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Considerable evidence points to a link between body mass index (BMI), eating behavior,

and the brain’s reward system. However, much of this research focuses on food cue

reactivity without examining the subjective valuation process as a potential mechanism

driving individual differences in BMI and eating behavior. The current pre-registered

study (https://osf.io/n4c95/) examined the relationship between BMI, healthy eating,

and subjective valuation of healthy and unhealthy foods in a community sample of

individuals with higher BMI who intended to eat more healthily. Particularly, we examined:

(1) alterations in neurocognitive measures of subjective valuation related to BMI and

healthy eating; (2) differences in the neurocognitive valuation for healthy and unhealthy

foods and their relation to BMI and healthy eating; (3) and whether we could conceptually

replicate prior findings demonstrating differences in neural reactivity to palatable vs.

plain foods. To this end, we scanned 105 participants with BMIs ranging from 23 to

42 using fMRI during a willingness-to-pay task that quantifies trial-by-trial valuation of

30 healthy and 30 unhealthy food items. We measured out of lab eating behavior via

the Automated Self-Administered 24H Dietary Assessment Tool, which allowed us to

calculate a Healthy Eating Index (HEI). We found that our sample exhibited robust,

positive linear relationships between self-reported value and neural responses in regions

previously implicated in studies of subjective value, suggesting an intact valuation system.

However, we found no relationship between valuation and BMI nor HEI, with Bayes Factor

indicating moderate evidence for a null relationship. Separating the food types revealed

that healthy eating, as measured by the HEI, was inversely related to subjective valuation

of unhealthy foods. Imaging data further revealed a stronger linkage between valuation of

healthy (compared to unhealthy) foods and corresponding response in the ventromedial

prefrontal cortex (vmPFC), and that the interaction between healthy and unhealthy food

valuation in this region is related to HEI. Finally, our results did not replicate reactivity

differences demonstrated in prior work, likely due to differences in the mapping between

food healthiness and palatability. Together, our findings point to disruptions in the
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valuation of unhealthy foods in the vmPFC as a potential mechanism influencing

healthy eating.

Keywords: subjective valuation, food-cue reactivity, healthy eating, BMI—body mass index, willingness-to-pay,

fMRI

INTRODUCTION

Global obesity rates have increased nearly 3-fold since 1975
(Abarca-Gómez et al., 2017), and current estimates indicate
that middle-aged adults have the highest prevalence of obesity
(Hales et al., 2020). Body mass index (BMI) during the early
middle-age years (i.e., ages 35–45; Medley, 1980) predicts life
expectancy (Peeters et al., 2003), and research suggests that
prolonged life-style changes during this period have the ability
to reverse the deleterious effects of poor health (Howden et al.,
2018). A confluence of factors has been examined to understand
the development of overweight and obesity status during early
middle-age adulthood, but one factor that has received relatively
little attention is the change in neural circuitry underlying
decision-making during this stage of life (Samanez-Larkin and
Knutson, 2015). In particular, recent work points to the promise
of examining subjective valuation as an underlying process
involved in dietary choice and changes in eating behavior that
contribute to higher BMI (Rangel, 2013; Giuliani et al., 2018).

Subjective valuation is the neurocognitive process by which
an individual assigns value to an item, which is used to guide
decision making (Rangel, 2013; Berkman et al., 2017a). When
applied to food-based decision making, this framework allows
for the integration of motivational and self-relevant factors
contributing to the subjective valuation process when making
choices about healthy and unhealthy foods (Rangel, 2013;
Berkman et al., 2017b; Berkman, 2018). Despite the promise of
the value-based approach to understanding the neurocognitive
mechanisms contributing to weight and eating behavior, much
of the health neuroscience research has focused on the link
between food-cue reactivity in the brain, and its relation to eating
behavior and BMI (Tetley et al., 2009; Yokum et al., 2011; Gunes
et al., 2012; Murdaugh et al., 2012; Verdejo-Román et al., 2017;
Harding et al., 2018; Contreras-Rodriguez et al., 2020). Thus,
the current pre-registered study (https://osf.io/n4c95/) aims to
expand health neuroscience research in this area by examining
the relationship between BMI, healthy eating, and the brain
regions involved in subjective valuation of healthy and unhealthy
foods in a sample of early middle-aged adults with higher BMI.

Food-Cue Reactivity, Self-Regulation, and
the Relationship With BMI and Eating
Behavior
Much of our understanding of the relationship between higher
BMI, eating behavior, and the brain’s reward system has been
examined through the lens of the “food addiction” model
(Smith and Robbins, 2013). The reward system is comprised
of dopamine producing neurons in the ventral tegmental
area (VTA) that project to the nucleus accumbens (NAcc)
and prefrontal cortex, which are involved in motivation and

pleasure, but show dysregulated activity in individuals with
higher BMI similar to what has been observed in individuals with
substance addictions (Volkow et al., 2013a). The food addiction
model proposes that the heightened reactivity to food cues in
individuals with higher BMI leads to an inability to regulate food
intake, thereby leading to overeating and weight gain (Volkow
et al., 2013b). Neuroimaging research has confirmed heightened
reactivity to food-cues in the brain’s reward system, as well as
brain regions associated with attention and emotional salience
in relation to BMI and eating behavior (Yokum et al., 2011;
Smeets et al., 2012; Verdejo-Román et al., 2017). For instance,
Lawrence and colleagues (2012) demonstrated that food-cue
reactivity in the NAcc predicts the amount of subsequent food
consumption, and interactions between NAcc reactivity and self-
reported self-control predicted BMI (Lawrence et al., 2012).
Moreover, this work has shown that the relationship between
food-cue reactivity and eating behavior and weight is specific
to desirable foods (e.g., high-calorie foods; Yokum et al., 2011;
Stice and Yokum, 2018; Yokum and Stice, 2019; Verdejo-Román
et al., 2017), and can prospectively predict later consummatory
behavior and outcomes in weight-loss programs (Demos et al.,
2012; Murdaugh et al., 2012; Kroemer et al., 2016). Together,
these findings suggest that biases in the subjective valuation
system, particularly for unhealthy, desirable foods might be the
process linking brain reactivity, BMI, and eating behavior.

Self-regulation research provides a complementary
framework for health neuroscience research by providing
neurocognitive mechanisms leading to healthier behavior. In the
context of eating behavior, self-regulation involves the reduction
of food cravings through cognitive regulation strategies that
engage executive control regions of the brain, which is thought
to break the link between food-cue reactivity and eating behavior
(Giuliani et al., 2018). For instance, the process of reappraising
personally craved foods to make them a less desirable elicited
relatively greater activity in the dorsolateral prefrontal cortex
(dlPFC) and dorsal anterior cingulate cortex (dACC), and this
activity was negatively correlated with BMI in a sample of young
adults (Giuliani et al., 2014). Importantly, self-regulation, with
respect to eating, can be trained (Boswell and Kober, 2016),
and greater self-regulatory ability protects against developing
obesity (Duckworth, 2011). Indeed, recent studies using this
framework have targeted the brain’s self-regulation system
using real-time neurofeedback, and demonstrated measurable
reductions in palatability ratings and consumption of unhealthy
foods after neurofeedback training (Spetter et al., 2017; Kohl
et al., 2019). For purposes of the current study, healthy eating
goals are another top-down factor integrated during valuation.
If health goals are active during valuation, they may be indexed
by activation in cognitive control brain regions (Tusche and
Hutcherson, 2018).
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Subjective Valuation as a Mechanism
Driving BMI and Eating
Subjective valuation is the neurocognitive process wherein
an individual assigns value to items in order to help guide
decision-making, and can be measured as the correspondence
between self-reported value and level of activity in brain regions
commonly associated with reward processing (Bartra et al., 2013;
Berkman et al., 2017a). Examining weight and eating behavior
within this framework provides a means to incorporate findings
from the food-cue reactivity and self-regulation research, and
better operationalizes the neurocognitive mechanism involved
in food-based decision making as it relates to BMI and eating
behavior (Giuliani et al., 2018). Particularly, a value-based
approach posits that the brain’s reward, salience, and self-
regulation networks comprise general-purpose value systems that
assign subjective value during decision making, and suggests a
special role for the ventromedial prefrontal cortex (vmPFC) in
integrating disparate value signals (Chib et al., 2009; Hare et al.,
2011; Berkman, 2018). This neurocognitive mechanism has been
supported by a meta-analysis of over 200 studies that established
a highly reliable, positive relationship between subjective value
(i.e., howmuch one is willing to pay for an object, or “willingness-
to-pay”) and the blood-oxygenation-level-dependent (BOLD)
response in the brain’s reward centers, particularly the vmPFC
and anterior ventral striatum (aVS; Bartra et al., 2013). Within
this framework, multiple factors, such as healthy eating goals
and food desirability, are integrated into a common value signal
that guides choices (Berkman et al., 2017b; Berkman, 2018). For
example, research has demonstrated that the value signal in the
vmPFC is modulated by activity in the dlPFC that responds to
immediate task demands, such as focusing on food healthiness,
which in turn drives the selection of food-based decisions (Hare
et al., 2011; Hutcherson et al., 2012).

To date, few studies have utilized willingness-to-pay
paradigms, in which subjective values of foods are measured
directly via bids in a food auction, to examine the relationship
between eating behavior, BMI, and brain responses to the food
cues (Verdejo-Román et al., 2017; Contreras-Rodriguez et al.,
2020). The two studies that have examined the relationship
between willingness-to-pay and BMI did not model the linear
relationship between BOLD response and bid amount for the
food items, but instead examined differences in the overall
brain activation for different food categories. Thus, the previous
approach is more akin to food-cue reactivity paradigms, which
compare average activation to discrete categories of stimuli,
rather than to the approach used in subjective valuation
paradigms, because the continuously-rated self-reported values
(i.e., bids) were disregarded.

Current Study
The current pre-registered analyses aim to extend our
understanding of the relationship between the neurocognitive
process of subjective valuation, eating behavior, and BMI by
utilizing data collected for a larger intervention study. The
project was pre-registered after data were collected, but before
any of the registered analyses were conducted (https://osf.io/

n4c95/). The original study targeted adults who were at-risk for
developing weight-related health consequences—a community
sample of early middle-aged adults (i.e., 35–45 years old) with
higher BMI (i.e., BMI = 25–40) who had explicit healthy
eating goals, but were not actively enrolled in any dietary
intervention during the time of testing. Recent estimates indicate
that middle-aged adults have the highest prevalence of obesity
(Esteban et al., 2019), but research suggests that life-style changes
during the early middle-age years have the ability to reverse
the negative impacts of poor health (Howden et al., 2018).
The current analyses were conducted on data collected at the
baseline session before any intervention took place. To elucidate
brain regions supporting valuation, participants completed
the willingness-to-pay paradigm—which provides an explicit
measure of self-reported value for different food types—while in
the MRI scanner.

First, we examined the functioning of the valuation system
using neuroimaging, and its relationship to BMI and healthy
eating. That is, we assessed the degree to which our sample
showed the expected relationship between self-reported value
and BOLD response in the brain’s valuation system during
food choices, and whether valuation was related to BMI and
healthy food consumption. Due to the relative novelty of this
analysis, we did not have a priori hypotheses about the existence
or direction of this relationship. However, if vmPFC activity
tracked value and was related to BMI or healthy eating, we
could infer that the valuation process may drive some of the
individual differences for these measures. Second, we compared
the valuation of healthy and unhealthy foods separately, and how
they related to BMI and healthy eating. Specifically, we compared
the coupling of self-reported value and BOLD response between
decisions made for healthy vs. unhealthy food items, and
examined if this predicted BMI and/or healthy eating. Based
on studies of food-cue reactivity that suggest an overreactivity
bias to unhealthy foods in higher BMI individuals (Yokum
et al., 2011; Verdejo-Román et al., 2017), we expected to see
differences in the valuation process between food categories, but
did not have strong predictions as to the nature or direction
of the relationship with BMI and healthy eating. Finally, we
aimed to provide a conceptual replication of Verdejo-Román
et al. (2017) who also used the willingness-to-pay paradigm,
but disregarded self-reported value. Specifically, we examined if
activation differences between healthy and unhealthy foods (i.e.,
ignoring self-reported value) showed a similar pattern of results
as when Verdejo-Roman and colleagues contrasted unpalatable
and palatable foods.

METHODS

Participants
A sample of 105 higher BMI, middle-aged individuals who
had explicit goals to eat more healthily were screened and
enrolled into a larger, longitudinal project investigating the
neural predictors of dietary change. Inclusion criteria for the
overarching study included (1) overweight or obese status as
defined by the Center for Disease Control and Prevention
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(i.e., approximate BMI between 25 and 40); (2) early, middle-
age (i.e., 33–45 years old); (3) no psychiatric, neurological,
or eating disorders; (4) no fMRI contraindications; (5) not
actively enrolled in a diet program or any other type of eating
intervention; and (6) self-reported desire to eat more healthily.
The current analysis included all participants that completed
baseline measures of eating behavior, BMI and usable fMRI data
during the willingness-to-pay experiment. Ten participants were
excluded for non-compliance, not showing up, or the decision
to drop out before completion of the baseline session. Two
participants were excluded because of technical error during
the willingness-to-pay task, and one participant was excluded
from analyses of healthy eating because of technical error. A
final sample of 93 participants (77 female, mean (SD) age =

39.25 (3.50); mean (SD) BMI = 31.41 (3.91) were included in
all analyses, except for analyses of healthy eating, which had a
sample 92 participants. Results from this sample were reported in
a separate paper comparing alternative neurocognitive models of
self-control using trial-level data (Cosme et al., 2019). However,
the current analyses are unique in that they relate the valuation
process to real world measures of health (i.e., BMI and eating
behavior) using participant-level data. Importantly, the analytic
plan in our pre-registration was not based on results from the
previous analyses, and what was known about the data at the time
of registering was included in the pre-registration document for
complete transparency.

Protocol and Measures
Participants were recruited from the community through a
combination of online, newspaper, and public advertising.
Interested participants were screened for exclusion criteria
via phone, and eligible participants were sent a package of
materials to complete before arriving for their baseline session.
Participants were scheduled for their baseline lab visit, and
asked to complete the package of measures within 24 h of the
visit. Pre-baseline measures included demographic information,
assessments of eating behavior, and a battery of psychometric
measures assessing self-control, impulsivity, and other relevant
affective and motivational factors (see https://osf.io/n4c95/ for
full list of measures). Participants were instructed to not eat
anything for at least an hour before the baseline visit. During
the baseline visit, participants were consented, screened for MRI
contraindications, and instructed on the requirements of the
study. Weight and height were measured using a commercially
available weight scale and wall ruler, and BMI was calculated
by dividing the participant’s weight in kilograms by squared
height in meters. Eating behavior was assessed via the Automated
Self-Administered 24-Hour (ASA24 R©) Dietary Assessment Tool
(Subar et al., 2012) which allows for the calculation of the
Healthy Eating Index (HEI; Guenther et al., 2013) using
equations provided by the developers of the ASA (https://epi.
grants.cancer.gov/asa24/resources/hei.html). The HEI quantifies
healthy eating behavior based on the dietary guidelines for
Americans. Following the recommendations proposed by the
developers of this measure, participants completed the ASA
within a few days prior to and during the baseline visit to obtain
a more representative estimate of daily eating behavior.

The current study examined performance during the scanner-
compatible willingness-to-pay task that quantifies trial-by-trial
valuation of 30 healthy and 30 unhealthy snack food items, the
healthiness of which was determined based on caloric density
(Hutcherson et al., 2012), thereby providing both the self-
report and BOLD responses used to index subjective valuation.
Participants were given $2 prior to scanning for the purpose of
bidding, and told that they would be bidding on snack food items
during the scan for a chance to win one of the snacks. For each
item, they were required to make bids on a scale from $0 to $2
dollars in increments of $0.50 based on how willing they are
to pay to obtain the snack (Figure 1). To ensure truthful bids,
we employed the rules of a Becker-DeGroot-Marschak auction
(Becker et al., 1964; Plassmann et al., 2007). Briefly, they were
instructed to treat each trial as if they had a fresh $2, and told
that one of the snack items would be chosen at random at the
end of the scan as the actual auction item they may win. If the
bid they made for the selected item was higher than a randomly
generated bid amount, they won the snack and were given the
remainder of the $2 if the bid was below $2. If their bid was equal
to or lower than the randomly generated bid, they did not win
the snack item, and were refunded the full $2. All food stimuli
were presented on black backgrounds, and the food item was
centered such that the food stimulus took up most of the image
space without crossing the margins. The task was presented using
the PsychToolBox package for MATLAB (Brainard, 1997), and
responses were made using a five-button button-box provided by
the Lewis Center for Neuroimaging at the University of Oregon.

MRI Data and Processing
Neuroimaging data were acquired on a 3T Siemens Skyra scanner
at the University of Oregon Lewis Center for Neuroimaging. We
acquired a high-resolution anatomical T1-weighted MP-RAGE
scan (TR/TE = 2500.00/3.43ms, 256 × 256 matrix, 1mm thick,
176 sagittal slices, FOV= 208× 208mm), functional images with
a T2∗–weighted echo-planar sequence (72 axial slices, TR/TE =

2000.00/27.00ms, 90-degree flip angle, 100 × 100 matrix, 2mm
thick, FOV = 208 × 208mm, multiband acceleration factor =
3), and opposite phase encoded echo-planar images to correct
for magnetic field inhomogeneities (72 axial slices, TR/TE =

6390.00/47.80ms, 90-degree flip angle, 104 ×104 matrix, 2mm
thick, FOV = 208 × 208mm). The willingness-to-pay task was
acquired over 357 functional volumes scanned as one run.

Neuroimaging data were preprocessed using fMRIPrep 1.1.4
(Esteban et al., 2019). Briefly, anatomical images were segmented
and normalized to MNI space; functional images were skull-
stripped, susceptibility distortion corrected, realigned, slice-
time corrected, co-registered and warped to the normalized
anatomical image (see https://osf.io/n4c95/ for full report of
the preprocessing pipeline). Normalized functional data were
then smoothed (6mmFWHM) in SPM12 (http://www.fil.ion.ucl.
ac.uk/spm). Subject-level, voxel-wise multiple linear regression
was calculated using AFNI’s 3dREMLfit (Cox, 1996), using
functions representing each condition convolved with a standard
hemodynamic response function, each condition convolved with
a standard hemodynamic response function with the amplitude
modulated by trial-wise bid amount (in the case of research
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FIGURE 1 | Task schematic for the willingness-to-pay task. On each trial, a snack food was presented for 4 s, followed by a 4 s bid period, and jittered fixation period

between trials (M = 4.38 s). Snack foods were healthy (e.g., fruit) or unhealthy (e.g., candy) items.

questions 1 and 2), motion regressors, and a “trash” regressor
indicating images with motion artifacts (e.g., striping) identified
via automated motion assessment (Cosme et al., 2018). For all
group-level, whole-brain analyses, the cluster correction value
was calculated automatically by using the -Clustsim option in
AFNI’s 3dttest++, which sends the input volumes directly to
the 3dClustSim program after simulating the noise volumes by
randomizing and permuting the input datasets. This model-free
approach is more accurate at controlling the false positive rate
compared to simulating noise using a mixed-model estimation of
the autocorrelation function. This yielded a voxel-wise threshold
of p < 0.001 and cluster extent of k = 119 to achieve a whole-
brain familywise error rate of α = 0.05 when nearest neighbor
cluster definitions are set to 3 (i.e., voxel faces, edges, and
corners touching count as part of a contiguous cluster). Despite
using the 3dttest++ program to determine cluster thresholds,
we used AFNI’s 3dMEMA program for group-level statistics
because it better accounts for subject-level variance. All code
used for neuroimaging analysis available (https://github.com/
UOSAN/CHIVES_WTP_scripts).

Overall Valuation
To address our first research question regarding neural function
during the valuation process and its relation to BMI and healthy
eating, we conducted a series of ROI and whole-brain analyses.
First, we calculated subject-level whole-brain maps comprised
of voxel-wise beta values that quantify the linear relationship
between bid value for each food item and the corresponding
BOLD response during the decision making period. Because
prior research has established a set of brain regions comprising
the valuation system, we first explored the valuation process
within a priori regions of interest (ROIs) obtained from the
Bartra et al. (2013) meta-analysis that best mapped on to our
task parameters. Specifically, we used the vmPFC and anterior
ventral striatum (aVS) ROIs from Figure 9 (Bartra et al., 2013,
page 423) that reliably demonstrated a positive relationship with
subjective value for primary and monetary rewards, and the

anterior cingulate cortex (ACC) and bilateral anterior insulae
(AI) from Figure 3C (Bartra et al., 2013, page 417) that showed
a conjunction between positive and negative relationships with
subjective value (available here: https://www.sas.upenn.edu/~
mcguirej/meta-analysis.html).

Within each ROI, we averaged the voxel-wise parameter
estimates from each participant, and used a one-sample t-
test against zero to assess if our sample showed evidence of
neurocognitive valuation. We then used the parameter estimates
from the vmPFC and aVS ROIs to assess their relationship with
BMI using linear regression, and similarly regressed HEI on the
same parameter estimates in a separate linear regression model.
We focused on the vmPFC and aVS because of the reliability with
which they have been implicated in prior studies of subjective
valuation (Bartra et al., 2013). Lastly, we conducted whole-brain
searches to confirm the results of the ROI analysis, and to
elucidate unpredicted brain regions involved in the subjective
valuation process. The whole-brain search of subjective valuation
was conducted by entering subject-level beta- and t-maps into
AFNI’s 3dMEMA program, which calculates a group-level mixed
effectsmeta-analysis map that accounts for subject-level variance.
Separate whole-brain searches for clusters relating valuation
to BMI and HEI were calculated similarly in two separate
analyses, but with the added covariates of interest (i.e., BMI and
HEI, respectively).

Valuation by Food Type
To address the second research question regarding differences
in the valuation process between healthy and unhealthy foods,
we conducted a series of behavioral and neuroimaging analyses.
First, we assessed if self-reported value for healthy and unhealthy
foods, or the interaction between the two, was related to BMI
and healthy eating. To this end, we regressed BMI on subject-
averaged bid amounts for healthy and unhealthy foods as separate
independent variables in the first step of a linear regression
model, and the interaction term between the two in the second
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step. This procedure was then repeated with HEI in a separate
step-wise, linear regression model.

To compare the neurocognitive valuation between food types,
we calculated a new set of subject-level models that separated
healthy and unhealthy foods, and generated separate whole-
brain maps for each food category comprised of voxel-wise
beta values that quantified the linear relationship between bid
amount and BOLD response. We then contrasted these maps
(i.e., neurocognitive valuation for healthy > unhealthy foods)
within subjects to evaluate differences in valuation across food
categories across our sample. To examine differences in valuation
for the food category within the vmPFC and aVS ROIs, we
averaged the voxel-wise contrast value within each, and used a
one-sample t-test against zero to examine if the coupling of self-
reported value and corresponding BOLD amount was greater for
one food category.

To assess the relationship between the neurocognitive
valuation of healthy and unhealthy foods with individual
differences in BMI and healthy eating, we calculated a set of
regression models similar to the behavioral regression models
above. We first combined the ROIs by averaging the parameter
estimates across the vmPFC and aVS within subjects to use
as our measure of neurocognitive valuation for healthy and
unhealthy foods. We then regressed BMI on our neurocognitive
measures of healthy and unhealthy foods as separate independent
variables in the first step of linear regression model, and
the interaction term between the two as in the second step.
This procedure was repeated for HEI in a separate step-wise,
linear regression model. Lastly, we conducted a set of whole-
brain searches to confirm the results of our ROI analyses, and
elucidate unpredicted brain clusters distinguishing the valuation
for the food categories. Whole-brain search for differences in
the neurocognitive valuation of healthy and unhealthy foods was
calculated by entering subject-level contrast beta- and t-maps
into AFNI’s 3dMEMA program. Separate whole-brain searches
for clusters relating this difference in valuation to BMI and HEI
were calculated similarly in two separate analyses, but with the
added covariates of interest (i.e., BMI and HEI, respectively).

Replication Analysis
Finally, we attempted to conceptually replicate the findings
from Verdejo-Román et al. (2017). In their paper, they similarly
used the willingness-to-pay task, but categorized the foods
into palatable (e.g., chocolate) and unpalatable (e.g., plain
yogurt) conditions based on previously obtained ratings of
palatability. Instead of modeling the relationship between
bid amount and BOLD response, they contrasted overall
activations for food categories (i.e., palatable > unpalatable)
and found greater activation in “[bilateral] dorsal caudate,
nucleus accumbens, ventral putamen, ventral tegmental area,
intraparietal, ventromedial and dorsolateral prefrontal and
anterior cingulate cortices, and the anterior insula extending to
the lateral orbitofrontal gyrus” (p. 671; Verdejo-Román et al.,
2017). Further, they demonstrated greater activation in striatal
regions for obese compared to overweight individuals when
comparing this contrast between groups.

Toward the goal of a conceptual replication, we examined
if our unhealthy > healthy reactivity contrast showed a similar

pattern of activation to their palatable > unpalatable contrast, as
well as the between group differences they report. To this end,
we calculated a third set of subject-level models that ignored
bid values, and examined the reactivity to healthy and unhealthy
foods. In particular, we generated separate whole-brain maps
for each food category comprised of voxel-wise beta values that
quantified the amplitude of the BOLD response, disregarding
its relationship with self-reported value. We contrasted these
maps at the subject level, and entered the resulting contrast beta-
and t-maps into AFNI’s 3dMEMA program for a whole-brain
search of activation differences between food categories. Lastly,
we split our sample into overweight (BMI < 30; N = 37) and
obese groups (BMI > 30; N = 56) in an attempt to replicate
Verdejo-Román and colleagues (2017) between group contrast
(obese > overweight, for the unhealthy > healthy contrast),
and entered the corresponding beta- and t-maps into AFNI’s
3dMEMA program for a between group analysis.

Deviations From the Pre-registration
We conducted exploratory, follow up analyses that were intended
to clarify the pattern of results of any significant results as
needed, none of which were pre-registered. Also, when possible,
we assessed the evidence in favor of the null hypothesis
by calculating Bayes Factor for non-significant findings. We
calculated Bayes Factor (BF10) as the ratio of the likelihood of the
alternative hypothesis to the likelihood of the null hypothesis, and
followed Lee andWagenmakers (2014) heuristics for interpreting
this value as the strength of evidence in favor of the null
hypothesis: 1–1/3 = anecdotal evidence, 1/3–1/10 = moderate
evidence, 1/10–1/30 = strong evidence, 1/30> = very strong
evidence. Given that these relationships had not been previously
explored, BF10 was calculated to clarify the nature of null results,
and provide a possible explanation as to why such findings have
not been reported in prior work.

RESULTS

Overall Valuation
ROI Analyses
Each of the ROIs showed a positive, linear relationship between
self-reported value and corresponding BOLD response, even
after Bonferroni correction, suggesting that our sample displayed
normative functioning of the valuation system: vmPFC (M =

5.93, SD = 7.70, 95% CI [4.34, 7.51]), t(92) = 7.42, p < 0.001;
aVS (M = 4.56, SD = 5.53, 95% CI [3.42, 5.70]), t(92) = 7.95,
p < 0.001; ACC (M = 4.74, SD = 8.49, 95% CI [2.99, 6.49]),
t(92) = 5.38, p < 0.001; Left AI (M = 2.71, SD = 6.43, 95% CI
[1.38, 4.03]), t(92) = 4.06, p < 0.001; Right AI (M = 2.32, SD
= 5.47, 95% CI [1.19, 3.44]), t(92) = 4.08, p < 0.001. However,
when regressing BMI and HEI on the parameter estimates from
the vmPFC and aVS ROIs, we did not find a significant model
fit, nor were any of the individual partial regression coefficients
significantly related to BMI or HEI, even when controlling for
hunger level and time since the last meal (all p > 0.14; Table 1A).
Bayes Factor for each model overall indicated moderate evidence
in favor of the null hypothesis, BF10 = 0.15 and.18 for BMI
and HEI, respectively, suggesting that BMI and HEI may not be
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TABLE 1 | Regression tables for (A) the relationship between overall neurocognitive valuation in the vmPFC and aVS with BMI and HEI, respectively; (B) the relationship

between self-reported bids for healthy foods, unhealthy foods, and their interaction with BMI and HEI, respectively; (C) the relationship between neurocognitive valuation

in the vmPFC and aVS combined parameter estimates for healthy foods, unhealthy foods, and their interaction with BMI and HEI, respectively.

Model Variable B SE 95% CI β t p

A) RELATIONSHIP WITH OVERALL NEUROCOGNITIVE FOOD VALUATION

BMI = vmPFC + aVS

0 Intercept 30.989 0.554 29.89, 32.09 55.958 <0.001

vmPFC 0.073 0.061 −0.05, 0.19 0.143 1.199 0.234

aVS −0.002 0.084 −0.17, 0.17 −0.003 −0.028 0.978

Model summary: F (2, 90) = 0.92, p = 0.40, R squared = 0.02

HEI = vmPFC + aVS

0 Intercept 58.5 1.88 54.77, 62.23 31.19 <0.001

vmPFC 0.16 0.21 −0.25, 0.56 0.09 0.76 0.45

aVS −0.42 0.29 −0.99, 0.14 −0.18 −1.48 0.14

Model summary: F (2, 89) = 1.10, p = 0.34, R squared = 0.024

B) RELATIONSHIP WITH SELF-REPORTED VALUE (BIDS) BY FOOD TYPE

BMI = Healthy + Unhealthy + Interaction

0 Intercept 30.43 1.43 27.60, 33.27 21.31 <0.001

Healthy −0.21 1.4 −2.99, 2.58 −0.016 −0.15 0.88

Unhealthy 1.82 1.26 −0.69, 4.32 0.16 1.44 0.15

Model summary: F (2, 90) = 1.07, p = 0.35, R squared = 0.023

1 Intercept 29.53 3.25 23.07, 35.98 9.09 <0.001

Healthy 0.71 3.26 −5.78, 7.19 0.05 0.22 0.83

Unhealthy 3.23 4.73 −6.15, 12.62 0.28 0.69 0.5

Interaction −1.38 4.42 −10.15, 7.40 −0.16 −0.31 0.76

Model summary: F (3, 89) = 0.74, p = 0.53, R squared = 0.024

R squared change = 0.001, p = 0.76

HEI = Healthy + Unhealthy + Interaction

0 Intercept 59.62 4.61 50.45, 68.78 12.92 <0.001

Healthy 6.89 4.52 −2.09, 15.87 0.16 1.53 0.13

Unhealthy −13.48 4.08 −21.60, −5.37 −0.34 −3.30 0.001

Model summary: F (2, 89) = 5.68, p = 0.005, R squared = 0.113

1 Intercept 57.47 10.49 36.62, 78.31 5.48 <0.001

Healthy 9.07 10.54 −11.87, 30.01 0.21 0.86 0.39

Unhealthy −10.12 15.27 −40.46, 20.22 −0.26 −0.66 0.51

Interaction −3.26 14.26 −31.60, 25.08 −0.11 −0.23 0.82

Model summary: F (3, 88) =3.76, p = 0.014, R squared = 0.114

R squared change = 0.001, p = 0.82

C) RELATIONSHIP WITH NEUROCOGNITIVE VALUATION BY FOOD TYPE

BMI = Healthy + Unhealthy + Interaction

0 Intercept 30.86 0.57 29.73, 31.99 54.39 <0.001

Healthy 0.04 0.04 −0.05, 0.13 0.1 0.91 0.37

Unhealthy 0.06 0.03 −0.02, 0.14 0.16 1.53 0.13

Model summary: F (2, 90) = 1.37, p = 0.26, R squared = 0.03

1 Intercept 31.14 0.62 29.90, 32.38 49.99 <0.001

Healthy 0.01 0.05 −0.09, 0.11 0.03 0.24 0.81

Unhealthy 0.03 0.05 −0.06, 0.13 0.09 0.68 0.5

Interaction 0.004 0.003 −0.003, 0.01 0.14 1.08 0.28

Model summary: F (3, 89) = 1.30, p = 0.28, R squared = 0.04

R squared change = 0.013, p = 0.28

(Continued)
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TABLE 1 | Continued

Model Variable B SE 95% CI β t p

HEI = Healthy + Unhealthy + Interaction

0 Intercept 57.17 1.96 54.28, 61.06 29.22 <0.001

Healthy 0.03 0.15 −0.26, 0.33 0.02 0.22 0.83

Unhealthy 0.02 0.14 −0.25, 0.29 0.02 0.14 0.89

Model summary: F (2, 89) = 0.03, p = 0.97, R squared = 0.001

1 Intercept 54.78 2.07 50.66, 58.90 26.43 <0.001

Healthy 0.27 0.17 −0.06, 0.58 0.19 1.6 0.11

Unhealthy 0.26 0.16 −0.05, 0.57 0.21 1.65 0.1

Interaction −0.032 0.01 −0.06, −0.009 −0.37 −2.78 0.007

Model summary: F (3, 88) = 2.60, p = 0.057, R squared = 0.081

R squared change = 0.285, p = 0.007

related to the functioning of the valuation system when making
decisions about foods in general.

Whole-Brain Analyses
The whole-brain search for regions linearly related to subjective
value confirmed the involvement of our a priori ROIs, and
additionally revealed an extended network of brain regions
that showed a positive linear relationship with self-reported
value. These included a cluster traversing much of the cingulate
cortex, large swaths of medial and lateral PFC, dorsal attention
network regions, the ventral visual stream, and dorsal and
ventral portions of the striatum. We also observed negative
relationships between subjective value and the BOLD response
in the left visual cortex and bilateral somatosensory cortices
(Figure 4A, Table 2A). Finally, a whole-brain search of brain
areas showing a relationship with BMI and HEI revealed no
significant clusters.

Valuation by Food Type
Behavioral
Behaviorally, we did not find a significant relationship when
regressing BMI on the averaged bid value for healthy and
unhealthy foods, nor when the interaction was included, p >

0.35. Bayes Factor suggested strong evidence in favor of the
null hypothesis for the model including the interaction term,
BF10 = 0.07, indicating that it is quite likely that there truly
is no relationship. When regressing HEI on the averaged bid
values for healthy and unhealthy foods, we did find a significant
relationship, F(2, 89) = 5.68, p = 0.005, R2 = 0.11. Partial model
coefficients indicate that this effect was driven by a negative
relationship between HEI and unhealthy food bids, B = −13.48,
SE = 4.08, 95% CI [−21.60, −5.37], t = −3.30, p = 0.001
(Figure 2; Table 1B), suggesting that participants who bid higher
for unhealthy foods ate less healthily in the real world. The
inclusion of the interaction term in the second step of this model
did not significantly add to the variance explained, p = 0.82,
further suggesting that this effect is specific just to bids for
unhealthy foods.

ROI Analyses
When comparing the parameter estimates for valuation of
healthy > unhealthy foods within each of our a priori ROIs, the
vmPFC showed a stronger relationship (i.e., larger beta value) for
healthy compared to unhealthy foods, Mdiff = 5.31, SD = 21.53,
95% CI [0.88, 9.75], t(92) = 2.38, p = 0.02 (Figure 3A), while
there was no such difference in the aVS, p = 0.12 (Figure 3B).
This suggests that, while the aVS tracked value for both food
categories relatively equally, the coupling of self-reported value
and corresponding BOLD response in the vmPFC was stronger
for healthy foods, possibly due to the integration of non-desire
related value inputs.

We did not find a significant relationship when regressing
BMI on our neurocognitive measures of valuation for healthy
and unhealthy foods, even when including the interaction term,
p >0.26. Bayes Factor of the model including the interaction
term suggested moderate evidence in favor of the null hypothesis,
BF10 = 0.13. When regressing HEI on these measures, the model
including the interaction term to predict HEI showed a trending
effect, F(3, 88) = 2.60, p = 0.057, R2 = 0.08. Partial model
coefficients indicated that this effect was driven by the interaction
term, B = −0.03, SE = 0.01, 95% CI [−0.06, −0.01], t = −2.78,
p = 0.007 (Table 1C). Using median split to probe the direction
of the interaction revealed that participants who exhibited
high parameter estimates (i.e., stronger coupling between self-
reported value and corresponding BOLD response) for healthy
foods and low parameter estimates for unhealthy foods reported
eating healthier in the real world than participants who had high
parameter estimates for both food categories, while participants
exhibiting low parameter estimates for healthy foods did not
show differences in their healthy eating regardless (Figure 3C).
Follow-up, exploratory regression models that separated out the
ROIs suggested that valuation of the food types in the vmPFC
largely contributed to this effect, F(3, 88) = 2.20, p = 0.094,
R2 = 0.07, again driven by the interaction term, B = −0.01,
SE = 0.01, 95% CI [−0.02, −0.002], t = −2.29, p = 0.024,
while the regression model of just aVS showed no such effect, p
=0.7. Together, these results suggest that, rather than either food
category alone, it is the neurocognitive valuation of both healthy
and unhealthy foods that relates to real world eating behavior.
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TABLE 2 | Clusters from whole-brain results for a) overall valuation, and b) reactivity by food type.

MNI Coordinates (center)

Region Side Cluster k Peak t x y z

A) ALL FOODS VALUATION, p < 0.001, k = 119

Positive relationship w/self-reported value

Postcentral gyrus (peak)* L 29,602 8.92 −42 −24 58

Inferior parietal lobule-angular gyrus R 1,950 6.11 43.2 −50.6 49.4

Inferior temporal gyrus L 1,175 9.25 −59.8 −49.2 −13.2

Cerebellum L 1,070 5.57 −38.3 −66 −41.5

Inferior temporal gyrus R 921 6.66 59.5 −46.1 −15.2

Middle frontal gyrus R 659 7.58 45.8 42.6 14.7

Inferior frontal gyrus-opercularis R 449 5.89 51.1 10.1 20.3

Superior frontal gyrus R 402 4.31 29.9 15.2 57.3

Anterior insula R 135 6.14 36.5 20.1 −0.2

Negative relationship w/self-reported value

Lingual gyrus, visual cortex L 1,426 −10.58 −10.9 −85.5 −8.5

Precentral gyrus R 505 −6.91 51.7 −11.2 46.8

Postcentral gyrus L 501 −12.96 −48.2 −16.8 48.3

Postcentral gyrus R 162 −4.33 24.8 −37.2 67.5

B) FOOD-CUE REACTIVITY, p < 0.001, k = 119

Healthy > Unhealthy

Superior-inferior parietal lobule L 2,681 5.81 −32.7 −65.7 46.3

Dorsolateral prefrontal cortex L 2,535 5.35 −52 12 30

Inferior temporal gyrus L 1,256 7.76 −55.7 −57.5 −10

Angular gyrus R 1,239 3.84 34.3 −63 44.4

Inferior temporal gyrus R 1,168 7.04 54.7 −56.8 −12.7

Inferior frontal gyrus-opercularis R 440 5.01 45.6 9.7 27.9

Supplementary motor area L 427 5.05 −1 18.2 51.7

Inferior frontal gyrus-triangularis R 281 4.68 47.2 36.3 15.1

Cerebellum R 246 5.97 35.9 −70.3 −51.7

Precuneus L 205 5.75 −5.5 −55.1 9.8

Cerebellum R 121 5.29 34.3 −64.8 −29.6

Unhealthy > Healthy

Calcarine gyrus, visual cortex L 8,119 −16 −4.1 −90.4 −4.4

Middle cingulate R 289 −4.95 2.1 −20.4 42

Postcentral gyrus L 267 −6.09 −46.9 −17.1 47.3

Middle frontal gyrus R 215 −4.24 26.4 56 23.2

Temporal pole R 150 −4.44 58 14 −4

Middle temporal gyrus R 135 −3.71 63.6 −23.2 −6.7

*One contiguous cluster that spans most of the left parietal lobe, most of the cingulate gyrus, much of the mPFC, left dlPFC, left AI, most of the striatum, parts of the hippocampus, and

brain stem.

Whole-Brain Analyses
The whole-brain contrast between the valuation of healthy
vs. unhealthy foods revealed no significant clusters at our
predetermined threshold of p < 0.001, k = 119. However,
when relaxing the threshold to an uncorrected p < 0.005,
k = 300, we found clusters in the vmPFC and pre-SMA,
which provide converging evidence with our ROI analysis
that the vmPFC shows a stronger relationship for healthy
vs. unhealthy foods (Figure 3A, green). A whole-brain search
looking for relationships between this contrast and BMI revealed
no significant clusters, nor did the whole-brain search for HEI.

Replication Attempt
In our attempt to provide a conceptual replication of Verdejo-
Román and colleagues (2017) who contrasted reactivity to
palatable > unpalatable foods, we contrasted reactivity to
unhealthy > healthy foods, but we did not find similar results.
The unhealthy> healthy contrast showed considerable activation
in the visual cortex, posterior to mid-cingulate, central sulcus,
and anterior portion of the right middle frontal gyrus. The
healthy > unhealthy contrast revealed extended activation
traversing the dorsal attention network into bilateral dlPFC
and IFG, bilateral regions of the dorsal and ventral visual
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FIGURE 2 | Density plots and correlations between the healthy eating index (HEI), average bid amounts for healthy foods, and average bid amounts for unhealthy

foods.

streams, supplementary motor area, and precuneus (Figure 4B;
Table 2B). While lateral prefrontal activation was reported by
Verdejo-Román et al. (2017), our result is in the opposite
direction of what would qualify as a conceptual replication, such
that they reported this cluster for the unpalatable > palatable
contrast, while we found this for the healthy > unhealthy
contrast. We also were unable to replicate their findings when
comparing obese> overweight individuals for this contrast, such
that we found no significant clusters, even when using very liberal
thresholds. Moreover, we conducted an exploratory whole-brain
search of BMI on the healthy > unhealthy contrast, and still
found no significant clusters.

DISCUSSION

The current study provides the first examination of how

subjective valuation of food items relates to BMI and healthy

eating in a sample of early middle-aged, higher BMI adults
motivated to eat more healthily. Our findings suggest normative

functioning in the brain’s valuation system during food-based
decision making, such that there were robust linear relationships
between self-reported value of food items and the corresponding
BOLD response in the vmPFC, aVS, bilateral AI, and the ACC
when making decisions about snack food items. Further, we

found moderate evidence in favor of a null relationship between
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FIGURE 3 | vmPFC and aVS ROIs used in analysis pictured in center image. Parameter estimates in arbitrary units (AU) of overall valuation of all foods, healthy foods,

and unhealthy foods from (A) vmPFC and (B) aVS. The interaction between valuation for healthy and unhealthy foods, and its relation to healthy eating (C) plotted

using median split of the vmPFC + VS combined parameter estimates of healthy and unhealthy foods (even though data are continuous).

FIGURE 4 | (A) Whole-brain search of subjective valuation for all foods with positive (hot colors) and negative (cold colors) coupling between bid value and

corresponding BOLD response (cluster corrected p < 0.05). vmPFC cluster (green) showing greater coupling for healthy than unhealthy foods (p < 0.005, k = 300,

uncorrected). (B) Whole-brain contrast between reactivity for healthy (hot colors) and unhealthy foods (cold colors) not accounting for bid value (cluster corrected p <

0.05). Cluster correction of p < 0.001, k = 119 to achieve a whole-brain familywise error rate of α = 0.05.

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 December 2020 | Volume 14 | Article 578676

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Merchant et al. Food-Valuation, BMI, and Healthy Eating

our estimates of overall valuation with both BMI and HEI.
Together, these findings add to the health neuroscience literature
by suggesting that higher BMI individuals do not display biases
in the neurocognitive substrates of subjective valuation, and that
the general functioning of this system may not relate to BMI or
healthy eating. When examining differences in the self-reported
valuation of healthy and unhealthy foods, our results indicate
that self-reported valuation of unhealthy foods is inversely related
to real world healthy eating, but we found no relationship for
the valuation of either food type with BMI. This finding echoes
prior work demonstrating a relationship between unhealthy
eating behavior and reactivity to unhealthy food cues (Tetley
et al., 2009), and suggests that valuation may be an important
factor underlying this relationship (Cosme and Lopez, 2020).
Moreover, this highlights the importance of regulation strategies
that target the devaluation of unhealthy foods, whether by
reappraisal or other down-regulation strategies (Giuliani et al.,
2014).

Interestingly, despite reporting higher overall value for
healthy compared to unhealthy foods (Cosme et al., 2019),
we found no relationship with the self-reported valuation of
healthy foods and real-world healthy eating behavior or BMI.
One possibility is that the motivation of people in this sample,
who volunteered for a healthy eating study, to eat more
healthily might have contributed to higher self-reported value
for healthy foods, whereas the self-reported value of unhealthy
foods tracked with an elevated craving for unhealthy foods
that more strongly predict real-world eating behavior when
considering only self-report data. This interpretation is in line
with the value-based models of health-oriented behavior that
point to the vmPFC as a hub where various motivational
factors are integrated (Berkman, 2018), and is partially supported
by our neuroimaging findings that demonstrate a stronger
coupling between self-reported value and BOLD response in
the vmPFC for healthy compared to unhealthy foods overall.
Importantly, the interaction between the valuation process
for healthy and unhealthy foods in this region is related to
healthy eating, such that the participants who show higher
neurocognitive coupling for healthy foods and lower coupling
for unhealthy foods exhibited the healthiest eating. However,
these findings need to be validated by future work given that
our full model was only marginally significant. Nonetheless,
these findings suggest that the vmPFC may integrate health
motivations during the subjective valuation of healthy foods,
and the interaction between valuation of healthy and unhealthy
foods predicts healthy eating. Future research should also obtain
quantitative measures of health motivation to better test the value
integration model.

We were unable to replicate the findings of Verdejo-Román
et al. (2017), which showed greater activation in subcortical
reward circuitry, andmedial and lateral portions of the prefrontal
cortex when contrasting palatable vs. unpalatable foods. The
motivation for this replication attempt relied on the assumption
that palatability is inversely related to healthiness, such that
unhealthy foods are more palatable (e.g., pizza), while healthy
foods are less palatable (e.g., whole-grain oats). However, it

is not necessarily the case that food healthiness relates to
its palatability. Indeed, many of the healthy food items used
as stimuli in the willingness-to-pay task were pictured in
appealing ways (e.g., a bunch of fresh grapes), while some
of the unhealthy items were less so (e.g., a bag of chips). A
better approach would have been to re-categorize our stimuli
based on palatability ratings rather than using our existing
categories of healthy and unhealthy foods. Another promising
direction for future research would be to examine the nutritional
content of food stimuli as it relates to food-cue reactivity and
the subjective valuation process. Recent work has demonstrated
that different areas of the prefrontal cortex can track caloric
density (Tang et al., 2014) and represent macro-nutrients (Suzuki
et al., 2017), while the combination of fat and carbohydrates
have supra-additive effects on striatal response (DiFeliceantonio
et al., 2018). By quantifying the various dimensions of food
stimuli that are encoded by the brain, we can gain a more
complete picture of the neural mechanisms underlying weight
and eating behavior. Thus, while we were unable to provide
converging evidence for the neural systems that are sensitive
to palatability as reported by Verdejo-Román and colleagues
(2017), it is likely due to a mismatch the dimensions of health
and palatability.

Our healthy food-cue reactivity contrast did demonstrate
greater activity in lateral prefrontal, dorsal attention, and higher
order visual processing regions, while unhealthy foods elicited
greater activity in primary visual and somatosensory regions.
These findings suggest that healthy foods engaged higher order,
top-down processing networks, while unhealthy foods caused
reactivity in bottom-up perceptual systems. The engagement of
top-down processing may be due to the fact that our sample
was motivated to eat more healthily, and therefore engaged
more effortful deliberation when making decisions about healthy
foods. This interpretation is line with studies showing the
engagement of these regions during regulatory processes (see
Buhle et al., 2014 for meta-analysis). The pattern of activation
for unhealthy foods mirrors the results from traditional studies
of food-cue reactivity (Murdaugh et al., 2012).

It is noteworthy that, throughout all our analyses, we found
no relationships between brain activity and BMI, which is similar
to results from other experiments in this sample (Giuliani
et al., 2020). While researchers have argued for better measures
of obesity as it relates to health (Ahima and Lazar, 2013),
there are a number of reasons we do not see a relationship
between BMI and brain response in the valuation system as
reported in other studies (e.g., Petit et al., 2016). First, this
may be due entirely to the fact that we were studying a sample
that desired to eat more healthily, thus the self-reported and
neural responses we observed might not be comparable to what
has been reported in prior literature. This interpretation is
supported by research showing that when individuals attend
to the health aspects of food, it improves dietary choice and
modulates the neural responses associated with the valuation
process (Hare et al., 2011). Thus, it is likely that people in our
sample—who were motivated to eat more healthily and who
enrolled in a healthy eating study—were more attentive to food
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healthiness. However, there are no studies to our knowledge that
have examined healthy eating motivation as mediator between
BMI and brain response to food cues, so this interpretation
requires further investigation. Another major shortcoming that
may have contributed to this null result is the fact that the
current study did not include healthy-weight controls. Thus,
the restricted range of BMI we investigated may have reduced
the variability needed to uncover the relationship with BMI
reported in previous literature. Relatedly, it is possible that there
are categorical differences between healthy-weight and higher
BMI individuals in how they process food stimuli, as suggested
by the food addiction model (Volkow et al., 2013b), which
may further obscure a relationship with weight. Finally, it is
possible that these null results were due to measurement error,
since we measured participant weight in the lab. Because we
did not have a clinical setting to provide lightweight scrubs
to all participants, combined with the fact that these data
were collected on a rolling basis over the course of 2 years,
differences in clothing weight across the seasons may have
contributed unsystematic noise to our measurement of weight,
and, consequently, BMI.

Taken together, the current study adds to the health
neuroscience literature by demonstrating both significant and
null findings across a set of well-motivated, pre-registered
analyses. We provide evidence that higher BMI individuals
exhibit normative coupling between self-reported value and
corresponding BOLD response. These individuals also show
meaningful relations between value-related brain activation and
eating patterns. These results add to the knowledge base on
how people with higher BMI process and relate to food stimuli.
The null results are equally informative to the literature in this
area. Interestingly, the neurocognitivemeasures of food valuation
do not relate to BMI or healthy eating behaviors. The lack
of a relation provides a possible explanation for why such a
relationship has not been reported in prior work. Moreover, we

demonstrated a potential mechanism that contributes to real-
world eating behavior—the valuation of healthy and unhealthy
foods. These findings direct future research toward further
examinations of motivational factors and food-cue information
that are integrated in the vmPFC during food-based decision
making, and suggest that interventions should target both the
up-valuation of healthy foods and down-valuation of unhealthy
foods, rather than focusing on one or the other exclusively.
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