude
induced by executive function task and θ-power in simple
memory task may have the ability to indicate Gf. The neural
efficiency hypothesis stated that brighter individuals display
lower (more efficient) brain activation while performing simple
cognitive tasks (Neubauer and Fink, 2009), and Julie et al.
(2005) showed that the frontal midline θ-power increased as the
memory load increased (Julie et al., 2005), suggesting that the
frontal midline θ-power may indicate the amount of cognitive
resources that need to be invested in current memory tasks,
thus reflecting the subjective sense of task difficulty. Attentional
resources allocation illustrated that P3 amplitude at parietal sites
in the complex tasks would reflect the amount of attentional
resources allocation that one person concentrates on current EF
task (Polich, 2007). So, increased P3 amplitude is a manifestation
of sufficient cognitive resources (Scharinger et al., 2017), and it
would be accompanied by a better N-back performance (Tusch
et al., 2016). In addition, neural speed is considered to be an
evaluation index of cognitive ability, while P2 component is
considered to reflect processes involved in selective attention
(Wongupparaj et al., 2018) and shorter P2 latency is considered
to reflect more shifting ability, which indicates more efficient use
of brain resources (Lijffijt et al., 2009; Wongupparaj et al., 2018).
So, we hypothesize that in the same simple memory task, children
with high Gf would exhibit lower frontal midline θ-power (saving
brain resources due to an easy feeling toward the task), and that
in the EF task, they would exhibit larger parietal P3 amplitude

(more attention resources can be focused on the task) and shorter
P2 latency (more flexible) than that of children with low Gf.
The present study intends to explore whether WM task-related
EEG biomarkers can diagnose Gf level and predict academic
achievement in healthy primary school children.

MATERIALS AND METHODS

Subject
For the experiment, a sample of 62 healthy students (28 male;
all right-handed; age range, 9–12 years) were recruited from
a primary school in Nanning, China. They had normal or
“corrected to normal” vision and were free from medication,
neurological disorders, and cognitive impairments. Their
parents all signed informed consent forms before the
children participated in the trials. This study was approved
by the Psychology Experimental Ethics Committee of
Nanjing University.

Raven’s Standard Progressive Matrix
(RSPM) Test
The RSPM test was performed for intelligence assessment, during
which 60 items were completed within 40 min. The original
scores were calculated by adding up the scores for completing 60
items, which were converted into standardized intelligence scores
(RSs) ranging from 0 to 100, and according to the Intelligence
Level Grading Standard, intelligence levels were classified into
the following five grades: 1 (>95, very good), 2 (95–75, good),
3 (74–25, average), 4 (24–5, below average), and 5 (<5, deficit)
(Wang et al., 2009).

WM Tasks
DMS task is used to assess children’s ability related to encoding
and storing information in STM. In general, the WM capacity of
DMS paradigm is set at 4 (Zhang et al., 2016); so, the WM load
in the present experiment was also 4. That is, four digits appeared
each time. The task process is shown in Figure 1 (left): First, four
Arabic numerals (1,000 ms) appear on the screen. The subjects
are asked to remember the four numerals. Then, a blank screen
of 3,000 ms appears. Finally, a capitalized numeral appears. The
subjects are asked to react immediately to determine whether the
current number was contained in the four numerals that just
appeared. Contained, press “F” key, while not contained, press
“J” key. The task includes two blocks; each block has 20 trials,
making a total of 40 trials.

The 2-back task was applied to examine the children’s EF of
WM. Apart from updating the WM content, when doing the
task, the subjects must shift between the two subtasks and inhibit
currently irrelevant information (Scharinger et al., 2017); so, it’s
a complex task that requires all EF subcomponents (including
inhibition, updating, and shifting). The instructions are shown
in Figure 1. After reminding the subjects with “+,” an Arabic
numeral in the range of 1–9 will appear randomly around the
“+” for 600 ms. The subjects were required to compare whether
the current number matched the number that was shown two
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FIGURE 1 | Working memory task.

numbers prior, by pressing the “J” key for matching, or by
pressing the “F” key for mismatching. Each number after the third
number should be judged one by one. Matching and mismatching
conditions accounted for half of the trials. In order to ensure
that the subjects understand the task, an exercise session was set
before they entered the formal experiment. Only those with the
correct rate of exercises reaching up to 60% can enter the formal
test. The exercise is set to ensure that the participants understand
the task; so, if they did not pass the exercise the first time, they
can get a second and even a third opportunity to exercise again
(no more than three exercise in all). In this research, all of the
participants got through the exercise no more than three times.

There are two blocks, 40 trials in each block, and 80 trials in
total. These two tasks were all programed in E-Prime 2.0, and
each task was presented on a 16-inch computer screen from a
height of horizontal line of sight.

Experiment Procedure
All of the participants were informed of the schedule for data
collection and, as per their availability, the experiments were
arranged individually. Each subject was seated in a partially
sound-attenuated room and was briefed on the procedure. Each
subject was asked to perform the RSPM pencil-and-paper test
first; next, each subject went to the nearby EEG room to perform
the DMS task; and finally, they performed the 2-back task. The
subjects had a 3-min break between tasks. During the WM time,
an EEG cap was set until they completed the two computer tasks.

By the end of the next term (6 months later), the Chinese
and mathematics scores of those subjects were collected as an
index for academic achievement. The examinations test the
students’ mastery of knowledge acquired in a semester, and the
items are designed by teachers who teach the corresponding
curriculum. The original scores of the examinations were
transformed into Z scores according to the calculating formula:
z = original score−average score

standard deviation , and the average score and the

standard deviation values corresponded to the subjects’ grades to
which they belonged.

Electrophysiological Recordings
When the participants were performing the WM tasks, the
EEG data were recorded using an EEG amplifier (NuAmps
40, Compumedics Neuroscan, VIC, Australia). The sample rate
was set to 1,000 Hz with a bandpass filter (0.05–100 Hz),
and the reference electrode was situated on the left mastoid
online, and the grounding electrode was located at the midpoint
of connection between FPz and Fz (called AFz). Horizontal
eye movements were recorded by electrodes positioned at the
outer canthus of each eye whereas vertical eye movements were
recorded by electrodes positioned above and below the left eye.
The electrode impedance was maintained at <10 k� throughout
the EEG recordings. To attenuate low- and high-frequency noise,
the averaged waveforms were filtered using a 30-Hz low-pass filter
and a 0.5-Hz high-pass filter in the off-line analysis.

Preprocessing
Preprocessing was conducted using Curry 7.0 (Compumedics
Neuroscan), including re-reference, removing EOG artifacts,
deleting bad block. and segment epoch. This procedure is
described as follows:

(1) Re-reference: change the reference from left mastoid to
bilateral mastoid.

(2) Remove EOG artifacts: set the removing-threshold at
150 mV, removing EOG artifacts (which are above the
threshold value) from the EEG signals based on a
covariance method.

(3) Delete bad block: set the delete threshold at ±100 mV
to exclude the impact of bad block in the next
averaged waveforms step.

(4) Segment epoch: for 2-back data, the artifact-free EEG
was segmented into epochs ranging from 200 ms before
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stimulus onset to 800 ms after stimulus onset, with a period
of “–200 ms to 0” as baseline correction, fewer than 40 of
80 good target segments were excluded in the data analysis.
For DMS data, the artifact-free EEG was segmented into
epochs ranging from 500 ms before stimulus onset to
4,000 ms after stimulus onset, according to the task design;
the 0–1,000 ms was coding period, 1,000–4,000 ms was
delay period at each epoch, and “–500 ms to 0” was used
as baseline correction. Fewer than 20 of 40 good target
segments were excluded in the subsequent data analysis.

Data Analysis
Behavioral Analysis
Behavioral data were analyzed to measure performances
corresponding to fluid cognitive ability as well as the WM
tasks. To assess fluid cognitive ability, RSPM raw scores and
standardized intelligence scores, as well as the intelligence level,
were calculated for each subject. Considering that there were no
children with deficits in our study sample and that the “very
good” and “below average” levels were also not sufficient to form
an independent group, we combined the “very good” and “good”
children into the HA group and the “average” and “below average”
children into the LA group. It should be noted that in similar
studies by Amin et al. (2015) and Qazi et al. (2017), in which they
grouped adult subjects according to the median scores of RAPM
raw scores, those who scored above the median were placed in the
HA group, and conversely, those who scored below the median
were placed in the LA group. But in children, age is a notable
factor that would affect the Raven raw scores; so, if we do like
this in the present experiment, most of the older children might
be grouped in the HA group. Therefore, in order to prevent this
issue, we use the intelligence level that has already considered
Raven’s score and children’s age at the same time.

For the WM tasks, each subject’s performance was computed
by calculating the number of correct responses (accuracy, ACC)
in addition to reaction time (RT). Independent sample t-test was
used to analyze the data with ACC and RT. A statistical analysis
was performed using SPSS version 22.0 software (IBM, China).

ERP and ERS Analyses
For 2-back EEG data, a superimposed averaging process can be
carried out after preprocessing; only good segments were retained
in the individual averaged waveforms. In addition, to investigate
whether the differences between the two groups are specific to P3
only, the P2 component was extracted and analyzed. For DMS
EEG data, before obtaining the superposed average, a wavelet
transform was applied to extract theta power. Both the wavelet
transform and the superposed average were conducted using
MATLAB R2013b, with toolbox Letswave71.

For ERP analysis, the waveforms and the 2-D plot of
group grand average were performed before determining the
time window of ERP components; the major electrodes were
selected in the groups (HA vs. LA) × electrode sites (n)
repeated measurements analysis of variance (ANOVA) test; both
ERP amplitude and latency were extracted from the respective

1For more details, see https://letswave.cn/index.html

electrodes for each subject per group. For ERS analysis, the
time-frequency map and the 3D-plot of group grand average
were conducted before selecting the representative electrode
sites. Also, the θ-power of the selected electrodes were analyzed
by repeated measurements of variance of 2 (grouping: HA vs.
LA) × n (electrode sites). Greenhouse–Geisser method was used
to correct the p value while the statistical results were not
satisfied with the spherical assumption, and Bonferroni method
was used to correct multiple comparisons (n times) afterward.
The ANOVA test was conducted using SPSS 22.0 software.

Logistic Regression and SVM
Logistic regression (LR) and SVM were two major classifiers that
were applicable for non-linear discriminant analysis. The LR was
based on probability theory [see Function (1), the samples that
indicate P > 0.5 would be considered to be positive ones; a
positive event here refers to LA], whereas the SVM is based on
maximizing geometric interval [see Function (2)–(5)]; thus, the
optimal hyperplane found by the LR model is to try to keep all
of the sample points away from it, and the optimal hyperplane
that the SVM is looking for is to maximize the margins (keep only
the training points closest to the boundary line as far as possible).
So, in the LR model, each sample data would affect the result,
whereas in the SVM model, only the samples near the boundary
line (that is, only those samples that support the vector) would be
considered. Because of the data limitations, the kernel SVM was
chosen as classifier instead of linear SVM. It projects implicitly
the feature of low dimensionality to high dimensionality, and
makes the feature disentangled in high dimensionality.

P (Y = 1|x) = πx =
eβ0+β1x

1+ eβ0+β1x
(Function (1))

Y : intelligence group (1: LA, 0: HA); x: EEG markers; β0: the
constant; β1: The estimated coefficient of x; P (Y = 1|x): Given
the x, the probability that an individual belongs to the LA group.

As described above, the hyperplane in kernel SVM can be
described as follows:

f (x) = wTϕ (x)+ b (Function (2))

And the radial basis function is:

k
(
xi, xj

)
= exp

(
−
|xi − xj|2

2σ2

)
(Function (3))

where σ is the width of kernel function; usually, 1
2σ2 is called

gamma factor. It assumes that all of the samples are separated,
and subjects to the inequation as follows:

yi
(
wTxi + b

)
� 1 (Function (4))

In practice, not all of the samples can be separated precisely
by hyperplane. In order to reduce the influence of these special
undesired samples, the approach of soft margin is introduced to
SVM. It allows the samples to classify the opposite category in
some degree:

yi
(
wTxi + b

)
� 1− ξi (Function (5))
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where ξi is slack variable, representing the degree of every
sample that deviates from the accurate category. In the phase of
optimization, C will be introduced to control the degree of fitting.

In the present study, we used the “tune” parameter sweep
tool [R coding: tune (SVM, Group∼, data = IQ_train,
kernel = “radial,” ranges = list (cost = c(0.001, 0.01, 0.1, 1, 10, 100,
1000)))]. A grid search was performed on seven parameter values
between C = [10−3 to 103] on the whole data. This suggested
values of C = 1 (which let the model reach its least error: 0.27).
In addition, the gamma is set to 1/Nf (Nf represents the feature
of dimensionality). Those parameter values were used for the
subsequent analysis.

In order to obtain more compelling results, We adapted
fourfold cross-validation, which separated data into four
segments: three for training and one for testing [75% for
training and 25% for testing, leaving sufficient testing sample
to ensure that it can provide useful information about
accuracy rate (Stewart et al., 2014)]. Iterating through the
cross-validation, each subset was used once as test data, and
the score was averaged across the four splits. Additionally,
to ensure comparability between these two models, an R
code “set.seed(20)” was written before the cross-validation
part to ensure that the division of sets was exactly the
same between each model. Relatedly, the caret2, glm and
e10713 packages of the R Studio software version 1.1.456
were utilized to conduct the corresponding tests (i.e., glm
for logistic model testing; e1071 for SVM testing; and caret
for cross-validation).

Besides, the receiver operating characteristic (ROC) technique
was adopted for evaluating the LR and SVM models [for
more details about the ROC technique, see Fawcett, 2006;
Hand, 2009]. An ROC plot illustrates both sensitivity and
specificity with the AUC of the ROC of 0.5 signifying
random chance prediction and 1 being perfect prediction.
Therefore, the closer the AUC is to 1, the greater the
diagnostic value of the indicator(s). The pROC packages4

of the R Studio software version 1.1.456 were utilized to
plot the ROC curve.

Multiple Linear Regression (MLR) Model
The MLR is a linear statistical method, which is used for
predicting the relationship of a single dependent variable
(response variable: Y) with one or more independent variables
(predictors: X1, X2, . . ., Xn). A general MLR model can be
described by the following equation:

y = β0 + β1x1 + β2x2 + · · · + βnxn + ε

where Y represents the dependent variable, xi indicates
the ith independent variable, βi represents ith predicted
parameter (regression weight), and ε is the error between
predicted response and observation. The regression weights

2Available at https://cran.r-project.org/web/packages/caret/index.html
3For more details, see https://cran.r-project.org/web/packages/e1071/vignettes/
svmdoc.pdf
4Available at https://cran.r-project.org/web/packages/pROC

(βi) are computed in such a way that minimizes the sum of
squared deviations.

In this study, the MLR analysis was performed using
SPSS 22.0 with “enter” method on the selected EEG index
with selected electrodes to predict academic achievement
(Y). Before performing the regression, we had to decide
which variable should be used in the regression model. The
method included “enter,” “remove,” “forward,” “backward,” and
“stepwise.” We selected “enter” method to let all the Xs
enter the model to test their determinant coefficients. To
evaluate statistically the LR model, the following important
assumptions about the residuals were considered and verified
(Amin et al., 2015):

(1) The residuals should have zero mean value (Linearity).
(2) The residuals should be plotted as normal distribution

(Normality).
(3) The residuals should have constant variance

(Homoscedasticity).
(4) The residuals are independent (or random); otherwise,

autocorrelation problem exists.
(5) The Xs are independent; otherwise, multicollinearity

problem exists.

Assumption (1) is easily verified by Residual Frequency
Distribution Map (see Figure 9C in the Results). And
if a normal probability plot of the standardized residuals
showed a straight line, assumption (2) is verified. Assumptions
(3) and (4) can be evaluated by using scatter plots that
show the relationship between standardized residuals and
predicted values. Besides, the variance inflation factor (VIF)
is introduced to detect the LR model collinearity with a
threshold at 10 to verify assumption (5). The verification of
these assumptions is given in the section “Verification of
Regression Assumptions.”

RESULTS

According to the participants’ RSPM scores, eight subjects were
rated as “very good,” 34 as “good,” 17 as “average,” and 3 as “below
average”; so, 42 children were assigned to the HA group and the
rest were assigned to the LA group. Sex distribution has shown
non-significant difference between the two groups (x2 = 1.154,
p = 0.413). The grouping information is presented in Table 1.

Behavioral Results
Behavioral data recorded during the DSM and the 2-back
task were analyzed for both groups (HA and LA). As
shown in Table 2, the HA group’s accuracy (ACC) was

TABLE 1 | Grouping results (mean ± standard deviation).

HA LA t p
(N = 42, 17 male) (N = 20, 11 male)

Age 10.94 ± 0.66 11.18 ± 1.07 –1.067 0.290

Raw scores of RSPM 48.29 ± 3.73 37.55 ± 5.51 9.036 <0.001
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TABLE 2 | Working memory performance measurements (mean ± standard deviation).

HA (N = 42) LA (N = 20) t p Effect size (Cohen’s d)

ACC of DMS 0.90 ± 0.07 0.84 ± 0.11 2.632** 0.011 0.651

RT of DMS (ms) 832.46 ± 96.56 807.14 ± 110.57 0.921 0.361 0.244

ACC of 2-back 0.84 ± 0.10 0.78 ± 0.12 1.989* 0.051 0.543

RT of 2-back (ms) 1025.25 ± 327.33 935.72 ± 292.47 1.041 0.302 0.288

*p < 0.10 mark; **p < 0.05. Small effect, 0.15 ≤ d < 0.40; medium effect, 0.40 ≤ d < 0.75; large effect, 0.75 ≤ d < 1.10; very large effect, 1.10 ≤ d < 1.45; huge effect,
d > 1.45.

FIGURE 2 | Average ERP waveforms for 2-back task of LA (red) and HA (blue) groups.

FIGURE 3 | 2-D plot of grand average ERP responses of HA and LA groups from 34 scalp locations (except for four eye electrodes and two reference sites).

significantly (or marginally significant) higher than the LA
group’s ACC for both tasks, while the HA group’s reaction
time (RT) was shorter (non-significantly) than the LA group’s

RT. Additionally, Cohen’s d results (Table 2) indicated an
intermediate effect size between the HA and the LA groups’
performances for the ACC.
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TABLE 3 | P200 amplitude of each group in 2-back task (µV, mean ± standard
deviation).

HA (N = 42) LA (N = 18)

Fz 11.58 ± 5.27 12.43 ± 5.09

FCz 14.72 ± 5.67 14.81 ± 4.64

Cz 17.09 ± 5.79 14.81 ± 7.05

CPz 18.36 ± 6.22 17.89 ± 4.72

Pz 17.26 ± 7.51 15.93 ± 6.48

TABLE 4 | P300 amplitude of each group in 2-back task (µV, mean ± standard
deviation).

HA (N = 42) HA (N = 18)

FCz 11.32 ± 6.04 9.85 ± 7.19

Cz 16.77 ± 6.20 12.87 ± 8.30

CPz 21.39 ± 6.40 18.93 ± 6.47

Pz 22.68 ± 7.36 21.04 ± 5.98

Oz 9.44 ± 7.30 7.53 ± 8.60

ERP Results
The subjects were excluded from further ERP analysis due
to an insufficient number of target segments (fewer than 40
of 80 good target segments) that failed to obtain adequate
“signal to noise ratio.” This exclusion allowed 60 subjects
for 2-back ERP analysis and excluded two subjects. With
regard to waveform and 2-D topographic map (Figures 2,
3), the time window of P2 is set at 220–280 ms, and P3 is
set at 350–420 ms.

The analysis of latency showed that the Fz site reaches the
P2-peak first (around t = 0.26 s) and that the Pz site reaches
the P3-peak first (around t = 0.37 s); so, the comparison
of the latency between LA and HA group is conducted for
P2(Fz) and P3(Pz), respectively. The results revealed a marginally
shorter (t = 1.783, p = 0.080, Cohen’s d = 0.497) P2 (Fz)
latency of the HA group (253.55 ± 12.75 ms) compared
to that of the LA group (260.06 ± 13.43 ms). For P3(Pz)

latency, a non-significant difference has been found [HA:
371.9 ± 33.0 ms; LA: 386.1 ± 38.7 ms, t = 1.492, p = 0.141,
Cohen’s d = 0.395].

Following previous research (Amin et al., 2015; Zhang et al.,
2018) and based on our total average results (Figure 3),
the electrode sites that show P200 or P300 component are
used in further analysis (see Tables 3, 4, respectively); so, a
2 (group: HA and LA) × 5 (sites: Fz, FCz, Cz, CPz, and
Pz) repeated measures ANOVA was performed to analyze
the average amplitude of the P200, and a 2 (group: HA
and LA) × 5 (sites: FCz, Cz, CPz, Pz, and Oz) repeated
measures ANOVA was performed to analyze the average
amplitude of the P300.

The results of repeated measures ANOVA of P2 amplitudes
between these two groups indicated a significant main effect
of electrode sites [F(4,232) = 19.948, p < 0.001, η2 = 0.256],
Further multiple comparisons showed that the P2 amplitude
in the central-parietal region (CPz) was significantly higher
than that in the frontal region (Fz, p < 0.001), frontal-central
region (FCz, p < 0.001), central region (Cz, p = 0.005),
and parietal region (Pz, p = 0.023); and the P2 amplitude
at Fz site was significantly smaller than that at other sites
(p ≤ 0.001). The group’s main effect [F(1,58) = 0.196, p = 0.660,
η2 = 0.003] and the interaction effect between groups and
electrode sites [F(4,232) = 1.412, p = 0.231, η2 = 0.024] were
not significant.

For P3 amplitude, the statistical results showed a significant
main effect of electrode sites [F(4,232) = 55.074, p < 0.001,
η2 = 0.487], revealing that the P3 amplitude decreased from
Pz and CPz sites to Cz, FCz, and Oz sites, respectively;
and a marginally significant group main effect was found
[F(1,58) = 2.876, p = 0.095, η2 = 0.047]. Further multiple
comparison indicated that the P3 amplitude in the HA group
was significantly higher than that in the LA group at Cz
site (p = 0.049). The interaction effect between electrodes
sites and groups was non-significant [F(4,232) = 21.496,
p = 0.702, η2 = 0.007].

FIGURE 4 | 3-D plot of theta power for coding and delay periods of each group.
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TABLE 5 | θ-ERS of each group in DSM task (Power, µV2/Hz).

HA (N = 39) LA (N = 19)

Coding period Maintaining period Coding period Maintaining period

F3 1885.74 ± 654.33 1656.17 ± 611.50 1901.95 ± 704.60 1697.08 ± 618.10

FZ 2216.02 ± 653.01 1876.24 ± 616.25 2386.88 ± 567.21 2086.95 ± 531.09

F4 1841.89 ± 582.67 1600.36 ± 565.92 1804.06 ± 502.64 1639.04 ± 507.29

FC3 1857.27 ± 600.07 1625.65 ± 572.07 1836.67 ± 751.88 1617.21 ± 647.29

FCZ 2196.45 ± 645.42 1876.60 ± 605.67 2518.10 ± 649.40 2123.21 ± 519.66

FC4 1850.08 ± 575.04 1639.55 ± 565.17 1988.73 ± 414.47 1735.13 ± 343.39

FIGURE 5 | Average spectrograms at FCz site of HA (left) and LA (right) groups.

θ-ERS Results
The subjects were excluded from further ERS analysis due
to an insufficient number of target segments (fewer than 20
of 40 good target segments) that failed to obtain adequate
“signal to noise ratio.” This exclusion allowed 58 subjects for
DMS ERS analysis and excluded four subjects. With regard to
the 3-D spectrogram (Figure 4), the major sites with obvious
activity in the theta band were included in the repeated
measures ANOVA.

FIGURE 6 | High ability (blue) and LA (red) individual location determined by
three EEG indicators.

Consistent with previous empirical studies like, Tóth et al.
(2014) and Raghavachari et al. (2001), the theta band (4–
7 Hz) activities were major in the frontal area. Then, a 2
(group: HA and LA) × 6 (sites: F3, Fz, F4, FC3, FCz, and
FC4) repeated measures ANOVA was conducted to analyze
the theta power between these two groups for coding and
maintaining periods, respectively. The statistical results for
coding period showed a significant main effect of electrode
sites [F(5,280) = 31.693, p < 0.001, η2 = 0.361] and a
significant interaction effect between electrodes sites and groups
[F(5,280) = 2.649, p = 0.023, η2 = 0.045], while the main
effect of group was non-significant [F(1,56) = 0.407, p = 0.526,
η2 = 0.007]. A further simple effect analysis shows that the

TABLE 6 | Parameters of classification (mean ± standard deviation) of testing set.

SVM

P3 amplitude P2 latency Theta ERS All

Accuracy 0.768 ± 0.107 0.696 ± 0.122 0.696 ± 0.122 0.732 ± 0.107

Sensitivity 0.217 ± 0.208 0.000 ± 0.000 0.000 ± 0.000 0.104 ± 0.125

Specificity 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

LR

P3 amplitude P2 latency Theta ERS All

Accuracy 0.696 ± 0.122 0.679 ± 0.092 0.679 ± 0.092 0.714 ± 0.143

Sensitivity 0.167 ± 0.236 0.000 ± 0.000 0.000 ± 0.000 0.317 ± 0.281

Specificity 0.927 ± 0.086 1.000 ± 0.000 1.000 ± 0.000 0.864 ± 0.077
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theta power of the LA group was marginally higher than that
of the HA group at FCz site (p = 0.081). The statistical results
of delay (maintaining) period indicated a significant main effect
of electrode sites [F(5,280) = 21.251, p < 0.001, η2 = 0.275],
while non-significant effects of group [F(1,56) = 0.522, p = 0.473,
η2 = 0.009] and the interaction of group and electrode sites
[F(5,280) = 1.785, p = 0.116, η2 = 0.045] were found. The theta
power of these sites for each period of two groups are presented
in Table 5.

Taking FCz site as an example (Figure 5), the theta power
increased at the commencement of the trial and was elevated
through the memory coding period and the delay period. The
average spectrograms for the LA group demonstrated more
energy in the theta frequency band across the coding period.

Machine Learning Results
P3 amplitude (Cz), P2 latency (Fz) of 2-back task, and the θ-ERS
(FCz) within the coding period of the DSM task were included
in the machine learning analysis; the total number of subjects in
this section was 56 (consider both 2-back and DSM tasks). The
Gf (marked by RSPM) of our subjects was linearly inseparable
by three EEG indicators (Figure 6). As illustrated in the
section “Materials and Methods,” the classification performance
of fourfold cross-validation of kernel SVM and LR classifiers
for each EEG indicator and the combination of the indicators

are presented in Table 6. The mean was the average of the
testing results of fourfold cross-validation, as well as standard
deviation values. Use of a single EEG parameter permitted correct
classification of 76.8% (for P3 amplitude), 69.6% (for P2 latency
and theta ERS) using the SVM model, as well as a combination
of these three EEG markers of 73.2%, which was lower than the
P3 amplitude. For the LR model, the correct classification of P3
amplitude is 69.6%, and the classifications of both P2 latency and
theta ERS are 67.9%, a combination of them is 71.4%.

The accuracy of SVM was higher than that of LR classifier
for both the single or combined EEG indicators, which again
verified the good generalization capabilities of SVM algorithms
based on maximizing the margin that Lotte et al. (2007) had
previously mentioned. But it should be noted that with respect
to the AUC of ROC, the LR model showed better outcomes,
especially in the regression of three comprehensive indicators,
reflecting its advantages of “taking care of the overall samples”
which leads to an AUC at 0.844, which is higher than that
of SVM (0.792), and far higher than any single EEG indicator
in the LR model (AUC all < 0.6, almost equal to 0.5, which
signifies random chance prediction). Among the three single EEG
indicators, P3 amplitude was by far the more suitable indicator in
the discrimination of Gf because of its highest accuracy rating in
both classifiers. It is worth mentioning that while the specificity
was excellent in the SVM classifier (single or comprehensive

FIGURE 7 | Receiver operating characteristic curves for two-back-related frontal P3 amplitude (A), P2 latency (B), and DMS-related theta ERS (C), and their
combination based on electrode sites selected from the ANOVA test (D) using the SVM model.
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FIGURE 8 | Receiver operating characteristic curves for two-back-related frontal P3 amplitude (A), P2 latency (B), and DSM-related theta ERS (C), and their
combination based on electrode sites selected from the ANOVA test (D) using the LR model.

indicators have reached 1 for all four subsets), the sensitivity of
diagnosing individuals with LA in both classifiers was very small,
even< 0.5, indicating the limitation of those EEG signals.

The training sets that corresponded to the testing sets with
the highest accuracy in both SVM and LR models were used to
draw ROC curves. Interestingly, the area under the ROC curve
of SVM and LR showed different styles. In the ROC curve under
the SVM model (Figure 7), all of the best cutoff points were set
at the point where sensitivity was equal to 1, and the shape of
single or combined signals was similar to each other (all showed
high sensitivity and low specificity). But in the ROC curve of
the LR model, the combination of the three EEG indicators
led to a substantial improvement of sensitivity (reach at 1.00),
specificity (reach at 0.75), and proportion of correctly classified
cases (Figure 8). Meanwhile, when the best cutoff points of P3
amplitude and P2 latency were set at the point where they had an
advantage in specificity (equal to 1), the best cutoff point of θ-ERS
had an advantage in sensitivity; so, it is reasonable to infer that
their combination will demonstrate substantial improvement in
AUC (under the LR model).

Multiple Linear Regression Results
Multiple linear regression analysis with “enter” method was
performed on selected three electrodes for P3 amplitude, P2
latency, and theta ERS for predicting academic achievement
(6 months later). The regression parameter was presented
in Table 7, and the regression function was described as

follows. The P3 amplitude at Cz site predicted statistically
and significantly the academic achievement (total scores of
Chinese and Mathematics) in this model. The explanation ratio
of variance between regression and residuals was marginally
significant (F = 2.655, p = 0.058).

Verification of Regression Assumptions
With regard to the regression analysis for prediction of academic
scores, the mean value of the residual is about 3.82 × 10−17,
which is very close to zero (Figure 9C), and it also presents a
normal distribution for the standardized residual; thus, the first
and second regression assumption (linearity and normality) is
verified. Besides, the normal probability plot of the standardized
residuals shows a straight line that verifies the second assumption
again (Figure 9B). The VIF of each independent variable is

TABLE 7 | Regression parameter of EEG signals to academic achievement.

Independent variables B Standardized β p VIF

θ ERS in coding period (FCz) −0.000099 −0.150 0.262 1.002

P3 amplitude (Cz) 0.017** 0.285** 0.035 1.044

P2 latency (Fz) −3.450 −0.113 0.384 1.046

Constant 1.716 7.382 0.220 –

*p < 0.10; **p < 0.05. VIF < 10 means that this variable does not
have independent variable multicollinearity. The regression function: Academic
Score = 1.414 − 0.000099 θ power + 0.017 P3 Amplitude − 3.540 P2 latency.
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FIGURE 9 | (A) Scatter plot of regression standardized residual against the regression standardized predicted value of dependent variable (academic score).
(B) Normal P–P plot of regression standardized residual, the plot of the residual fits the expected pattern well enough to support that the residual is normally
distributed. (C) Normal distribution plot of regression standardized residual with zero mean value.

lower than 10, which shows that there is no multicollinearity
problem in the regression model. The scatter plot of the
residual against the predicted variable (Figure 9A) shows no
specific pattern that can be observed, hence verifying the third
assumption (constant variance, or homoscedasticity) and the
fourth assumption (independence). Thus, the regression model
assumptions are considered verified.

DISCUSSION

This study details a method for classifying Gf level in children
using WM task-related EEG signals relying on machine learning.
It also investigates the relationship between individual differences
in WM task-related EEG signals and academic achievement. The
present data suggest that P3, which reflects attentional processes
involved in stimulus processing and inhibitory control, may
be a biomarker for academic achievement during childhood,
supporting in part what Hillman et al. (2012) had previously
mentioned. To the best of our knowledge, this study is the
first to apply pure EEG variables as independent variables to
predict academic scores in a multiple linear regression model
with verification, although the overall explanatory power is not
strong (the explanation ratio of variance between regression and
residuals was only 2.655); this research supplements the current
literature: Although several studies demonstrated a significant
connection between EEG signals measures and Gf, e.g., spectral
power (Qazi et al., 2017) or P3 amplitude (Amin et al., 2015), in
which the AUCs were >0.80, the present data in children could
not support such connections.

The present results offer three implications: The first
implication concerns experimental object. The discriminant
analysis conducted in healthy people often does not demonstrate
significant differentiation; not only in the results of the ROC
but also in the analytical results of repeated measures ANOVA
or T-test can we see that the differences between the HA and
the LA groups of the three EEG indicators are only marginally
significant. This may help to explain why some studies like the
one by Covey et al. (2019), whose aim was to improve Gf in

healthy groups, showed little change in the Raven’s scores, while
the change in EEG signals yielded a significant training effect,
as reported previously in a meta-analysis by Melby-Lervåg et al.
(2016). The EEG signals did not appear to be so sensitive in
the assessment of Gf, especially when Gf was evaluated using
the pencil-and-paper test and Raven’s scores. Thus, we can infer
from the present study that there may have been two possible
reasons related to this phenomenon. One is that the EEG signals
actually have little in common with the pencil-and-paper test;
that is, the EEG signals change a lot, whereas the pencil-and-
paper scores do not, or vice versa. If so, there will again be the
challenge to determine what Gf is. Do the current tests based
on the pencil-and-paper test really measure Gf? The other one is
that in healthy samples, the difference between EEG signals and
their Gf was too small to reach an acceptable sensitivity, at least
based on the present method. So, if those methods were applied
to the clinical samples with intellectual impairment in which the
difference between positive and negative patients is large enough,
the effect size would be greater.

Second, from the comparison of SVM and LR in the present
study, we can summarize that while the accuracy of SVM was
higher than the LR, the AUC of ROC in the LR model showed a
larger AUC for the combined EEG signals, under the condition
that the training and testing sets were the same between these
two models. Additionally, it should be noted that although several
studies have found that the indicator effect of the comprehensive
indicator was better than the single indicator (Missonnier et al.,
2007; Engemann et al., 2018), a counterexample appeared in this
study, indicating that using one signal of P3 amplitude as input
increases the classification accuracy to 76.8 from 73.2% with
three complexes in the SVM model. There is speculation that the
kernel SVM projects implicitly the feature of low dimensionality
to high dimensionality and makes the feature disentangle in
high dimensionality; so, adding features may cause redundancy
rather than improve accuracy. In addition, every single indicator
in the LR model showed only a small AUC just above chance
(the AUC is close to 0.5), indicating that the LR method is
sensitive to outliers; meanwhile, a complementary effect has been
found between ERP and ERS in the LR model, verifying that the
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selection of indicators is comprehensive and that it contributed
to the improvement of the AUC in the combined indicators.

Finally, starting from the relationship between WM and Gf,
this study essentially analyzes the WM task-related EEG signal
and other EEG signals like resting state EEG signal (Gordon et al.,
2018), functional connection signals, and other task-related EEG
indicators that warrant further investigation in future studies.
If there are EEG markers that can robustly indicate human
Gf – no matter in what forms – current test styles for assessing
intelligence could change dramatically.

Altogether, these findings extend and challenge previous
findings that reported EEG signals might be used as a supporting
factor in standard psychometric tests to assess an individual’s IQ.
We hope that the present work, as well as recent studies, will
motivate researchers to further explore these important concerns.

Limitations
As we tried to control the experiment object and operation
process, there are still some aspects that can be improved.
First, we included children of different ages because we could
not recruit a sample of children of the same age; when we
grouped the children, we did consider this limitation. However,
if we use a sample of children of the same age, or perhaps
different age groups, the study would undoubtedly be stronger.
Second, this study only focuses on three WM-related EEG
candidate indicators. Although the WM is thought to be a
complex system, perhaps there will be a more comprehensive
EEG index system to reflect the WM in the future. Third,
when we considered the predictive ability of EEG index,
we only perceived it within the “WM-related” scope in the
present study, but other EEG signals showed a significant
correlation to academic performance, such as error-related

negativity (Hirsh and Inzlicht, 2010). Therefore, future research
might explore a more intense or broader scope.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Psychology Experimental Ethics Committee
of Nanjing University. Written informed consent to participate
in this study was provided by the participants’ legal
guardian/next of kin.

AUTHOR CONTRIBUTIONS

WL and RZ came up with the idea. RZ and WL designized the
experiment and modified the final manuscript. WL collected the
data and prepared the draft.

FUNDING

This work was supported, in part, by the 2019 Postgraduate
Research & Practice Innovation Program of Jiangsu Province
(KYCX19_0025), the Key Project of Philosophy and Social
Science Research in Colleges and Universities in Jiangsu Province
(2015JDXM001), and NJU National Demonstration Base for
Innovation and Entrepreneurship (SCJD0406).

REFERENCES
Amin, H. U., Malik, A. S., Kamel, N., Chooi, W. T., and Hussain, M. (2015). P300

correlates with learning and memory abilities and fluid intelligence. J. Neuroeng.
Rehabil. 12:87. doi: 10.1186/s12984-015-0077-6

Colom, R., Flores-Mendoza, C., Quiroga, M. Á, and Privado, J. (2005). Working
memory and general intelligence: the role of short-term storage. Pers. Individ.
Dif. 39, 1005–1014. doi: 10.1016/j.paid.2005.03.020

Covey, T. J., Shucard, J. L., and Shucard, D. W. (2019). Working memory
training and perceptual discrimination training impact overlapping and distinct
neurocognitive processes: evidence from event-related potentials and transfer
of training gains. Cognition 182, 50–72. doi: 10.1016/j.cognition.2018.08.012

Dong, S., Reder, L. M., Yao, Y., Liu, Y., and Chen, F. (2015). Individual differences
in working memory capacity are reflected in different ERP and EEG patterns to
task difficulty. Brain Res. 1616, 146–156. doi: 10.1016/j.brainres.2015.05.003

Engel De Abreu, P. M. J., Conway, A. R. A., and Gathercole, S. E. (2010). Working
memory and fluid intelligence in young children. Intelligence 38, 552–561.
doi: 10.1016/j.intell.2010.07.003

Engemann, D. A., Raimondo, F., King, J., Rohaut, B., Louppe, G., Faugeras, F., et al.
(2018). Robust EEG-based cross-site and cross-protocol classification of states
of consciousness. Brain 141, 3179–3192. doi: 10.1093/brain/awy251

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognit. Lett. 27,
861–874. doi: 10.1016/j.patrec.2005.10.010

Gignac, G. E., Shankaralingam, M., Walker, K., and Kilpatrick, P. (2016). Short-
term memory for faces relates to general intelligence moderately. Intelligence
57, 96–104. doi: 10.1016/j.intell.2016.05.001

Gordon, S., Todder, D., Deutsch, I., Garbi, D., Getter, N., and Meiran, N.
(2018). Are resting state spectral power measures related to executive
functions in healthy young adults? Neuropsychologia 108, 61–72. doi: 10.1016/j.
neuropsychologia.2017.10.031

Gray, S., Green, S., Alt, M., Hogan, T., Kuo, T., Brinkley, S., et al. (2017). The
structure of working memory in young children and its relation to intelligence.
J. Mem. Lang. 92, 183–201. doi: 10.1016/j.jml.2016.06.004

Hand, D. J. (2009). Measuring classifier performance: a coherent alternative to the
area under the ROC curve. Mach. Learn. 77, 103–123. doi: 10.1007/s10994-009-
5119-5

Hillman, C. H., Pontifex, M. B., Motl, R. W., O’Leary, K. C., Johnson, C. R.,
Scudder, M. R., et al. (2012). From ERPs to academics. Dev. Cogn. Neurosci.
2, S90–S98. doi: 10.1016/j.dcn.2011.07.004

Hirsh, J. B., and Inzlicht, M. (2010). Error−related negativity predicts academic
performance. Psychophysiology 47, 192–196. doi: 10.1111/j.1469-8986.2009.
00877.x

Itthipuripat, S., Wessel, J. R., and Aron, A. R. (2013). Frontal theta is a signature
of successful working memory manipulation. Exp. Brain Res. 224, 255–262.
doi: 10.1007/s00221-012-3305-3

Julie, O., Arnaud, D., and Scott, M. (2005). Frontal midline EEG dynamics during
working memory. NeuroImage 27, 341–356. doi: 10.1016/j.neuroimage.2005.
04.014

Lijffijt, M., Lane, S. D., Meier, S. L., Boutros, N. N., Burroughs, S., Steinberg, J. L.,
et al. (2009). P50, N100, and P200 sensory gating: relationships with behavioral
inhibition, attention, and working memory. Psychophysiology 46, 1059–1068.
doi: 10.1111/j.1469-8986.2009.00845.x

Frontiers in Behavioral Neuroscience | www.frontiersin.org 13 January 2020 | Volume 14 | Article 2

https://doi.org/10.1186/s12984-015-0077-6
https://doi.org/10.1016/j.paid.2005.03.020
https://doi.org/10.1016/j.cognition.2018.08.012
https://doi.org/10.1016/j.brainres.2015.05.003
https://doi.org/10.1016/j.intell.2010.07.003
https://doi.org/10.1093/brain/awy251
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.intell.2016.05.001
https://doi.org/10.1016/j.neuropsychologia.2017.10.031
https://doi.org/10.1016/j.neuropsychologia.2017.10.031
https://doi.org/10.1016/j.jml.2016.06.004
https://doi.org/10.1007/s10994-009-5119-5
https://doi.org/10.1007/s10994-009-5119-5
https://doi.org/10.1016/j.dcn.2011.07.004
https://doi.org/10.1111/j.1469-8986.2009.00877.x
https://doi.org/10.1111/j.1469-8986.2009.00877.x
https://doi.org/10.1007/s00221-012-3305-3
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1016/j.neuroimage.2005.04.014
https://doi.org/10.1111/j.1469-8986.2009.00845.x
https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-00002 January 14, 2020 Time: 15:32 # 14

Luo and Zhou EEG Biomarkers Measure Fluid Intelligence

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review
of classification algorithms for EEG-based brain–computer interfaces. J. Neural
Eng. 4, R1–R13. doi: 10.1088/1741-2560/4/2/R01

Melby-Lervåg, M., Redick, T. S., and Hulme, C. (2016). Working Memory
training does not improve performance on measures of intelligence or other
measures of “Far Transfer”. Perspect. Psychol. Sci. 11, 512–534. doi: 10.1177/
1745691616635612

Missonnier, P., Deiber, M. P., Gold, G., Herrmann, F. R., Millet, P., Michon,
A., et al. (2007). Working memory load–related electroencephalographic
parameters can differentiate progressive from stable mild cognitive impairment.
Neuroscience 150, 346–356. doi: 10.1016/j.neuroscience.2007.09.009

Missonnier, P., Gold, G., Herrmann, F. R., Fazio-Costa, L., Michel, J., Deiber, M.,
et al. (2006). Decreased theta event-related synchronization during working
memory activation is associated with progressive mild cognitive impairment.
Dement. Geriatr. Cogn. Dis. 22, 250–259. doi: 10.1159/000094974

Myers, N. E., Stokes, M. G., and Nobre, A. C. (2017). Prioritizing Information
during working memory: beyond sustained internal attention. Trends Cogn. Sci.
21, 449–461. doi: 10.1016/j.tics.2017.03.010

Neubauer, A. C., and Fink, A. (2009). Intelligence and neural efficiency. Neurosci.
Biobehav. Rev. 33, 1004–1023. doi: 10.1016/j.neubiorev.2009.04.001

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clin.
Neurophysiol. 118, 2128–2148. doi: 10.1016/j.clinph.2007.04.019

Qazi, E., Hussain, M., Aboalsamh, H., Malik, A. S., Amin, H. U., and Bamatraf,
S. (2017). Single trial EEG patterns for the prediction of individual differences
in fluid intelligence. Front. Hum. Neurosci. 10:687. doi: 10.3389/fnhum.2016.
00687

Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P.,
Bourgeois, B., et al. (2001). Gating of human theta oscillations by a working
memory task. J. Neurosci. 21, 3175–3183. doi: 10.1523/JNEUROSCI.21-09-
03175.2001

Scharinger, C., Soutschek, A., Schubert, T., and Gerjets, P. (2017). Comparison of
the working memory load in n-back and working memory span tasks by means
of EEG frequency band power and P300 amplitude. Front. Hum. Neurosci. 11:6.
doi: 10.3389/fnhum.2017.00006

Sitt, J. D., King, J., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., et al. (2014).
Large scale screening of neural signatures of consciousness in patients in a
vegetative or minimally conscious state. Brain 137, 2258–2270. doi: 10.1093/
brain/awu141

Stewart, A. X., Nuthmann, A., and Sanguinetti, G. (2014). Single-trial classification
of EEG in a visual object task using ICA and machine learning. J. Neurosci.
Methods 228, 1–14. doi: 10.1016/j.jneumeth.2014.02.014

Tóth, B., Kardos, Z., File, B., Boha, R., Stam, C. J., and Molnár, M. (2014). Frontal
midline theta connectivity is related to efficiency of WM maintenance and is

affected by aging. Neurobiol. Learn. Mem. 114, 58–69. doi: 10.1016/j.nlm.2014.
04.009

Tusch, E. S., Alperin, B. R., Ryan, E., Holcomb, P. J., Mohammed, A. H., and
Daffner, K. R. (2016). Changes in neural activity underlying working memory
after computerized cognitive training in older adults. Front. Aging Neurosci.
8:225. doi: 10.3389/fnagi.2016.00255

Unsworth, N., and Engle, R. W. (2007). On the division of short-term and working
memory: an examination of simple and complex span and their relation to
higher order abilities. Psychol. Bull. 133, 1038–1066. doi: 10.1037/0033-2909.
133.6.1038

Unsworth, N., Fukuda, K., Awh, E., and Vogel, E. K. (2014). Working memory and
fluid intelligence: capacity, attention control, and secondary memory retrieval.
Cogn. Psychol. 71, 1–26. doi: 10.1016/j.cogpsych.2014.01.003

Wang, Q., Zhao, H. H., Chen, J. W., Gu, K. D., Zhang, Y. Z., Zhu, Y. X., et al. (2009).
Adverse health effects of lead exposure on children and exploration to internal
lead indicator. Sci. Total Environ. 407, 5986–5992. doi: 10.1016/j.scitotenv.2009.
08.038

Wongupparaj, P., Sumich, A., Wickens, M., Kumari, V., and Morris, R. G. (2018).
Individual differences in working memory and general intelligence indexed
by P200 and P300: a latent variable model. Biol. Psychol. 139, 96–105. doi:
10.1016/j.biopsycho.2018.10.009

Wronka, E., Kaiser, J., and Coenen, A. M. L. (2013). Psychometric intelligence
and P3 of the event-related potentials studied with a 3-stimulus auditory
oddball task. Neurosci. Lett. 535, 110–115. doi: 10.1016/j.neulet.2012.
12.012

Zhang, D., Zhao, H., Bai, W., and Tian, X. (2016). Functional connectivity among
multi-channel EEGs when working memory load reaches the capacity. Brain
Res. 1631, 101–112. doi: 10.1016/j.brainres.2015.11.036

Zhang, H., Chang, L., Chen, X., Ma, L., and Zhou, R. (2018). Working memory
updating training improves mathematics performance in middle school
students with learning difficulties. Front. Hum. Neurosci. 12:154. doi: 10.3389/
fnhum.2018.00154

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Luo and Zhou. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 14 January 2020 | Volume 14 | Article 2

https://doi.org/10.1088/1741-2560/4/2/R01
https://doi.org/10.1177/1745691616635612
https://doi.org/10.1177/1745691616635612
https://doi.org/10.1016/j.neuroscience.2007.09.009
https://doi.org/10.1159/000094974
https://doi.org/10.1016/j.tics.2017.03.010
https://doi.org/10.1016/j.neubiorev.2009.04.001
https://doi.org/10.1016/j.clinph.2007.04.019
https://doi.org/10.3389/fnhum.2016.00687
https://doi.org/10.3389/fnhum.2016.00687
https://doi.org/10.1523/JNEUROSCI.21-09-03175.2001
https://doi.org/10.1523/JNEUROSCI.21-09-03175.2001
https://doi.org/10.3389/fnhum.2017.00006
https://doi.org/10.1093/brain/awu141
https://doi.org/10.1093/brain/awu141
https://doi.org/10.1016/j.jneumeth.2014.02.014
https://doi.org/10.1016/j.nlm.2014.04.009
https://doi.org/10.1016/j.nlm.2014.04.009
https://doi.org/10.3389/fnagi.2016.00255
https://doi.org/10.1037/0033-2909.133.6.1038
https://doi.org/10.1037/0033-2909.133.6.1038
https://doi.org/10.1016/j.cogpsych.2014.01.003
https://doi.org/10.1016/j.scitotenv.2009.08.038
https://doi.org/10.1016/j.scitotenv.2009.08.038
https://doi.org/10.1016/j.biopsycho.2018.10.009
https://doi.org/10.1016/j.biopsycho.2018.10.009
https://doi.org/10.1016/j.neulet.2012.12.012
https://doi.org/10.1016/j.neulet.2012.12.012
https://doi.org/10.1016/j.brainres.2015.11.036
https://doi.org/10.3389/fnhum.2018.00154
https://doi.org/10.3389/fnhum.2018.00154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/behavioral-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles

	Can Working Memory Task-Related EEG Biomarkers Measure Fluid Intelligence and Predict Academic Achievement in Healthy Children?
	Highlights
	Introduction
	Materials and Methods
	Subject
	Raven's Standard Progressive Matrix (RSPM) Test
	WM Tasks
	Experiment Procedure
	Electrophysiological Recordings
	Preprocessing

	Data Analysis
	Behavioral Analysis
	ERP and ERS Analyses
	Logistic Regression and SVM
	Multiple Linear Regression (MLR) Model


	Results
	Behavioral Results
	ERP Results
	θ-ERS Results
	Machine Learning Results
	Multiple Linear Regression Results
	Verification of Regression Assumptions


	Discussion
	Limitations

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


