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Recent empirical evidence reveals that creative idea generation builds upon an
interplay of multiple neural networks. Measures of temporal complexity yield important
information about the underlying mechanisms of these co-activated neural networks.
A few neurophysiological studies investigated brain signal complexity (BSC) during
the production of creative verbal associations and resting states, aiming to relate
it with creative task performance. However, it is unknown whether the complexity
of brain signals can distinguish between productions of typical and original verbal
associations. In the present study, we investigated verbal creativity with multiscale
entropy (MSE) of electroencephalography (EEG) signals, which quantifies complexity
over multiple timescales, capturing unique dynamic features of neural networks. MSE
was measured in verbal divergent thinking (DT) states while emphasizing on producing
either typical verbal associations or original verbal associations. We hypothesized
that MSE differentiates between brain states characterizing the production of typical
and original associations and is a sensitive neural marker of individual differences in
producing original associations. Results from a sample of N = 92 young adults revealed
slightly higher average MSE for original as compared with typical association production
in small and medium timescales at frontal electrodes and slightly higher average MSE
for typical association production in higher timescales at parietal electrodes. However,
measurement models failed to uncover specificity of individual differences as MSE in
typical vs. original associations was perfectly correlated. Hence, individuals with higher
MSE in original association condition also exhibit higher MSE during the production
of typical associations. The difference between typical and original association MSE
was not significantly associated with human-rated originality of the verbal associations.
In sum, we conclude that MSE is a potential marker of creative verbal association
states, but replications and extensions are needed, especially with respect to the
brain-behavior relationships.
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INTRODUCTION

Creativity as a Complex Trait
Creativity is a complex construct, defined as the process of
producing an original and appropriate outcome (Mumford et al.,
2003; Runco and Jaeger, 2012; Gabora, 2019). Creative solutions
require complex thinking processes, such as divergent thinking
(DT; Guilford, 1950). The creative process includes various
aspects, such as fluent idea production, flexibility of thought,
degree of elaboration, and originality of ideas (Guilford, 1956;
Guilford and Merrifield, 1960). Previous research often focused
on the study of fluency, that is, the ability to produce many ideas
in a short amount of time, and originality, characterizing the
quality of an idea. The answers given in DT tasks are mainly
evaluated by humans (Silvia et al., 2008), especially when it comes
to judging the product of a creative thought process in terms
of its originality. Thus, human ratings of task outcomes are also
customary in neuroscience (see Fink and Neubauer, 2008).

In general, healthy and functional biological systems are
highly complex resulting from the long process of evolution and
self-organization (Lewis, 2000, 2005). Advancement of functions
or emergence of new functions is, thus, associated with increased
system complexity during the evolution process. It has been
proposed that the human brain is an adaptive system where
highly complex neural networks may produce similarly complex
psychological states and activities, such as consciousness and
creative thought (Laycraft, 2009).

In a similar vein, the Honing theory (HT) of creativity
proposed by Gabora (2017) links complexity-related concepts
with creativity, suggesting that human minds are self-organizing,
self-maintaining, and self-producing complex systems that
subserve creativity. More concretely, the central idea of HT is
that our minds evolve through an adaptive self-organization
process in response to unpredicted (novel) environmental inputs,
leading to a state of psychological entropy (Hirsh et al., 2012).
This entropic state fosters creativity and aims to return to an
equilibrium for further adapting to the environment. Hirsh et al.
(2012) described psychological entropy as anxiety-provoking
uncertainty, whereas Gabora (2017) redefined this assumption
by replacing anxiety with arousal, conceptualizing creativity
as a process of managing the state of psychological entropy
in a positive sense. Empirically, this idea is supported, for
example, by the fact that creative individuals exhibit greater
openness to experience and higher tolerance to ambiguity
(Feist, 1998).

Honing theory seeks to explain how ideas evolve over time
considering the brain as a self-organizing complex system, which
continuously interacts with and adapts to the environment to
minimize psychological entropy. The theory aims to illustrate
that psychological entropy is a driver of creativity impelled by
emotions and intuitions (e.g., Cropley, 2006; Gabora, 2017) that
plays a key role in monitoring and tracking creative progress.
Following a similar line of theorizing, in the present research, we
propose that the concepts of HT can be applied to understand
the temporal complexity of EEG signals during creative verbal
associations. More concretely, we assume that the challenge of
solving a DT task applied in a laboratory setup will increase

psychological entropy, which will be reflected in the brain signal
during the time of dealing with this challenge.

Thus, in analogy to the HT aiming at explaining the creative
process on a larger timescale across human evolution, in
the present research, we focused on production of creative
verbal associations at shorter timescales, defined as the time
of generating a specific idea in response to a laboratory EEG
task. To this aim, we adapted a well-established verb generation
task (from Prabhakaran et al., 2014), requiring to produce a
verb that is semantically related to a presented noun. This task
is easy to administer despite the constraints of neural data
acquisition. It was originally designed to evoke brain activity
associated with semantic processing (Petersen et al., 1989) but
was modified to assess creative verbal association production. In
general, creative verbal production is a well-investigated instance
of creativity. Therefore, we manipulated psychological entropic
states by asking individuals to produce answers in two conditions:
either original (by making original verbal associations) or typical
associations (by recalling the first verbal association that comes
into mind). EEG has been widely and fruitfully applied in various
creativity studies to capture the complex and transitory brain
activity during creative idea generation. Stevens and Zabelina
(2019) reviewed creativity studies that used EEG and summarized
its advantages to assess fast-moving and complex brain activity
during the creative process. In the here applied task paradigm,
we expected to differentiate the two creative task conditions at
the neural level in terms of temporal complexity of the EEG
signal. We further postulate that the EEG-captured brain signal,
recorded while an individual generates original associations, will
differ from the signal during states of generating merely typical
associations. Therefore, EEG complexity should be higher during
original verbal association states.

Verbal Creativity and Brain Signal
Entropy
In human brain cortical areas are interconnected by numerious
neuroanl connections which form specialised neuronal networks.
These networks are characterised by complex non-linear
dynamic patterns. The interaction between various excitatory
and inhibitory reentrant loops in these networks cause transient
fluctuations in the brain signals over time, such as synchronous
oscillatory activity (Friston and Price, 2001). Such transients
are believed to reflect transitions between network microstates
that can be used as an estimate of complexity underlying the
network. Hence, greater variability in the amplitude pattern of
the signal over time indicates a more complex system (Deco et al.,
2011; Heisz et al., 2012). Healthy brain functioning has been
characterized by two key components, variability and complexity
of neural signals. The variance in neuroimaging time series
data or neural signal variability has been suggested to be a
proxy indicator of the neural dynamic characteristics, cognitive
performance, and even brain disorders (Garrett et al., 2011;
Garrett et al., 2013). In a similar vein, BSC has been explored
as a possible neural correlate of cognitive performance. Entropy-
based methods have been also used to examine brain signal
variability and complexity, aiming to establish relationships with
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creativity. For example, Shi et al. (2019) used entropy measures
of fMRI data to characterize the resting-state temporal dynamics
and found a small-to-moderate positive association with verbal
creativity. Sun et al. (2019) reported a correlation between verbal
creativity and the temporal variability of functional connectivity
patterns in the control network. In a similar line of research, a
BSC measure known as MSE has been considered a potential EEG
correlate of creativity. MSE is an information theoretic metric
that provides an index of network complexity across multiple
spatiotemporal scales (Costa et al., 2002, 2005). It uses sample
entropy (SampEn) to quantify the irregularity of a time series
at each of several scales achieved by coarse graining the original
signal. A study by Ueno et al. (2015) showed higher MSE in
resting-state EEG across large temporal scales in more creative
as compared with less creative elderly individuals. Given the
limited number of studies showing an association between verbal
creativity and brain signal variability/complexity, we intended to
further investigate this intriguing association by assuming that
MSE can serve as a neural marker of verbal creative performance
assessed with a DT task in younger individuals.

Global and Local Neurophysiological
Explanations of Creativity
Recent neuroimaging studies have allowed a better
understanding of network dynamics and brain regions involved
in creative ideation. Abraham (2018) summarized and divided
the current state of knowledge on the neurophysiological
basis of creativity into global- and local-based explanations.
Global explanations view creativity as being grounded on
large and widespread systems in the brain. According to these
explanations, creativity is not composed of one but a series of
multiple, simultaneously operating processes. Thus, the complex
trait of creativity emerges from large-scale neural assemblies
working in synchrony during the time of heightened creativity.
In this line, a review by Beaty et al. (2019) elaborated on the
creative network dynamics and demonstrated that the executive
and default mode networks can reliably predict creative thinking
ability of individuals. They argued that creativity is a result of
the interaction between associative and executive processes.
A functional connectivity study by Beaty et al. (2018) revealed
that creative ability was associated with activity in interacting
brain regions including the default mode, central executive,
and salience networks, supporting the broad network view of
creativity. A meta-analysis of functional imaging findings on
creativity by Gonen-Yaacovi et al. (2013) identified a set of
frontal and parieto-temporal regions activated during tasks that
engage creative thinking. Local explanations of creativity focus
on elucidating the specific brain regions involved in creative
cognition, which have shown distinct contributions of the
prefrontal cortex (PFC; for a review see Dietrich and Kanso,
2010). Frontal areas such as the Brodmann area 10 (BA 10)
is regarded as an integrator of the output of many cognitive
operations (Ramnani and Owen, 2004; Abraham, 2018). The
BA 10 has been shown to be active during creativity tasks that
require the integration of weakly related concepts during creative
idea generation, conceptual expansion, musical improvisation,

and analogical reasoning (Abraham et al., 2012b; Beaty, 2015;
Abraham, 2018). Furthermore, lesions in the PFC have been
associated with low performance in many creative cognition
tasks, such as fluency and originality (see Abraham et al., 2012a).
Additionally, ventrolateral and dorsolateral PFC areas located
posterior to the frontal pole were shown to be involved in
creative story writing and conceptual expansion, as well as in
processing metaphors (Abraham et al., 2012b; Kröger et al., 2012;
Gold et al., 2012). Thus, our hypotheses in the present study are
built upon a global view on creativity, which we approach by
using multiple timescales explicitly indicating spatial interactions
in neural systems and not only temporal ones (Liu et al., 2019).
Local explanations of creativity are reflected in our approach by
as we specifically focus on prefrontal brain activity.

Aims of the Present Research
Building upon the theoretical views and empirical evidences
reviewed above, in the current study, we explored verbal creative
word generation as an integrated activity of widely distributed
but predominantly prefrontal neural networks. To this aim,
we applied MSE analysis that has been proposed to quantify
temporal complexity in EEG signals. MSE parameterizes the
complexity of temporal patterns underlying any kind of time
series. When applied to brain signals, MSE provides information
reflecting the communication of different neural generators in
functional brain networks across multiple timescales (Heisz
and McIntosh, 2013). From a theoretical point of view, small
timescales in MSE reflect local neural interactions, while large
timescales reflect activity of widely distributed neural networks
(Grundy et al., 2017; Vakorin et al., 2017). Linear stochastic
effects are assumed to be related to observational noise at lower
timescales. Coarse-graining applied during MSE analysis (see
“Materials and Methods” section for details) is essentially a
down-sampling process, which alleviates linear effects in large
timescales. Thereby, small timescale MSE extracts information
from the whole frequency spectrum and also captures linear
stochastic effects in the signal, while large timescale MSE relates
to slow oscillations and reflects non-linear signal properties
(Courtiol et al., 2016; Miskovic et al., 2019). Therefore, by
applying MSE to EEG signals recorded during typical vs. original
associations, we aimed to capture the stochastic properties
of the EEG signals that are assumed to be associated with
the joint neural activities of local (small scales) and widely
distributed (large scales) brain networks. We thus interpret
activity of broadly distributed networks on the basis of MSE at
large timescales.

Assuming MSE to be a neural marker of creative cognition,
we hypothesized (1) a quantitative MSE difference, in the sense
that efforts to produce original verbal associations will lead to
higher average MSE as compared with typical verbal associations.
(2) We expected brain states during the production of original
associations to qualitatively differ from brain states during typical
association production, which might be reflected in specific rank
orders of individuals with respect to their MSE in these two
states. (3) We further expected the stronger MSE difference
between typical and original associations to especially occur
at frontal areas. (4) We aimed to explore whether the MSE
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difference between typical and original association states is
associated with performance in terms of originality ratings of the
produced associations.

MATERIALS AND METHODS

Participants
The sample of the present study consisted of N = 101
participants (51 females). In the following steps, we merged
the behavioral data (human-rated originality scores of verbs)
with the EEG acquired during verb associations. We excluded
eight participants with less than 10 years of German language-
speaking experience and one case of invalid EEG event markers.
Thus, the final sample included N = 92 participants (43 females,
Mage = 23.88, range = 18–32 years); 89 individuals were native
German speakers; 8 had not obtained high school degrees, 67 had
high school or equivalent degrees, and 17 had academic degrees
(e.g., bachelors, masters, or diploma).

Neurophysiological Recordings
Electroencephalography datasets were recorded in a closed, quiet,
and well-illuminated room using the Brain Vision Recorder
software (Brain Products, Germany). The EEG signals were
amplified using BrainAmp DC amplifiers (Brain Products,
Germany) with an amplitude resolution of 0.1 µV. We
used 0.16 and 1,000 Hz as low and high cutoff filters,
respectively, and a sampling rate of 250 Hz. An EEG cap
(Easycap, Brain Products, Germany) was mounted with 30
Ag/AgCl electrodes, placed according to the 10–20 system.
Eye movements and blinks were monitored with electrodes
positioned at the outer canthi of both eyes and below the
right eye. The A1 electrode (left mastoid) was used as online
reference, and AFz served as ground. Impedances were kept
below 5 k�.

Preprocessing of
Electroencephalography Data
Offline, the EEG signals were filtered using IIR (zero phase
shift) and Butterworth filters between 0.1 and 50 Hz (order = 2;
time constant = 1.59 s) and recalculated to average reference
using Brain Vision Analyzer (Brain Products, Germany). Further
preprocessing steps were executed in EEGLAB (Delorme and
Makeig, 2004); SASICA (EEGLAB plugin; Chaumon et al., 2015)
was used to remove eye blinks, movement, and electro-cardiac
artifacts. We applied SASICA on the basis of autocorrelation
measures and focal topography. Noisy components like muscle
movements tend to show low autocorrelation. Therefore, muscle
artifacts were detected by measuring the time-point by time-point
variability, which was captured by low autocorrelation measures.
Tonic muscle artifacts were detected based on their noise patterns
and focused topography on electrodes around the edge of the
EEG cap. Since the time window for the MSE analyses was defined
from the onset of the stimulus until the onset of the participant’s
typing response (see Supplementary Figure S1), the probability
of muscle movement artifacts during this interval was very low.

Tasks and Procedure
In the verb generation task, there were two types of color-
cued nouns presented: purple and green. To purple-cued nouns,
participants were expected to produce typical associations—we
thus instructed them to type in the verb that first came to
their mind when being presented with the noun. To green-
cued nouns, participants should produce original, unique verb
associations in response to the noun (see Figure 1). We
modified the original task by translating the stimulus material
(adapted from Prabhakaran et al., 2014) into German and
dropping some nouns that were not proper in the German
language (see Supplementary Material S1 for the list of original
English nouns and their German translations with additional
explanations for dropped trials). This resulted in 35 purple- and
32 green-cued nouns, signaling the production of typical and
original associations, respectively. The task started with verbal
instructions followed by an example trial and five practice trials.
Participants were instructed to type in only one associated verb
for each presented noun. The onset of the stimulus and the
onset of participant’s typing response were time-marked, to be
taken as signals of interest for MSE analysis. There were no
time limits during the experimental trials in order to capture
the brain activity during the complete creative verbal association
production. PsychoPy (Peirce and MacAskill, 2018) was used to
present the stimuli and record the behavioral data. EEG was
recorded during the entire task, which lasted for ∼20 min,
depending to some extent on the participant.

Human Ratings of the Verb Production
Task Outcomes
Three trained native German speakers rated all verbs produced
during the task for originality. The raters were aware of the
condition of origin of each verb but were instructed to rate
the originality of the provided answer without taking the
condition into account. The originality was assessed on a
scale from 1 (not at all original) to 5 (unique and original),
according to subjective scoring guidelines usually deployed in
DT tasks (Amabile, 1982; Silvia et al., 2008). Such scoring
guidelines usually explain that a highly original answer is an
answer that is rare in the sample, remote from the presented
noun and somehow unexpected for the rater (Silvia et al.,
2008). Raters were instructed to use the total range of the
scale if possible and to rate the generated verbs in relation
to the answers provided by other participants. The intraclass
correlations (ICCs; Shrout and Fleiss, 1979) across a fixed set
of raters for all items ranged from 0.81 to 0.97. Due to this
sufficient/good agreement between the three raters, we used
an average score across all three raters per item for statistical
analyses (see Figure 2). We label human ratings of the verb
production task outcomes in the entire manuscript as “human-
rated originality scores in typical associations and original
association’s condition.”

Multiscale Entropy Algorithm
We calculated MSE, following Costa et al. (2002, 2005), in two
steps. (1) We first coarse-grained the original signal at different
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FIGURE 1 | Illustration of the trial sequence in the verb generation task employed during the electroencephalography (EEG) recording session. The task began with a
fixation cross presented for 3 s, followed either by a purple colored noun, called ‘typical associations cue,’ to which participants should produce a commonly known
association, or by a green colored noun called ‘original associations cue,’ to which participants were expected to produce an original association. There were no
time limits for the responses.

FIGURE 2 | Distribution of average rated originality obtained across the condition-specific items of the verb generation task, across participants. Taken together, the
histograms illustrate the participants more often produced original associations in the condition in which original associations were expected.
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FIGURE 3 | Illustration of multiscale entropy (MSE) algorithm. (A) Shows the first step of coarse-graining. Each box represents a data point. (B) Illustrates the second
step in which the Sample Entropy (SampEn) of each coarse-grained time series is calculated (m = 2). This figure is an example with arbitrary data unit. In this
example, with respect to the first two-point sequence (the red–green dyad), there are three other two-point sequences that are identified as similar patterns based on
the threshold r. With respect to the first three-point sequence (the red–green–blue triad), there are two other three-point sequences that are identified as similar
patterns based on r. Likewise, the algorithm will count the number of similar triad pairs (N3) and the number of similar dyad pairs (N2) from the entire sequence.
SampEn is the natural logarithm of N2/N3.

timescales—a procedure similar to low-pass filtering. The coarse-
grained time series at timescale 1 is identical to the original
signal; for obtaining scale n, the time series was divided into non-
overlapping concatenating windows, each of which contains n
points where n is the corresponding scale. Within each window,
all data points were averaged, forming a new coarse-grained
time series at that scale (for illustration, see Figure 3A). (2)
SampEn was then calculated for each of these coarse-grained
time series (Figure 3B). SampEn characterizes the entropy of a
time series by calculating the recurrence probability of a specific
dynamic pattern. Specifically, SampEn identifies repetition of
sequence pattern in the time series and calculates entropy in
three steps, as follows: (i) first, the number of sequences with

m data points satisfying the similarity criterion are counted
and denoted as N(m); (ii) the number of similar sequences
with m + 1 data points length are counted and labeled as
N(m + 1); and (iii) in the last step, SampEn is calculated as the
negative natural logarithm of the conditional probability that two
similar sequences of m data points will be similar for the next
m+ 1 points.

SampEn(m) = − ln
N(m+ 1)

N(m)

The two sequences are similar, if the difference between every
point in the first sequence [N(m)] vs. the corresponding point in
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FIGURE 4 | Grand-mean multiscale entropy (MSE) during typical and original associations at frontal electrodes across 20 time scales. The MSE is slightly larger in
the originality condition mostly at frontal electrodes at small (1–5) and medium (6–15) time scales. Error bars represent 1 SE.
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FIGURE 5 | Topographic plots of grand-mean multiscale entropy (MSE) difference between original and typical associations at time scales 5, 10, 15, and 20. These
distributions illustrate that the positive difference in MSE between the two idea generation conditions occurs at frontal regions and up to scale 15 and negative
differences are prominent at parietal sites at Larger scales.

the second sequence [N(m + 1)] are less than r (see Figure 3).
There are two critical parameters in SampEn calculation: m
(pattern length) and r (similarity criterion). We adapted the
conventionally used parameter settings, m = 2 and r = 15% of
the SD of the original time series.

Mapping the Multiscale Entropy
Timescales to Real Time
Multiscale entropy timescales (ranging from 1 to 20 in our study)
can be mapped to real time. For example, according to the
sampling rate (250 Hz) used in the present research, the real-
time sampling interval at scale 1 is 4 ms. Therefore, MSE at
scale 1 reflects dynamical activities of the neural system at a
resolution of 4 ms, which is fast dynamics. In a similar vein,
scale 5 reflects dynamical activities of the brain at a resolution
of 20 ms, and scale 10 indicates activity at 40-ms resolution.
At the highest scale 20, the activity is at 80-ms resolution,
which reflects slow brain dynamics. Thus, at smaller timescales,
MSE reflects fast and, hence, local neural activities, whereas

at larger scales, MSE captures slow dynamics across broader
spatial domains.

Multiscale Entropy During Production of
Typical and Original Associations
The trial length of the EEG recorded during the production
of typical and original associations varied from trial to trial
and person to person. The variation was inherent to the
non-restricted response time (see Supplementary Figure S1,
visualizing the average reaction times across all trials of “typical”
and “original” association conditions across all participants; the
figure shows that participants took a variable amount of time
to provide their answers). For this reason, a decision had to
be made whether to consider trial-to-trial and person-to-person
variable trial lengths for MSE analysis or to standardize the
analysis interval across individuals. To empirically substantiate
this decision, we systematically explored whether the average
MSE for both varying trial length (from noun presentation to
response) and standardized trial length (for which we fixed
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the trial length from noun presentation to a frame of max.
4 s for each participant) would differ in terms of individual
differences (see results and analysis in the Supplementary
Material S2 illustrating the correlation between the two options
of analyzing MSE, based on variable vs. standardized trial
length). Pearson correlation matrices of MSE, analyzed in
four concatenated trial segments of standardized vs. varying
length, indicated very high associations between the two.
Thus, the rank order of individuals barely differs when
estimating MSE from standardized vs. varying trial lengths.
Hence, the decision can be made according to theoretical
considerations. Note that we aimed to capture the complete
idea generation process, and the variable length covering the
whole thinking time is a more appropriate option from this
theoretical point of view. Thus, for the final MSE analysis,
the trial segments with variable length were concatenated for
each condition and participant. The concatenated segments
were further divided into four data segments to be used as
indicators for the structural equation modeling (SEM). The
length of the concatenated signal segments did not vary within
participant and across timescales; only the resolution did.
Due to progressive coarse graining (from sampling interval
4 ms at scale 1 to 80 ms at scale 20), which lies at
the heart of MSE calculation, the resolution of the signal
differs across timescales. But the analyzed trial length varied
across individuals.

To summarize, we calculated MSE for each participant, at
each channel (electrode) across multiple timescales (ranging from
scale 1 to 20) in 2 (conditions) ∗ 4 data segments (for adjusting
unreliability of MSE estimates and for conducting statistical
inference at the level of latent variables).

Statistical Analysis
Multiscale entropy difference tests between conditions and brain-
behavior associations during the creativity task (human-rated
originality scores of the generated verbs) and MSE estimates
were conducted by means of SEM. SEM is a generalized linear
modeling framework proposed as a combination of confirmatory
factor analysis and path modeling. For an introduction to SEM,
we refer to Kline (2015). SEM with latent variables has the
great advantage that a measure (dependent variable) can be
decomposed onto (1) the true score, (2) its method or content
specificity, and (3) its measurement error. For the present
endeavor, by means of SEM, measurement error (unreliability
arising due to the estimation noise of MSE across different data
segments) can be accounted for, prior to inferentially testing
mean differences between experimental conditions. Furthermore,
the SEM approach allows directly investigating the correlation
between MSE captured in different experimental conditions
and their difference with behavioral outcomes. Finally, with
an SEM approach, integrated measures can be used to avoid
multiple testing issues.

Note that a measurement model requires a minimum of
four indicators for a latent variable to be identified. Therefore,
MSE was computed in four different segments as described
above. Calculating condition-specific latent MSE variables with
four indicators (latent variable for MSE during typical and

FIGURE 6 | Illustration of the time scale integration using the area under the
curve (AUC) measure. Small-AUC is obtained by summing up the multiscale
entropy (MSE) values across time scales 1–5; Medium-AUC by integrating
across scales 6–15; and Large-AUC is achieved by integrating MSE values
across scales 16–20. Note that the magnitude of Medium-AUC values differs
from the other two, because 10 as compared to 5 single values are summed
up in that case.

original association) will thus allow to test hypotheses at the
level of latent variables, which are corrected for measurement
error. More importantly, by using latent variables, we can
jointly test hypotheses with respect to mean differences and
individual differences. In summary, we used SEM to quantify
mean and individual differences in two different conditions of
creative verbal associations, and we investigated the latent level
relationship between MSE measures in the two conditions to
make inferences about the specificity of individual differences.

Statistical analyses were performed with the R Software for
Statistical Computing (R Core Team, 2018). For SEM estimation,
we used the lavaan (LAtent VAriable Analysis) package by
Rosseel (2012). We evaluated model fit by the following test
statistics and fit indices: the chi-square fit statistic (χ2), the
comparative fit index (CFI, that should exceed 0.95 for a good
fit), standardized root mean square residual (SRMR; to be
lower than 0.08), and root mean square error of approximation
(RMSEA to be lower than 0.08); please see Kline (2015) for more
information about SEM fit.

RESULTS

Descriptive Multiscale Entropy Results
To illustrate mean MSE differences at the observed level between
typical and original associations, we computed the grand-mean
MSE across the four segments of concatenated EEG trials and
participants separately for both experimental conditions, each
electrode, and timescale. Figure 4 provides line plots with
error bars of grand-mean MSE during original associations
(green line) and typical (purple line) associations at six frontal
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FIGURE 7 | Schematic representation of measurement models investigating the difference between latent means and individual differences in multiscale entropy
(MSE) as measured in typical and original associations. We estimated two models: Model 1 – in which the mean of the latent variables (typical and original
associations) were freely estimated, and Model 2 – in which the means of the latent variables were fixed to equality. These models were separately estimated for (A)
Small-AUC scores (integrated across smaller time scales 1–5), (B) Medium-AUC scores (integrated across medium time scales 6–15), and (C) Large-AUC scores
(integrated across large 16–20 time scales). S-AUC (1–4) – first to fourth indicators of small AUC scores, M-AUC (1–4) – first to fourth indicators of medium AUC
scores, L-AUC (1–4) – first to fourth indicators of large AUC scores. χ2, Chi-square; df, degrees of freedom; CFI, comparative fit index; RMSEA, root mean square
error of approximation; SRMR, standardized root mean-square residual.

representative electrodes. Error bars represent standard errors.
Note that we do not aim to conduct statistical tests at this data
level, which is not adjusted for measurement error. Descriptively,
differences between the two conditions occurred especially at

frontal electrode sites at small (scale 1–5) and medium (scale
6–15) timescales (see line plots for further electrodes in the
Supplementary Material S3). These results suggest that a
slightly higher complexity characterized the brain signals during
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TABLE 1 | Model fit indices of the nested SEMs estimating latent mean differences in MSE between typical and original associations.

Timescales Model CFI χ 2 df 1χ 2 1df p Estimated mean MSE
during original
associations

Estimated mean MSE
during typical
associations

Mean MSE
with equality

constraint

Small AUC 1 0.991 21.521 9 – – – 6.729 6.457 6.744

2 0.978 42.324 10 20.803 1 <0.001

Medium AUC 1 0.995 16.534 9 – – – 14.730 14.210 14.769

2 0.985 32.093 10 15.559 1 <0.001

Large AUC 1 0.999 9.953 9 – – – 6.386 6.276 6.398

2 0.997 13.700 10 3.747 1 >0.050

CFI, comparative fit index; χ2, chi-square; 1χ2, chi-square difference between Model 1 (freely estimated latent means) and Model 2 (equality constraints on latent means);
1df, difference in the degrees of freedom between Model 1 and Model 2; SEM, structural equation modeling; MSE, multiscale entropy; AUC, area under the curve.

production of original associations as compared with typical
associations. The only statistical test conducted at this level was
the one on sex differences to rule out potential confounders in
the subsequent latent variable analyses. Results are provided in
the Supplementary Figure S4, which suggest no sex differences
in MSE within and between the task conditions.

Next, we visually explored the topographical pattern of the
MSE difference between the two experimental conditions at
this observed data level. To this purpose, we calculated the
absolute differences in mean MSE between the two conditions
and obtained their scalp topographies at selected small, medium,
and large timescales. Visual inspection of these plots reveals six
frontal electrodes Fp1, Fp2, F3, F4, Fz, and FCz where the positive
differences in MSE were the largest and P7, P3, Pz, P4, and P8
parietal electrodes where the MSE difference was negative (see
Supplementary Material S5 for the topoplots at all remaining
temporal scales). According to our theoretical expectations,
frontal electrodes are of special interest for statistical testing at
the level of latent variables. We thus selected the six frontal
electrodes for latent variable analyses. Because these differences
at observed level are not adjusted for unreliability, the illustration
in Figure 5 fulfills, similarly to the line plots in Figure 4,
a descriptive purpose only. For subsequent statistical tests,
MSE measures were spatially and temporally integrated and
adjusted for measurement error. Thus, an average across these
six electrodes and integrated measures across temporal scales was
considered (see below).

Latent Mean and Individual Differences
in Multiscale Entropy
For the purpose of hypothesis testing, we estimated a two-
factorial measurement model with correlated factors (see SEM
description above), differentiating latent MSE variables for typical
and original associations each. To avoid multiple testing, we
integrated MSE values across several scales into single scores.
This procedure has been previously proposed in the literature
as an approach to handle such multiple scale measurements (see
Takahashi et al., 2009; Kaur et al., 2019). Hence, we used the
area under the curve (AUC) as an integrated entropy score per
participant. Visual inspection of the line plots of Figure 4 suggests
that the MSE difference between the two experimental conditions
increases across small scales (1–5) shows a rather stable condition

difference at medium scales (6–15) but no difference at large
scales (16–20). Therefore, we divided the timescale-specific MSE
values into three categories (small-scale MSE, ranging from scales
1–5; medium-scale MSE, including scales 6–15; and large scale,
MSE from scale 16–20) and integrated the person- and condition-
specific MSE values by summing them across those scales (see
Figure 6 for a graphical explanation of this procedure). With the
use of these AUC scores, separate measurement models for small,
medium, and large scales were estimated (Figure 7). Using these
models, we investigated whether latent condition-specific means
are substantially different from each other or can be constrained
to equality without significantly diminishing model fit (according
to the χ2-difference test). If the model fit would substantially
decrease by constraining the latent MSE means of the typical vs.
original association conditions to equality, we would conclude
that the mean difference is statistically substantial.

In Model 1, the mean of the latent MSE variables, i.e., typical
and original associations, was freely estimated. In the Model 2,
an equality constraint was set on the latent variables’ means.
Results are displayed in Table 1, which shows the estimated
means and the latent mean after imposing the equality constraint.
For small AUC, the 1χ2 test showed that the equality constraint
diminished the model fit significantly. For medium AUC, the
model fit significantly diminished as well by constraining the
means to equality, which was, however, not the case for large
AUC. These results suggest that the modeled latent mean
differences in MSE between the two conditions are statistically
substantial for small and medium, but not for large, timescales.
To provide an effect size estimate, we averaged across the
indicators separately for small, medium, and large scales and
used the formula for calculating the paired samples, repeated
measures d coefficient. For small AUC, the observed average
mean MSE during typical associations was 6.436 (SD = 1.207),
whereas in original associations, it was 6.633 (SD = 1.109). Given
a correlation of r = 0.957 between the repeated within-person
measures, the effect size for small AUC amounts to d = 0.531.
For medium AUC, the observed average mean MSE during
typical associations was 14.271 (SD = 2.698), whereas in original
associations, it was 14.608 (SD = 2.477). Given the correlation
of r = 0.954 between the repeated within-person measures, the
effect size for medium AUC amounts d = 0.414. For large AUC,
the observed average mean MSE during typical associations was
6.284 (SD = 1.171), whereas in original associations, it was 6.346
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(SD = 1.061). Given a correlation of r = 0.956 between the
repeated within-person measures, the effect size for large AUC
amounts d = 0.178. The d coefficients indicate a moderate effect
size for small and medium scales and a negligible effect at large
scales. Note that we provide effect size estimates for the manifest
variables, because they are more conservative and because no
clear guidelines exist for calculating d for latent variables.

To investigate the specificity of individual differences in MSE
during typical vs. original associations, we examined the latent
level correlation between the two latent variables in Figure 7.
This is to ask whether individuals systematically differ with
respect to MSE between the original and typical associations
or whether the rank order of individuals is indistinguishable
between the two conditions. Figure 7 illustrates the measurement
models showing the relationship between the two latent variables
for small-, medium-, and large-AUC scores. The latent level
correlations are perfect (even abnormally estimated above the
boundary of the correlation scale) when condition-specific
means are allowed. Correlations are close to unity in each
AUC (small, medium, and large AUC) when latent means
were constrained to equality. Given these estimates, it can be
concluded that individuals exhibiting higher (or lower) MSE
in original associations are also characterized by higher (or
lower) MSE during typical associations. Thus, the rank order of
individuals is non-distinguishable with respect to MSE in the two
verbal association conditions.

Relationship Between Human-Rated
Originality Scores and the Latent Mean
Multiscale Entropy Difference Between
Typical and Original Associations
To investigate how the MSE difference between typical and
original associations is related with human originality ratings
of the produced verb, we applied latent difference score
modeling (LDSM; McArdle and Hamagami, 2001). Because
observed difference scores are poor in their psychometric quality
(lack of reliability and restricted variance; Raykov, 1999) and
the covariance structure of the measurements is not taken
into account when using them, relationships with behavioral
outcomes were investigated with LDSM. LDSM parameterizes
the absolute difference between two latent variables—that is,
two experimental conditions in the present case. The estimated
variance of the latent difference scores quantifies individual
differences in condition effects. We estimated difference score
models for small, medium, and large AUC and regressed them
onto originality ratings of the verbs generated during production
of typical vs. original associations. To test the hypotheses whether
the MSE difference is larger at heightened originality values,
the difference score was additionally regressed onto the squared
originality ratings (quadratic effect, which was expected to be
positive). Figure 8 schematically illustrates the difference score
LDSMs, separately for small-, medium-, and large-AUC scores,
including the linear terms only, because none of the quadratic
effects turned out to be significant (see also Table 2).

As illustrated in Table 2, individuals substantially vary in their
MSE (absolute) difference scores between typical and original

associations. This difference at small-scale MSE was positively
associated with human-rated originality scores when original
associations were expected. However, none of the further linear
and quadratic associations were statistically significant.

Because the MSE difference between the two conditions
was negative at parietal electrodes, we additionally performed
statistical tests [the same as for frontal region of interests (ROIs)]
for the parietal electrodes (P7, P3, Pz, P4, and P8). Note that
these effects were not hypothesized. These exploratory analyses
revealed no statistically substantial associations (see results in the
Supplementary Material S6).

Thus, the present data, given the statistical power at
hand, reveals no robust linear association between the
MSE difference between typical and original association
conditions and human-rated originality scores of the produced
associations. However, with a larger sample size, we might
find that individuals with higher temporal complexity in
frontal sites when producing original associations tend to be
more original.

DISCUSSION

The present study aimed to understand creative verbal
association states at the neural level within the framework
of complexity theories. We employed the MSE algorithm
as a complexity estimate in neural signal during a verb
generation task. As hypothesized, temporal complexity was
higher during production of original associations as compared
with typical verbal associations across small and medium
timescales in frontal areas. However, the magnitude of this
difference was small or moderate and statistically substantial
only up to scale 15 (in the range of medium scales). The
latent correlations between entropy as estimated in original
vs. typical verbal association states revealed that the two
measures are isomorphic with respect to individual differences.
Furthermore, the relationship between human-rated originality
scores in typical association condition and the entropy difference
between original and typical association states is small and
negative, but statistically not significant. A significant negative
correlation would suggest that individuals with a larger MSE
difference make less original associations when this is their
task. However, the relationship of the MSE difference with
originality scores in the original association condition was
positive. This means that individuals who show a larger
difference in small-scale entropy between the original and typical
associations are better able to conform to the requirements
of both tasks. These associations, however, need further
investigation because none of these correlations could be
robustly established with the data at hand. Taken together,
we report results that are partly in line with the hypothesis
that BSC is a sensitive neural marker of creative verbal
association generation.

Higher entropy during original association production as
compared with typical associations shows that signal complexity
is a sensitive average marker of verbal creativity. This means
that brain activity tends to become more complex in average
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FIGURE 8 | Simplified illustration of the latent difference score models (LDSMs) estimated for (A) small-AUC, (B) medium-AUC, and (C) large-AUC values of
multiscale entropy (MSE). Typical and original associations are latent MSE variables indicated by four AUC values. Human-rated cross-trial average originality scores
are obtained during the production of typical and original associations in the Verb generation task. 1 Original-Typical associations is the MSE difference score
between the experimental conditions. S-AUC1-4, M-AUC1-4, and L-AUC1-4 are the first to fourth AUC indicators of the MSE values for small, medium, and large
time scales, respectively.
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TABLE 2 | Results of the LDSM models.

Regression Weight of the Difference Score Onto Human-Rated Originality Scores In
Intercept of

Model SD of
difference
score

Difference Score Typical associations Original associations

Small AUC 0.26 0.25 −0.18 0.20

Medium AUC 0.62 0.85 −0.19 0.10

Large AUC 0.26 0.33 −0.18 0.04

Effect sizes above 0.20 are printed in bold. These models additionally included quadratic terms to test the hypotheses whether the difference between MSE in typical and
original association is larger for heightened originality scores. The quadratic associations failed to reach statistical significance (regression weight of the quadratic term
between human-rated originality score and the difference in MSE between typical and original association for small AUC = 0.024, p = 0.8; medium AUC = 0.009, p = 0.9;
and large AUC = 0.008, p = 0.9). LDSM, latent difference score modeling; AUC, area under the curve; MSE, multiscale entropy.

when producing original verbal associations. This main finding
can be considered a step ahead to establish brain complexity
as a correlate of creative verbal associations. It goes beyond
previous studies that solely associated resting BSC as a trait
measure with creativity task performance. For example, Ueno
et al. (2015) found that more creative elderly individuals
exhibited higher MSE measured in resting-state EEG. To our
best knowledge, only the study by Rominger et al. (2019)
examined creative idea production as reflected in EEG signals
during a creative task (figural DT) and showed increased
functional coupling of brain networks from idea generation to
idea elaboration. Complementing these previous studies, the
present study is a further step toward an elaborated neural
complexity theory of creativity.

Since both brain oscillations and MSE characterize the
dynamical features of a time series, one may wonder what the
conceptual differences between these two measures are. And
how do they differentially reflect the functional characteristics
of the brain? Some studies have related creativity with
neural oscillations (for a review, see Fink and Benedek,
2014). Neural oscillations also provide critical information
about neural dynamics. For example, slow neural oscillations
reflect mechanisms that support information integration and
communication between large-scale neural networks (Cohen,
2014). Thus, oscillation measures (e.g., power spectra of
different frequency bands) are also suitable for studying
brain activities over multiple spatiotemporal scales. However,
conceptually, oscillation measures are different from MSE
measures. By definition, oscillation reflects the predictable
feature of the dynamics and may be too simple when high
level cognition like creativity is concerned. Following the
Honing theory, creativity is assumed to be associated with
higher psychological entropic states, characterized by large-
scale functional and connectivity patterns reflecting complex
dynamical interacting systems (Zabelina and Andrews-Hanna,
2016; Beaty et al., 2018). Therefore, we need a suitable method
to identify this entropic state and parameterize the complexity
over multiple timescales. As elaborated when introducing the
MSE algorithm, small and medium MSE timescales reflect
fast and local neural dynamic activities, and large scales are
concerned with slow dynamics across broader spatial scales.
On this account, we propose that MSE is a conceptually

more suitable measure to parameterize the complexity of
creative brain activity.

As predicted, the higher complexity during original
associations was highest in frontal regions. Our results thus
add up to the knowledge on the involvement of frontal areas
during creative tasks. For example, Dietrich and Kanso (2010)
summarized the literature according to which vast areas of the
PFC are consistently involved during performance on different
creativity tasks. Further empirical evidence has also revealed an
active anterior PFC, especially during creative idea generation,
musical improvisation, analogical reasoning, and metaphor
processing (Abraham, 2018).

With this study, we aimed to go beyond mean differences
findings by additionally demonstrating specific rank orders of
individuals in less vs. more creative brain states. However, we
found no specificity. This means that entropy is quantitatively
higher during original verbal production as compared with
typical verbal production, but it does not differentiate individuals
depending on their brain states. Thus, there is a shift in mean
MSE depending on the brain state, but individual differences
in MSE remain stable across states. A possible explanation for
the non-expected perfect rank order stability finding can be
that both cues (original and typical associations) tap into the
lexical system, where as a consequence of activating a concept
(by the noun) an associated word (the verb) is produced.
If an individual has a rich lexicon, she/he will be able to
produce highly original verbs (semantically distant or indirectly
associated with the noun) relying on the same entropic brain
state needed to activate the most conventional associations.
In these individuals, the difference in entropy between the
two conditions might be larger than in individuals with a
poor lexicon, who will be less able to find original as well as
typical associations.

Another potential explanation of these findings is that MSE
might not be sensitive enough to differentiate the closely
coupled dimensions of creative ability—theoretically typical
verbal production being considered as the fluency facet of
creativity. Therefore, during an attempt to produce original
associations over several seconds, these closely related facets of
creative ability should probably be rapidly shifting back and
forth. Because MSE analysis integrates over larger time intervals,
i.e., several seconds that leads to low time resolution, such
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brief creative states (producing typical and original associations)
in the brain become inseparable when such larger swaths of
time are considered.

FUTURE DIRECTIONS

The current findings are limited to a word production task
that taps into one aspect of creativity, i.e., verbal creativity.
Future studies focusing on individual differences in creativity
will need to employ task(s) that can capture multiple aspects of
creativity (i.e., fluency, flexibility, and originality, also in figural
and numerical domains). A new line of creativity studies recently
proposed a neurocognitive framework of creative cognition
that should be characterized as an interplay between memory,
attention, and cognitive control (Benedek and Fink, 2019).
In addition, resting-state functional connectivity in cognitive
control networks has been shown to be associated with creativity
(Beaty et al., 2014, 2018; Sun et al., 2019). Therefore, in future
complexity studies on creative cognition, it will be critical to
co-examine specific cognitive functions elementary to creative
cognition. Thus, a larger psychometric task battery including
cognitive control, working memory, verbal knowledge tasks,
and resting-state brain activity would increase sophisticated
understanding of creative brain states in terms of individual
differences. Furthermore, recently proposed methods for explicit
identification of multivariate patterns in neural data (Haxby
et al., 2001; Fahrenfort et al., 2018) could be combined with
entropy estimates in the future. The aim would be to measure
the transition among the identified multivariate patterns as a
potential marker to quantify the spatiotemporal switching of
the dynamical patterns, which may allow better differentiating
creative vs. less-creative states. Because MSE captures complexity
across different temporal scales only, it can just implicitly reflect
the spatiotemporal interactions in the underlying neural systems
(Liu et al., 2019). In summary, future studies might successfully
combine modern brain signal analysis methods with multivariate
modeling of brain-behavior associations to better understand
individual differences in verbal creativity.
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