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Maladaptive risk taking can have severe individual and societal consequences; thus,
individual differences are prominent targets for intervention and prevention. Although
brain activation has been shown to be associated with individual differences in risk
taking, the directionality of the reported brain–behavior associations is less clear. Here,
we argue that one aspect contributing to the mixed results is the low convergence
between risk-taking measures, especially between the behavioral tasks used to elicit
neural functional markers. To address this question, we analyzed within-participant
neuroimaging data for two widely used risk-taking tasks collected from the imaging
subsample of the Basel–Berlin Risk Study (N = 116 young human adults). Focusing
on core brain regions implicated in risk taking (nucleus accumbens, anterior insula,
and anterior cingulate cortex), for the two tasks, we examined group-level activation
for risky versus safe choices, as well as associations between local functional markers
and various risk-related outcomes, including psychometrically derived risk preference
factors. While we observed common group-level activation in the two tasks (notably
increased nucleus accumbens activation), individual differences analyses support the
idea that the presence and directionality of associations between brain activation and
risk taking varies as a function of the risk-taking measures used to capture individual
differences. Our results have methodological implications for the use of brain markers
for intervention or prevention.

Keywords: risk taking, brain–behavior, fMRI, BART, monetary gambles, nucleus accumbens, individual differences

INTRODUCTION

Many events, trajectories, and transitions central to human life are shaped by the extent to which
individuals are risk loving or risk averse, particularly in the domains of health, wealth, and criminal
activity (Moffitt et al., 2011). Accordingly, individual differences in risk preference (as well as
related constructs and constituent factors) present desirable targets for clinical, developmental,
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and longitudinal research aiming to identify reliable markers
for the purpose of intervention and prevention (Conrod et al.,
2013). Backed by a recent genome-wide association study that
suggested that the genetic basis for domain-general risk taking is
predominantly expressed in the brain tissue (Linnér et al., 2019), a
prominent approach to understanding and, ultimately, predicting
individual differences in risk taking focuses on neural pathways
(Sherman et al., 2018).

What do we know about the neural basis of risk taking
that may help understand individual differences? Qualitative
(Platt and Huettel, 2008; Bjork and Pardini, 2014; Knutson
and Huettel, 2015; Samanez-Larkin and Knutson, 2015) and
quantitative reviews (Mohr et al., 2010; Wu et al., 2012; Bartra
et al., 2013) of studies that have used functional magnetic
resonance imaging (fMRI) to examine brain function in response
to behavioral measures of risk point towards several brain regions
of interest, converging in particular on increased activation in
the nucleus accumbens (NAcc), (anterior) insula (AIns), and
anterior cingulate cortex (ACC) as key functional correlates
of risk taking. Furthermore, a large-scale term-based meta-
analysis of fMRI studies (Yarkoni et al., 2011) also points
toward increased activation in the NAcc, AIns, and ACC as
consistently and preferentially associated with the term “risk
taking” (accessed September 5, 2020).1 Regarding the underlying
mechanisms, these regions have been suggested to constitute the
core elements of a neural risk matrix (Knutson and Huettel,
2015), the differential activation in which is thought to facilitate
the promotion (NAcc in ventral striatum), inhibition (AIns), and
control (ACC) of risky choice.

Regional brain activations in response to risky versus safe
decisions alone do not necessarily reflect useful or reliable
predictors for the outcomes of interest (Poldrack et al., 2018),
however, and instead a combination of within-participant designs
and individual differences analyses is required (Foulkes and
Blakemore, 2018). Empirical research on neural functional
markers for individual differences in risk taking and related
constructs abound (Paulus et al., 2003; Bjork and Pardini, 2014;
Helfinstein et al., 2014; Braams et al., 2015; Qu et al., 2015;
Büchel et al., 2017; Blankenstein et al., 2018; Casey et al., 2018;
MacNiven et al., 2018; Krönke et al., 2020); synthesis of the
available evidence indicates heterogeneous findings for both
the presence and directionality of associations between neural
function and risk-related outcomes (Sherman et al., 2018). For
example, risk-related brain activation in the NAcc was found
to be positively and negatively associated with self-reported risk
taking (Congdon et al., 2013), and despite contributing to the
successful classification of risky versus safe choices (Helfinstein
et al., 2014), risk-related AIns activation was both positively
and negatively associated with risky choice (Paulus et al., 2003;
Telzer et al., 2015).

How can we account for the mixed findings relating brain
activation with (real-life) risk taking? One crucial aspect lies in
the circumstance that much of our current understanding of the
association between neural function and risk-related outcomes
is synthesized across a wide range of risk-taking measures used

1neurosynth.org

to both elicit brain activation and define outcome measures of
interest (Sherman et al., 2018). Indeed, numerous behavioral
measures and self-report inventories believed to capture
individual differences are available (Appelt et al., 2011; Dohmen
et al., 2011), yet within-participant (psychometric) designs
suggest that different measures result in weakly or uncorrelated
estimates of individuals’ risk preferences as a likely result of their
idiosyncratic recruitment of cognitive and affective processes
(Frey et al., 2017; Pedroni et al., 2017; van den Bos and Hertwig,
2017; Pabon et al., 2019). For example, a common distinction
between behavioral measures rests on whether decision-relevant
information (e.g., range and mean of probabilities, gains, and
losses) is mostly unavailable and thus ambiguous, available in
the form of fully described properties, or in principle available
but must be learned through repeated experience. Although
such ambiguity, description, and experience-based risk-taking
measures, respectively, share central characteristics (e.g., the
presence of uncertainty, integration of available information
into a subjective value signal), they differ in the involvement
of further requisite or incidental processes, including learning,
attention, affect, and memory (Figner et al., 2009; Hertwig and
Erev, 2009; Rosenbaum et al., 2018). Perhaps unsurprisingly,
the heterogeneous trajectories found for risk taking across the
life span are, in parts, reflective of the way in which risk
is encountered and how the relative cognitive (and affective)
demands of the measures used to operationalize risk interact with
age (Mata et al., 2011; Tymula et al., 2012, 2013; Li et al., 2013;
Frey et al., 2015a; Mamerow et al., 2016; Rosenbaum et al., 2018).

In the context of fMRI studies, recent reviews have highlighted
the issue of measurement, that is, how brain markers are elicited
and how risk-related outcomes of interest are assessed, as a
central problem in need of clarification (Sherman et al., 2018;
Bjork, 2020). Interestingly, even though numerous behavioral
measures are used to elicit risk-related neural functional markers
(Mohr et al., 2010; Wu et al., 2012; Bartra et al., 2013;
Knutson and Huettel, 2015), only a few fMRI studies have
empirically compared different measures in within-participant
designs with regard to group-level brain activation and individual
differences analyses (FitzGerald et al., 2010; Congdon et al.,
2013; Pletzer and Ortner, 2016). For example, a conjunction
analysis of group-level activations associated with experience-
based risk taking in the Balloon Analog Risk Task (BART)
and description-based risk taking in the Game of Dice Task
(Pletzer and Ortner, 2016) revealed joint activation increases
in bilateral striatal regions and insula, yet also a stronger
“Risky > Safe” contrast in an extensive frontoparietal network
for the Game of Dice Task relative to the BART, which
the authors suggest reflects more reflective risk taking in
the former compared with the latter task. In addition to
relatively small sample sizes, however, a common shortcoming
of previous fMRI studies that have used a two-task, within-
participant design is the use of single indices of the risk-
related outcomes that are examined for their association with
neural function.

Here, we investigated whether brain activation in the NAcc,
AIns, and ACC elicited within participants from two popular
behavioral risk-taking measures in a large sample of young
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adults is differentially associated with various indicators of
(real-life) risk taking. In particular, we used fMRI versions
of the BART (Lejuez et al., 2002; Schonberg et al., 2012)
and monetary gambles (Tom et al., 2007) to elicit risk-taking
related neural functional markers. Importantly, both tasks feature
similar concepts such as loss, reward, and risk; yet, whereas
these parameters are explicitly described for monetary gambles,
some must be explored and learned through experience in
the BART (Wallsten et al., 2005; Pleskac, 2008). In using
these two fMRI tasks, our aim is not to neurally dissociate
experienced from described risk, for this question has already
been addressed using well-suited and meticulously controlled
experimental designs (FitzGerald et al., 2010). Instead, the aim
of our two-task approach is to examine, at the level of brain–
behavior associations for two ubiquitous fMRI risk-taking tasks,
what has already been shown psychometrically (Frey et al., 2017,
2020; Pedroni et al., 2017), namely that risk-taking measures
should not be used interchangeably.

Guiding our analyses were the following research questions
(RQ). RQ1: Do the two fMRI tasks elicit common group-
level activation for risky versus safe decisions in risk matrix
regions? Previous literature (Pletzer and Ortner, 2016) examining
similar tasks suggests that joint activation increases could be
especially evident in the striatum and insular cortex. RQ2: To
what extent are functional markers positively correlated across
the two fMRI measures at the level of the individual? Owing
to the often-neglected lack of a match between group- and
individual-level effects (Blanco et al., 2011; Bornstein et al.,
2017; Fisher et al., 2018), any observed convergence of group-
level neural function does not necessarily indicate individual-
level consistency (Fliessbach et al., 2010; Elliott et al., 2020;
Korucuoglu et al., 2020; Li et al., 2020). RQ3: To what
extent do brain–behavior associations change as a function of
how risk-related neural activation is elicited and risk-related
outcomes are assessed? Considering the ongoing debate on
the nature, structure, and dimensionality of risk preference
(Frey et al., 2017; Mata et al., 2018; Eisenberg et al., 2019;
Hertwig et al., 2019; Pabon et al., 2019), how risk-related
outcomes are assessed poses a challenge for associations with
brain function (Sherman et al., 2018). To address this issue, first,
we examined within-task brain–behavior associations because
this provides insight into the neural mechanisms mapping onto,
and ideally giving rise to, behavior on a given task. Second,
we examined the extent to which neural markers from one
fMRI task were associated with performance on the other
because such out-of-task associations could be suggestive of
more general mechanisms being captured. Third, we investigated
associations between neural function and latent measures of
risk preference obtained from psychometric modeling of a large
battery of risk-taking measures collected out of session. Latent
variables promise to reflect more error-free and thus more
reliable measures of risk preference, and by correlating these with
neural indices, we can test to what extent the three risk matrix
regions are differentially associated with more refined indices of
risk preference.

The functional significance and dissociation of activation
in the NAcc, AIns, and ACC for risky choice, as postulated

by the risk matrix framework (Knutson and Huettel, 2015),
leads to the hypotheses that risk-related outcomes should be
positively associated with risk-taking-related NAcc activation
and negatively associated with risk-related activation in the
AIns and ACC. However, to the extent that the two fMRI
tasks vary on task-specific demands that may moderate
brain–behavior associations (Schonberg et al., 2011; Congdon
et al., 2013; Sherman et al., 2018; Bjork, 2020), we explore
whether and how the resultant associations between brain
function and risk-related outcomes differ from the associations
expected as per the risk matrix framework. Intuitively, the
two fMRI tasks used here differ with regard to how risk
is encountered, which in turn is likely to affect attentional
demands (BART > monetary gambles), affective responses
(BART > monetary gambles), and feedback-based integrative
processes (BART > monetary gambles), among others. However,
a formal comparison of our task implementations (e.g., facilitated
by a validated taxonomy of risk-taking measures) is still
outstanding; in its absence, our findings will help generate
focused hypotheses about the impact of task-specific aspects on
brain–behavior associations.

MATERIALS AND METHODS

Experimental Design
Participant Recruitment
Participants in this fMRI study were recruited from an
existing pool of individuals who had participated in the
Basel–Berlin Risk Study (BBRS). The BBRS is a large-scale
(n = 1,507) study assessing individual differences, psychometric
structure, and biological underpinnings of risk preference
(Dutilh et al., 2017; Frey et al., 2017; Pedroni et al.,
2017). Participants in the BBRS completed an extensive
battery of risk-taking measures (including self-report and
behavioral measures), as well as other individual differences
measures, including cognitive capacity, personality, affect,
and genetics (an overview of all subsamples, measures, and
further details on the BBRS is reported on https://osf.
io/rce7g). The BBRS was run in Basel (Switzerland) and
Berlin (Germany), but we recruited only individuals from
the Berlin site for the imaging study due to the location
of the neuroimaging facilities available. Exclusion criteria for
participation in the neuroimaging study were safety-limiting
permanent implants, a history of neurological or psychiatric
conditions, usage of psychoactive medication or substances, and
receiving psychiatric treatment.

Reflective of oversampling to achieve an effective sample
size of N∼100 (Yarkoni, 2009) in the event of participant
exclusions (e.g., due to excessive head motion in the scanner,
image artifacts), we recruited a total of 133 participants. Two
participants aborted the session before any functional sequences
were collected and were removed from all subsequent analyses.
A further five participants were excluded due to excessive
head motion inside the scanner (see image preprocessing
section for movement parameter thresholds), one participant
due to incidental anatomical findings, four participants due to
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incomplete data (e.g., only one of the two risk-taking measures
was completed inside the scanner), and five participants for non-
compliance with the scanner protocol (e.g., falling asleep, reports
of having mixed up button box responses). The final sample
included in all analyses comprised 116 participants (62 females;
mean age at scan = 25.34 years; SD = 2.64 years; range = 20.4–
30.1 years).

Experimental Procedure and Compensation
Participants who had completed the BBRS laboratory session
were contacted via phone and informed about the MRI follow-up
study. Interested individuals were screened via telephone for any
contraindications regarding MRI safety and invited to participate
if no exclusion criteria applied. At the time of the imaging session,
all individuals were screened again for contraindicators, followed
by a 2-min training run for each of the two fMRI tasks (BART
and monetary gambles) before entering the scanner. The scanner
protocol took 75 min and included a high-resolution structural
scan, two functional sequences for the BART, two functional
sequences for monetary gambles, a resting-state sequence, and a
diffusion-weighted imaging sequence. For the current study, only
the high-resolution structural scan and the functional sequences
were utilized, with the structural scan only serving normalization
purposes during preprocessing of functional imaging data. The
resting-state and diffusion-weighted sequences were not part of
the current analysis and are not discussed further. The fMRI
tasks were presented using E-Prime 2.0 software (Psychology
Software Tools, Pittsburgh, PA), and responses inside the scanner
were collected via a COVILEX response box system (series
1.X, Magdeburg, Germany) using the right-hand index and
middle finger. After the MRI session, individuals reported
demographic data and completed additional measures (see
section “Experimental Measures”).

At the end of the session, participants received a fixed fee of
25 Euro for their participation. In addition, participants could
increase their earnings based on performance in the two fMRI
tasks. For the BART, participants received 0.05 Euro for each
successful pump on a balloon that was cashed out, i.e., did not
explode. For monetary gambles, one trial was drawn at random
and, if the participant had accepted the trial, was played out.
The resulting loss or gain was combined with money made in
the BART. Trials that were drawn but which the participant had
rejected resulted in a 0-Euro outcome. Participants were told
about the incentive structure at the start of the MRI session and
received cash earnings at the end of the session (average actual
payment = 41.50 Euro, SD = 14.50 Euro).

Experimental Measures
The fMRI session involved incentivized, performance-
compatible versions of two prototypical measures of experience-
and description-based risk taking (Figure 1), which have been
used in neuroimaging research and investigated extensively
with regard to group-level neural activation profiles (Tom et al.,
2007; Rao et al., 2008; Schonberg et al., 2012; Canessa et al.,
2013; Pletzer and Ortner, 2016; Botvinik-Nezer et al., 2020) and
individual differences (Tom et al., 2007; Canessa et al., 2013;

Peper et al., 2013; Helfinstein et al., 2014; Braams et al., 2015;
Pletzer and Ortner, 2016).

Balloon Analog Risk Task
The BART (Lejuez et al., 2002) involves a series of virtual
balloons, which individuals are tasked with pumping up in
the absence of knowledge about when the balloon will burst.
Successful pumps (i.e., pumps that do not lead to a balloon
explosion) earn the participant money, but an explosion leads
to the loss of the money accumulated on the current trial.
Individuals thus make repeated decisions about whether to (1)
continue pumping up a balloon (i.e., risky decision), with the
prospect of accumulating more money, or (2) stop pumping
and cash out any accumulated earnings on a given trial (i.e.,
safe decision), yet foregoing any further earnings on that
trial. Importantly, as individuals move from trial to trial and
experience the outcome of their decisions (e.g., a balloon
explosion), they can build a mental representation of explosion
distributions for a given balloon type over time. The BART
version implemented in the current study featured two risky
balloon types and a control balloon. The maximum capacity
for the two risky balloons was set to be 12 and 20 pumps,
respectively; that is, on average, balloons with a capacity of
12 pumps burst earlier than balloons with a capacity of 20.
Risky balloons were represented in blue and red to discriminate
between balloon types based on capacity, with capacity–color
assignment being randomized between participants but stable
across the two runs. Control balloons were presented in gray,
had a maximum capacity of 16, and were added to control for
neural processes that required no decision making (e.g., motor
or visual). Participants merely inflated control balloons until
they disappeared from the screen. On any given trial, balloon
capacity was determined via a random draw from a uniform
distribution of values between one and the maximum capacity
for the presented balloon type. Participants completed two runs
of the BART, with a short break in between. Each run was
programmed to continue for 10 min, after which the final balloon
was presented. Given that decisions are made sequentially and
may become more difficult as the number of successful pumps in
a trial increases, we did not impose a time limit on the decision
phase of a given trial, resulting in the number of balloons played
varying between individuals (Supplementary Table 1). Intervals
between trials and between successive stimuli within trials were
randomized (mean intertrial interval = 4.39 s, range = 1–11 s;
mean interstimulus interval = 1.5 s, range = 1–2 s).

To disentangle different cognitive processes underlying the
observed behavior in the BART, including gain and loss
sensitivity, response consistency, risk preference, or learning
(Wallsten et al., 2005; van Ravenzwaaij et al., 2011), we fitted two
standard computational models: a target model that assumes a
fixed strategy is being used (Pleskac, 2008; Frey et al., 2015b) and
a Bayesian sequential risk-taking model that allows for dynamic
updating processes (Pleskac, 2008). In line with past research (van
Ravenzwaaij et al., 2011), however, the estimation of the model
parameters turned out to be unreliable, and we thus do not report
the modeling attempt here (a possible reason for the unreliable
model parameters may be the lack of strong learning effects).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 4 November 2020 | Volume 14 | Article 587152

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-587152 November 12, 2020 Time: 16:55 # 5

Tisdall et al. Brain–Behavior Associations for Risk Taking

FIGURE 1 | Schematic representation of two functional magnetic resonance imaging (fMRI) risk-taking measures. (A) Balloon Analog Risk Task (BART), upper row,
example cash-out trial; lower row, example explosion trial. (B) Monetary gambles. ISI, interstimulus interval; ITI, intertrial interval; s, seconds.

Consequently, we relied on the average number of pumps as a
simpler and generic index of risk preference in all subsequent
analyses (apart from the mixed-effects trial-by-trial modeling of
choice behavior).

Monetary gambles
We adopted a monetary gambles paradigm with mixed outcomes
as an example of a description-based risk-taking measure (i.e.,
both gains and losses were possible) (Tom et al., 2007; Barkley-
Levenson et al., 2013; Canessa et al., 2013; Sokol-Hessner et al.,
2013). In the current study, participants made a total of 144
decisions between a sure zero outcome and a 50/50 gamble
without feedback (i.e., gamble outcomes were not presented).
Individual gambles were constructed to populate an asymmetric
12 × 12 payoff matrix (Figure 2B) with gains between 10 and
32 (increments of 2) and losses between 5 and 16 (increments of
1). Each gamble was presented once, with the order of gamble
presentation randomized between participants. On a given trial,
once the gamble was presented, participants had 3 s to accept
or reject the gamble via respective button presses. Although
in previous studies participants gave responses indicating the
strength of their decision (Tom et al., 2007; Canessa et al., 2013),
we collected binary responses (accept/reject) only. Considering
that previously reported analyses were commonly conducted on
collapsed (binary) responses (Tom et al., 2007; Canessa et al.,
2013), we did not expect a substantial benefit from adopting
more fine-grained response options. Participants completed two
runs with a short pause in between, each run featuring 72

gambles. Jitters were introduced between trials (mean intertrial
interval = 4.32 s, range = 1–11 s).

A simple model that captures sensitivity to gains versus
losses has been used to capture decision making for monetary
gambles (Tom et al., 2007; Barkley-Levenson et al., 2013; Canessa
et al., 2013). However, the critical parameter of this model,
loss aversion, was negatively correlated with the proportion of
accepted gambles (r = -0.90, p < 0.001). Consequently, we relied
on the proportion of accepted gambles as a simpler and generic
index of risk preference in all subsequent analyses (apart from the
mixed-effects trial-by-trial modeling of choice behavior).

Psychometric risk preference factors
Behavioral measures often suffer from poor test–retest reliability
(Frey et al., 2017; Enkavi et al., 2018) and (accordingly) low
convergence (Frey et al., 2017; Pedroni et al., 2017); thus, selecting
single measures as indicators of risk preference may constrain the
utility of examining associations with neural function (Sherman
et al., 2018). To address this issue, we used psychometric factors
that were extracted across 39 widely used risk-taking measures
collected from the full BBRS sample via implementation of a
bifactor model; see Frey et al. (2017) for a comprehensive list of
measures and details on latent variable modeling analyses. The
bifactor model gave rise to a general risk preference factor, R (akin
to the general factor of intelligence), that captured 61% of the
explained variance across risk-taking measures and seven specific
orthogonal factors that captured additional domain- or situation-
specific variance. The domain-specific factors were suggested
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FIGURE 2 | Risk taking in two common behavioral measures. (A) Distribution of individuals’ average number of pumps in the Balloon Analog Risk Task (BART),
shown separately for balloons with capacity 12 and 20. (B) Payoff matrix overlaid with heatmap showing the observed probability of gamble acceptance in monetary
gambles. (C) Association between risk taking in the BART and monetary gambles (plotted are the standardized residuals after regressing out effects of age and
gender), with variable distributions shown in the margins.

to represent attitudes and behaviors associated with health risk
taking (F1), financial risk taking (F2), recreational risk taking
(F3), impulsivity (F4), traffic risk taking (F5), occupational risk
taking (F6), and choices among (monetary) lotteries (F7). For a
subset of BBRS participants (n = 109), test–retest reliability was
higher for the psychometric factors than for behavioral measures;
for example, the general risk preference factor R was observed to
have a 6-months retest reliability of 0.85, whereas many of the
behavioral measures tested yielded retest reliabilities below 0.5.

Due to a temporal overlap between the end of behavioral
data collection in the laboratory and the start of the MRI
component, individuals were contacted with varying delays after
having completed the BBRS laboratory component. As a result,
the MRI sample was heterogeneous with regard to the delay
between the laboratory and MRI session (mean delay = 196 days,
SD = 121 days, range = 1–453 days). Furthermore, the laboratory
session of the BBRS took place prior to the MRI session; hence,
we refrain from using the term “prediction” (in the strictest sense
we could use the term “postdiction”) and instead refer to our
analyses as out-of-session associations.

Further measures
Outside the scanner, we collected self-reported demographic data
(date of birth, gender, marital status, educational attainment,
native language, and current occupation). Of note, only gender
and age at the MRI session (calculated from date of birth)
were included as covariates in the current analyses; all other
demographic measures were merely collected to describe the
sample and ascertain the external validity of our findings with
respect to sample characteristics. As part of an independent
project, we assessed individuals’ height and weight, collected data
from a verbal fluency task, as well as various self-report measures
of impulsivity and eating-related behaviors and attitudes; given
that these measures were not part of the current analyses, we do
not elaborate on these measures here.

MRI Data Acquisition
Neuroimaging data were collected at the Magnetic Resonance
Imaging Laboratory at the Max Planck Institute for Human
Development (Berlin, Germany) on a 3T Siemens MRI system
with 12-channel head coil. Participants were scanned with a

magnetization-prepared rapid gradient echo sequence (repetition
time = 2,500 ms, echo time = 4.77 ms, inversion time = 1,100 ms,
flip angle = 7◦, field of view = 256 mm × 256 mm, 192
slices, voxel size = 1 mm × 1 mm × 1 mm). In each
of the four functional runs, up to 320 functional T2∗-
weighted blood–oxygen-level-dependent imaging (BOLD)
echo-planar images were acquired for every person
(repetition time = 2,010 ms, echo time = 30 ms, flip
angle = 78◦, field of view = 192 mm × 192 mm, voxel
size = 3 mm × 3 mm × 3 mm, 33 transversal slices/volume with
15% distance factor).

Statistical Analysis
All behavioral analyses were performed in R (R Project
for Statistical Computing2; RRID:SCR_001905), using the
packages lme4 (lme4: linear mixed-effects models using
Eigen and S4; R package v 1.1–8)3 and lmerTest (lmerTest:
tests in linear mixed effects models; R package v 2.0–25).4

We used the functions lmer and glmer for the mixed-
effects models of continuous and binary outcome variables,
respectively. To obtain p-values for the fixed-effects test
statistics in lmerTest, the calculation of the denominator degrees
of freedom adopts Satterthwaite’s approximation (cf. SAS
proc mixed theory).

Behavioral Analysis
To examine whether risk taking elicited in the BART and
monetary gambles mirrored behavioral patterns observed in the
literature (Tom et al., 2007; Schonberg et al., 2012; Mamerow
et al., 2016), we assessed group-level behavior and performed
analyses ascertaining and accounting for the effect of individual
as well as contextual variables. The outcome variable typically
used in the BART to reflect individuals’ risk preference is the
average number of pumps administered on cash-out trials only
(Lejuez et al., 2002; Wallsten et al., 2005; Yu et al., 2016), also
referred to as the adjusted average number of pumps. In line

2http://r-project.org
3http://CRAN.R-project.org/package=lme4
4http://CRAN.R-project.org/package=lmerTest
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with previous research (Mamerow et al., 2016; Frey et al., 2017),
the adjusted average number of pumps was highly correlated
with the average number of pumps across all balloons (r = 0.97,
p < 0.001) as well as for the two balloon capacities separately
(r12 = 0.92, p < 0.001, r20 = 0.95, p < 0.001). Given these results,
we used the average number of pumps across all balloons as
outcome variable in the BART because it allowed us to retain
a maximum number of trials for analysis while working with
congruent trial numbers in both neural and behavioral analyses.
We dropped the gray control balloons from all behavioral
analyses of the BART, as these balloons did not require a choice
to be made and are thus uninformative for determining effects
on (risky) choice.

To assess whether the experimental manipulation of balloon
capacity elicited different risk-taking behavior, we compared the
mean number of pumps between balloons with a capacity of 12
and 20 by means of a two-sample paired t-test with significance
level of p < 0.05. In order to estimate the effect of individual
and contextual factors on trial-by-trial risky choice, we applied
mixed-effects regression analysis. We regressed the number of
pumps on reward balloons (for a given trial) on trial-specific
fixed effects of balloon capacity as a proxy for the level of
risk (0 = 12, 1 = 20), having experienced an explosion on the
previous trial (0 = no, 1 = yes), and trial number (continuous).
We also included individual differences in age (continuous)
and gender (0 = male, 1 = female) in the regression model.
To account for individual differences to specific contextual
factors, we allowed for random slopes for balloon capacity, trial
number, and explosion on the previous trial. Prior to fitting
the regression model, all continuous predictor variables were
standardized (i.e., centered and scaled by the standard deviation)
and categorical variables were dummy coded. The specification
of the regression model and selection of predictor variables
followed previously reported trial-level effects (Wallsten et al.,
2005; Mamerow et al., 2016).

For monetary gambles, we computed the proportion of
accepted gambles out of all gambles for which a response was
provided as an index of risk taking. In a first step, we used
this index to compute the probability of an “Accept” decision
for a given option for the entire sample. In a second step, we
specified a logistic mixed-effects model, in which the decision
to accept or reject (0 = Reject, 1 = Accept) a particular lottery
in a given trial was regressed on fixed trial-specific effects of
the magnitude of the gain, the absolute magnitude of the loss,
the interaction between gain and loss, and individual effects of
age (continuous) and gender (0 = male, 1 = female). In the
regression model, we allowed random slopes for gain and loss
magnitude. All continuous predictor variables were standardized
prior to fitting the model, and categorical variables were dummy
coded. Model specification was informed by previously reported
trial-level effects (Tom et al., 2007). Given differential effects of
age and gender on trial-by-trial decision making, we conducted
all subsequent analyses on standardized and residualized (i.e.,
regressing out effects of age and gender) behavioral indices.
As a final step in the behavioral analysis, we computed the
correlation between mean number of pumps in the BART
and proportion of accept decisions in monetary gambles to

ascertain the convergence of experience- and description-based
risk taking (Figure 2C).

Neuroimaging Analysis
Image preprocessing and analyses were carried out using
standard procedures implemented in SPM8.5 See Supplementary
Section 1.1 for details.

fMRI model specification
At the level of the individual, we concatenated the two runs
for each of the two risk-taking measures and specified one
general linear model for the BART and one for monetary
gambles. Our aim was to target and compare the neural
representation of risky versus safe decisions in both measures,
which we operationalized as decisions to administer a pump
on reward balloons in the BART and decisions to accept
a lottery in monetary gambles. For the main contrast of
interest—risky versus safe decisions—we followed standard
approaches and contrasted pumping on reward balloons with
pumping on control balloons (“Pumps reward versus Pumps
control”) in the BART (Rao et al., 2008; Schonberg et al.,
2012; Yu et al., 2016) and contrasted decisions to accept
a lottery with decisions to reject (“Accept versus Reject”)
in monetary gambles (Barkley-Levenson et al., 2013). We
considered rejection of a gamble the safe option because by
rejecting a gamble, participants implicitly opted for a sure
outcome of zero.

To facilitate contrast analyses that tackle RQ1, the individual-
level BART GLM included eight regressors (Supplementary
Figure 1A for an example individual-level design matrix). We
included onset vectors for control, low-capacity, and high-
capacity balloons and one onset vector for cash-out events
and one onset vector for explosion events (in that order).
For each balloon onset vector, we also included a parametric
regressor number to facilitate supplementary analyses to
better understand the impact of contrast choice on BART
brain–behavior associations (Supplementary Section 1.3).
Cash-out and explosion events were included to account for
additional variance and thus better isolate the main effects
of interest by removing neural responses to cash out and
explosions from baseline activity. Six motion parameters
estimated during the realignment procedure were included
as regressors of no interest. The individual-level GLM for
monetary gambles included the following regressors: onset
vector for all Accept decisions, onset vector for all Reject
decisions, and six motion parameters estimated during the
realignment procedure (Supplementary Figure 1B for example
individual-level design matrix). Multicollinearity between choice
and gain/loss magnitudes (and as a consequence, also the
expected value of a gamble) reduced the scope of the design
matrix. However, the simplicity of the paradigm allowed for
this comparatively straightforward design matrix with only
two regressors of interest, nevertheless yielding clean (event-
unrelated) baseline activity. All analyses involved modeling the
time from trial onset (i.e., display of stimulus) until choice (i.e.,

5http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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pump reward/pump control in the BART and accept/reject for
monetary gambles).

At the level of the group, we specified two one-sample
t-tests, one for every measure, in which we tested whether the
group-level signal in response to risky versus safe decisions
(as operationalized at the level of the individual design
matrix) was significantly different from zero, controlling for the
effects of age and gender (see Supplementary Section 1.2 for
contrast weights). Whole-brain, voxel-wise analyses of group-
level activation in the two measures was corrected using family-
wise error (FWE) correction at voxel (i.e., peak) level, with a
significance level of p < 0.05.

Regions of interest
To avoid inflated brain–behavior associations that would result
from selecting regions of interest (ROIs) based on within-
experiment contrast activations (Poldrack and Mumford, 2009;
Vul et al., 2009), we selected ROIs a priori on the basis of a
comprehensive literature review and term-based meta-analysis
(see section “Introduction”). We used the Hammersmith atlas
nr30r836 to structurally localize the ROIs for the NAcc (volume
across left and right hemisphere = 114 voxels) and ACC (volume
across left and right hemisphere = 2,660 voxels). In the absence of
a validated structural parcelation of the insular cortex, but given
our specific focus on the anterior insula, we created an anterior
insula ROI (volume across left and right hemisphere = 358
voxels) based on a published meta-analysis of resting-state-
based functional connectivity studies (Chang et al., 2013); see
Supplementary Section 1.4 for details about the construction of
the AIns ROI. The resulting ROIs for NAcc, AIns, and ACC are
depicted in Figure 3C and at the top of Figure 4.

For each ROI, we extracted the mean of the regression
slopes from each individual’s first-level BART contrast “Pumps
reward > Pumps control” and monetary gambles contrast
“Accept > Reject”; mean signal for a particular ROI was
operationalized as the mean of all regression slopes extracted
from all voxels contained in a given ROI. As we had no
hypotheses about hemispheric differences in the NAcc, AIns, and
ACC, we computed a mean signal across the two hemispheres
for each ROI, yielding six summary indices for ROI activation
for each participant (i.e., three per fMRI task). High positive
correlations between signal extracted from the left and right
hemisphere for NAcc (rBART = 0.95, rGambles = 0.88), AIns
(rBART = 0.72, rGambles = 0.90), and ACC (rBART = 0.94,
rGambles = 0.97) validated the use of a mean signal.

Conjunction analysis of group-level activation between tasks
To examine the intersection of neural markers between the two
fMRI tasks at group level (RQ1), we conducted a voxel-wise
conjunction analysis of activation for risky versus safe decisions
in the BART (pumping on reward relative to control balloons)
and monetary gambles (accepting relative to rejecting an offer).
Specifically, we performed a conjunction analysis over two
orthogonal contrasts that tested the conjunction—rather than the
global—null hypothesis, allowing us to infer a conjunction of
two effects (risky versus safe in BART and monetary gambles)

6www.brain-development.org

at significant voxels (Friston et al., 2005). For this purpose, we
(1) masked the two contrasts with an inclusive risk matrix mask
containing bilateral NAcc, AIns, and ACC ROIs (volume = 3,132
voxels), (2) applied a small volume correction at peak-level
FWE, p < 0.05 to each of the two contrasts, and (3) computed
the conjunction (i.e., intersection) of the two masked, small-
volume corrected contrasts. To examine whether regions outside
of the risk matrix showed joint activation increases in the two
measures, we computed an exploratory conjunction analysis
across the entire brain (peak-level FWE correction, p < 0.05).
We used the Multi-image Analysis GUI Mango7 to visualize
group-level activation and their intersection on a standard group
template in the MNI space. We report the coordinates of
local maxima in the MNI space (mm). Anatomical labels for
neural regions were obtained from the Neuromorphometrics
atlas implemented in SPM8.

Individual differences analyses
Turning to our output models, we performed individual
differences analyses to understand the extent to which neural
activation in risk matrix regions was preserved across measures
(RQ2) and significantly linked to risk-related outcomes,
including within-session behavior in the two fMRI tasks, as
well as out-of-session associations with risk preference factors
(RQ3). All individual-differences analyses were conducted
for residualized neural and behavioral indices, that is, after
regressing out effects of age and gender. Initial plotting of the
mean beta values indicated relatively normally distributed mean
signals for both measures, except for a small number of possible
outliers (Supplementary Figure 2) for signals extracted for
the ACC from the BART contrast, as well as for the ACC and
AIns from monetary gambles. To estimate the biasing effect of
these outliers, we computed robust regression analyses (“rlm”
function in R package MASS using method “MM”) (Venables
and Ripley, 2002) and computed the correlation between the
beta coefficients for the neural predictors. The beta coefficients
obtained from standard and robust regression analysis correlated
highly (r = 0.97, p < 0.001), but further inspection of the
coefficients suggested meaningful discrepancies for models
which included BART ACC activation or monetary gambles
ACC and AIns activation. To obtain robust results, we computed
and report Spearman rank-order correlation coefficients for all
individual-differences analyses.

To control for the number of individual differences analyses,
we used FWE correction and specified the following four
test families for our within-session ROI analyses: (1) brain–
brain associations, (2) brain–behavior associations for the BART
(RQ3), (3) brain–behavior associations for monetary gambles,
and (4) brain–behavior associations across the two measures. We
computed three tests per family, one per ROI (cf. Figure 4),
resulting in a corrected significance level of p < 0.017. For
the out-of-session associations between task activation and the
BBRS risk preference factors, we defined six test families (one
per ROI/fMRI task contrast) comprising eight tests each. This
resulted in a corrected significance level of p = 0.05/8 = 0.00625;

7http://rii.uthscsa.edu/mango/index.html

Frontiers in Behavioral Neuroscience | www.frontiersin.org 8 November 2020 | Volume 14 | Article 587152

http://www.brain-development.org
http://rii.uthscsa.edu/mango/index.html
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-14-587152 November 12, 2020 Time: 16:55 # 9

Tisdall et al. Brain–Behavior Associations for Risk Taking

FIGURE 3 | Whole-brain voxel-wise group-level activation for risky versus safe decisions in two functional MRI (fMRI) tasks and their intersection. (A) Balloon Analog
Risk Task (BART) brain activation [peak-level family-wise error (FWE), p < 0.05] for “Pumps reward versus Pumps control”. Red–yellow areas represent increased
activation, blue–green areas represent decreased activation. (B) Monetary gambles brain activation (peak-level FWE, p < 0.05) for “Accept versus Reject”. Red areas
represent increased activation (no significant reverse effect). (C) Regions of interest (ROIs). Colors correspond to the following ROIs: blueish green for NAcc, reddish
purple for AIns, and yellow for ACC. (D) Intersection of increased activation associated with risky versus safe decisions in the BART (Pumps reward > Pumps
control) and monetary gambles (Accept > Reject). Given our focus on risk matrix regions, in dark orange, we show intersecting increased activation for regions of
interest only (small volume correction, peak-level FWE, p < 0.05). Shown in light orange are neural regions with intersecting increased activation at the level of the
whole brain (peak-level FWE correction, p < 0.05).

we report which of the results fall below the FWE-corrected
significance threshold.

RESULTS

Risk-Taking Behavior in the BART and
Monetary Gambles
Initial analyses were carried out to examine if risk-taking
behavior elicited by the two fMRI tasks was comparable to
behavioral patterns observed in previous studies. Confirming
the experimental manipulation of reward balloon capacity in
the BART (Figure 2A), the average number of pumps was
significantly higher for high-capacity balloons compared to low-
capacity balloons (t115 = 7.28, p < 0.001, mean difference = 1.05,
Cohen’s d = 0.80; see Supplementary Table 1 for additional
descriptive statistics). Mixed-effects modeling analyses confirm
this aggregate pattern and reveal individual as well as task-specific
effects on the decision to take a risk: On a given trial in the BART,
the number of pumps was higher for male gender, high-capacity
balloons, and no explosion on the previous trial (Supplementary
Table 2). There was no overall effect of trial number on pumping
behavior. As illustrated by the heatmap in Figure 2B, decisions
in monetary gambles were influenced in the expected direction
by the magnitude of gains and losses: Accept probabilities were
highest for high gain–low loss options (lower right quadrant),
lowest for low gain–high loss options, and in between for
high gain–high loss and low gain–low loss options (see also

Supplementary Table 1 for additional descriptive statistics).
Results from the mixed-effects logistic regression model for
monetary gambles suggest that acceptance of a risky gamble was
more likely for higher participant age, male gender, higher gain,
and lower (absolute) loss (Supplementary Table 3).

Overall, the behavioral patterns observed in the BART
and monetary gambles are in line with previous findings
(Tom et al., 2007; Schonberg et al., 2012; Mamerow et al.,
2016; Yu et al., 2016). At the level of the group, the two
behavioral indices of interest, i.e., standardized residual mean
number of pumps (across balloon capacities) in the BART and
the standardized residual proportion of Accept decisions for
monetary gambles, were approximately normally distributed (see
margins in Figure 2C). The association between mean number
of pumps in the BART and the proportion of Accept decisions in
monetary gambles was negative and not statistically significantly
(r = -0.16, p = 0.09; Figure 2C). That behavior in the two
tasks was not correlated did not result from aggregating the two
runs to compute one behavioral index for each measure because
risky choice was relatively consistent over the two runs in the
BART (rmeanpumps = 0.62, p < 0.001) and monetary gambles
(rpropaccept = 0.84, p < 0.001).

Group-Level Activation for Risky Versus
Safe Decisions in BART and Monetary
Gambles
To address RQ1, we first computed voxel-wise whole-brain
group-level task activations for each measure separately in order
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FIGURE 4 | Within-session individual differences. Scatterplots show associations between neural indices, as well as between neural and behavioral indices.
Columns represent neural signal extracted from three ROIs [anterior cingulate cortex (ACC), anterior insula (AIns), and nucleus accumbens (NAcc), in that order];
rows represent analyses. (A) Associations between regional neural signals across measures (brain–brain). (B) Within-measure brain–outcome associations for
Balloon Analog Risk Task (BART). (C) Within-measure brain–outcome associations for monetary gambles. (D) Out-of-measure brain–outcome associations. Note: All
variables were regressed on age and gender and standardized prior to plotting and analysis. Regression slopes were estimated using robust regression analyses.

to (1) examine if the current implementation of the BART
and monetary gambles resulted in group-level task activations
comparable with previous research and (2) understand the

neural basis on which we performed all subsequent analyses.
Initial analyses for the BART yielded no group-level activation
differences for the contrast “Pumps reward > Pumps control”
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between low (12) and high (20) capacity balloons [whole-
brain peak-level family-wise error correction (FWE), p > 0.05];
as a result, we collapsed events across capacity. For the
BART, contrasting pumps on reward balloons with pumps on
control balloons revealed several areas of widespread activation
differences (whole-brain peak-level FWE, p < 0.05) including
increased activation for pumping on reward relative to control
balloons in a large cortical cluster (k = 43,995) encompassing
the bilateral supplementary motor cortex, cingulate cortex, and
middle segment of the superior frontal gyrus and anterior
insula (Supplementary Table 4 for peak coordinates and
test statistics). Plotting of this contrast also highlighted the
striatum as an area of increased activation (Figure 3A,
red–yellow gradient). We also observed several large voxel
clusters indicating decreased activation for pumping on reward
relative to control balloons (Supplementary Table 4), including
a large cluster (k = 38,440) spanning the angular gyrus,
precuneus, and posterior insula, as well as clusters in medial
frontal cortex and lateral orbital gyrus (Figure 3A, blue–green
gradient). For monetary gambles, contrasting accept with reject
decisions revealed increased activation (“Accept > Reject”) in
the striatum (caudate), angular gyrus, and inferior occipital
gyrus but no reverse (“Accept < Reject”) effects (whole-brain
peak-level FWE, p < 0.05) (Figure 3B and Supplementary
Table 4). Overall, the whole-brain group-level activations
associated with risky choice in the BART and monetary
gambles in this study reflect group-level results reported
in previous studies (Tom et al., 2007; Rao et al., 2008;
Schonberg et al., 2012; Barkley-Levenson et al., 2013; Canessa
et al., 2013; Pletzer and Ortner, 2016; Yu et al., 2016;
Kohno et al., 2017).

Conjunction of Group-Level Activation
Between Tasks
On the basis of our group-level analyses suggesting activation
to be predominantly observed for contrasts targeting increased
activation for risky versus safe options (Figures 3A,B),
we investigated the intersection of the contrasts “Pumps
reward > Pumps control” in the BART and “Accept > Reject.”
Restricting our analyses to risk matrix regions (Figure 3C),
a conjunction analysis of group-level activation in the BART
and in monetary gambles revealed a common, locally restricted
signal in the NAcc (small volume correction, peak-level FWE,
p < 0.05; Figure 3D, orange region), as well as a very
small region in ACC. Referring back to RQ1, opting for
the risky option thus seems to elicit group-level measure-
invariant neural signals in NAcc and partly ACC but not
the insula. Exploratory analyses outside of risk matrix regions
revealed a more extensive overlap of increased activation,
especially in cortical areas and striatum (whole-brain peak-level
FWE, p < 0.05; Figure 3D, light orange regions). Next, we
conducted individual-level analyses to investigate whether neural
function associated with risky choice in risk matrix regions
was preserved across the two fMRI tasks and to examine their
explanatory power within and out of measure, as well as within
and out of session.

Correlations Between Tasks in Canonical
Activations
In the first set of within-session analyses targeting RQ2, we
assessed whether activation associated with risky versus safe
decisions in risk matrix regions was preserved (i.e., positively
correlated) across the two fMRI tasks. Although behaviorally
the two measures did not correlate, it is nevertheless possible
that activation in individual neural regions shows (relatively)
higher convergence, for instance as a function of shared cognitive
or affective components. As illustrated by the scatterplots in
Figure 4A, we obtained mixed results. NAcc activation in the
BART was positively associated with NAcc activation in monetary
gambles (ρ = 0.22, p = 0.02), but this result was insignificant after
FWE correction (p < 0.017). Correlation coefficients for mean
activation in ACC and AIns were negative and not significant;
that is, mean activation was not preserved between measures
(ρ = -0.14, p = 0.14; ρ = -0.17, p = 0.08, respectively). The overall
pattern of results was not influenced by BART contrast analysis
(Supplementary Section 1.3 and Supplementary Figure 3). In
summary, our analyses to address RQ2 suggest that, although
at group level the two measures converged (albeit with limited
spatial extent), individual differences were not (significantly)
positively correlated across measures: we found some group- but
not individual-level consistency for experience- and description-
based risk taking (Bornstein et al., 2017).

Correlations Between Task Activation
and Task Behavior
In a second set of within-session analyses targeting RQ3,
we examined whether activation in risk matrix regions was
associated with behavior, both within measure (i.e., with neural
and behavioral indices originating from the same fMRI task)
and out of measure (i.e., neural index from one fMRI task and
behavioral index from the other fMRI task). In particular, we
examined the extent to which neural indices extracted from (1)
BART were associated with mean number of pumps (within
measure), (2) monetary gambles were associated with proportion
of accepted gambles (within measure), and (3) BART were
associated with proportion of accepted gambles in monetary
gambles (out of measure). Given the temporal order of the two
measures, we did not test whether neural signal in monetary
gambles accounted for BART behavior.

As shown in Figure 4B, we obtained significant (after FWE
correction, p < 0.017) negative associations for the BART
between the mean number of pumps and mean activation in ACC
(ρ = -0.26, p < 0.01) and NAcc (ρ = -0.24, p = 0.01) but not
AIns (ρ = -0.2, p = 0.03). For monetary gambles (Figure 4C), ROI
analyses revealed significant (after FWE correction) within-task
negative associations between the proportion of Accept decisions
and neural activation in ACC (ρ = -0.37, p < 0.001), AIns (ρ = -
0.52, p < 0.001), and NAcc (ρ = -0.42, p < 0.001). To put
these findings into context, the within-task associations between
risky choice and ACC activation obtained for both the BART
and monetary gambles are in line with expectations based on
the risk matrix framework, as is the direction of associations
based on insula activation. The observed negative associations
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between NAcc and risky choice confirm some previous findings
(Pletzer and Ortner, 2016; Büchel et al., 2017) but run counter
to others (Courtney et al., 2018; MacNiven et al., 2018); we
return to this dissociation in the discussion. For the final set
of within-session analyses, we observed no significant out-of-
measure associations between the proportion of Accept decisions
in monetary gambles and BART activation in ACC (ρ = 0.07,
p = 0.47), AIns (ρ = 0.02, p = 0.79), or NAcc (ρ = -0.03,
p = 0.76) (Figure 4D).

To summarize, analyses targeting RQ2 suggest that region-
specific risk-related activation was not or only marginally
preserved between the BART and monetary gambles, suggesting
measure-specific processing at the level of the individual.
Moreover, analyses targeting the within-session aspect of RQ3
suggest that, although the current neural markers associated
with risky choice can account for some behavior within fMRI
task, they do not manage to cross a vital barrier for prediction
and ultimately application, namely, out-of-measure associations.
One possible explanation for this pattern could be our choice of
outcome, that is, the use of summary behavioral indices stemming
from a single fMRI task. To address this potential shortcoming,
we investigated the out-of-session explanatory power of neural
indices for psychometrically derived risk preference factors.

Correlations Between Task Activation
and Risk Preference Factors
Pearson correlation coefficients between the psychometric
risk preference factors (Figure 5A) were comparable to the
correlation coefficients observed in the full BBRS sample (Frey
et al., 2017). The main analysis to address the between-session
aspect of RQ3 involved a set of Spearman correlation analyses
between the risk preference factors and the neural markers
extracted from three ROIs for each of the two measures’ main
contrast. All analyses were performed on residuals (i.e., after
regressing out effects of age and gender). As illustrated in
Figure 5B, the majority of analyses between neural markers
associated with risky choice and risk preference factors resulted
in non-significant (p > 0.05) correlation coefficients close to
0 (meanrho = 0.001, median = -0.001, range = -0.21–0.23;
Supplementary Figure 4). Separating these results by factor and
ROI, we observed a pattern of notable exceptions: the domain-
specific risk preference factors, F2 (financial risk taking) and F4
(impulsivity) consistently returned correlation coefficients with
the highest (absolute) magnitude for neural markers from both
BART and monetary gambles (Figure 5C; see Supplementary
Figure 5 for results from additional BART contrast analyses).
Interestingly, the directionality of associations differed for the
two tasks. For monetary gambles, financial risk taking correlated
negatively with risk-related activation in NAcc (ρ = -0.17,
p = 0.069), ACC (ρ = -0.18, p = 0.05) and AIns (ρ = -0.21,
p = 0.03), whereas impulsivity correlated positively with risk-
related activation in NAcc (ρ = 0.23, p = 0.02) and ACC
(ρ = 0.18, p = 0.049). For the BART, risk-related activation in
ACC correlated positively with financial risk taking (ρ = 0.23,
p = 0.013), and AIns activation correlated negatively with
impulsivity (ρ = -0.21, p = 0.023). However, none of these

associations survive FWE corrections (all p > 0.00625). We turn
to the implications of the current results in the discussion.

DISCUSSION

In this study, we examined the role of the measures used to
capture neural and behavioral individual differences in risk taking
by focusing on associations between risk-related neural activation
and various indices of (real life) risk taking. Based on two popular
behavioral measures of risk taking—the BART and monetary
gambles—our results suggest limited functional convergence
in neural risk matrix regions at both group and individual
levels, on the one hand, and mixed results concerning brain–
behavior associations for single performance indices as well as
for psychometrically derived risk preference factors on the other.
That different measures of risk taking elicit different choices has
previously been discussed, both at the level of behavior (Mata
et al., 2011; Mamerow et al., 2016; Rosenbaum et al., 2018)
and their neural correlates (FitzGerald et al., 2010; Congdon
et al., 2013; Pletzer and Ortner, 2016). Indeed, the (behavioral)
differences observed across the life span between measures of
experienced and described risk (of which the BART and monetary
gambles are respective examples) have led to the proposition
of an affect-based model of adolescent risk taking (Rosenbaum
et al., 2018). However, very few empirical studies have benefited
from some of the major strengths of our work, including a
large sample size, within-participant design, a priori defined
ROIs, and a mixture of group and individual difference analyses
aimed specifically at addressing issues of convergent validity and
explanatory power (i.e., brain–behavior associations) within and
across behavioral measures of risk taking. A further main strength
of this study is its link to the BBRS, which allowed us to use latent
variables capturing the psychometric structure of risk preference
as outcome variables for brain–behavior associations.

Mirroring previous reports of joint group-level activation
increases in bilateral striatal regions for risky versus safe options
in the BART and a Game of Dice task (Pletzer and Ortner, 2016),
our conjunction results in NAcc support the notion of a measure-
invariant core neural signal of choice across risk-taking measures
(Knutson and Huettel, 2015). The striatum in general is a central
structure implicated in reward processing (Izuma et al., 2008;
Haber and Knutson, 2010); to the extent that risk taking is driven
by the motivation to achieve a reward (Ravert et al., 2019), striatal
activation is a common neural correlate of risk taking (Knutson
and Huettel, 2015). However, it has been suggested that attention
plays an important role for activation especially in the ventral
striatum (and thus to a large extent the NAcc), perhaps even
independently of the anticipated rewards (Bjork, 2020). Thus,
although our contrast analyses for BART and monetary gambles
both resulted in increased activation in the NAcc, the underlying
source of the signal may be differentially driven by attentional
demands. Moreover, the ventral striatum is also implicated in
the coding of prediction error (Hare et al., 2008), which may
suggest a functional convergence on monitoring of the status quo.
Unfortunately, the two fMRI tasks used here do not allow us to
disentangle these different signal sources. However, to observe a
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FIGURE 5 | Basel–Berlin Risk Study (BBRS) risk preference factors and association with neural markers of risky choice. (A) Pearson correlation coefficients for
associations between risk preference factors in the BBRS imaging subsample (N = 116). (B) Scatterplot for correlation coefficients and associated p-values for
brain–behavior associations. Dashed line represents significance level of p < 0.05 (uncorrected for multiple testing). (C) Scatterplot for correlation coefficients and
associated p values for all brain–behavior associations, organized by region of interest (ROI) and colored by risk preference factor. Dashed line represents significance
level of p < 0.05. Balloon Analog Risk Task (BART) mean activation extracted from “Pumps reward > Pumps control” contrast; GAMBLES mean activation extracted
from “Accept > Reject” contrast; ACC, anterior cingulate cortex; AIns, anterior insula; NAcc, nucleus accumbens; R, general risk-preference factor; F1, health risk
taking; F2, financial risk taking; F3, recreational risk taking; F4, impulsivity; F5, traffic risk taking; F6, occupational risk taking; F7, choices among (monetary) lotteries.

conjunction of increased NAcc activation for the two risk-taking
measures at the level of the group despite the many differences
between the two measures is encouraging.

The observed group-level activation in AIns for the BART,
but not monetary gambles, supports the argument that
experience-based measures involve potentially more affective
and motivational processes compared with description-based
measures (Hertwig and Erev, 2009; Schonberg et al., 2011;
Rosenbaum et al., 2018). The AIns is heavily implicated in
signaling subjective feelings and explicit motivation (Namkung
et al., 2017) and is thought to inhibit risky choice (Knutson
and Huettel, 2015). In this study, the BART, but not monetary
gambles, involved choice feedback, which may have led to
the observed neural dissociation in AIns. Indeed, the insular
cortex was a further source of common activation in previous
comparative work, where both the experience- and description-
based measures included feedback between choices (Pletzer and
Ortner, 2016). Thus, while there may be core regions associated
with risk preference, some, like the NAcc, may be more core than
others, depending on the measure used. Crucially, the limited
regional overlap of group-level activation patterns reported here
and previously (Pletzer and Ortner, 2016) is not an artifact of the
contrast analysis targeting a summary decision signal for risky
versus safe decisions; similar findings were obtained for more
targeted components such as value or the probability of incurring
a loss (FitzGerald et al., 2010).

Past work has made clear that group averages are not
necessarily reflective of individual-level behavioral (Blanco et al.,
2011; Bornstein et al., 2017; Fisher et al., 2018) or neural patterns
(Fliessbach et al., 2010; Elliott et al., 2020). We found that a
group-level activation increase for risky versus safe decisions
was localized in the NAcc for both fMRI tasks, yet NAcc,
AIns, and ACC activation was not (significantly) positively
correlated between the two tasks. While the fMRI tasks used
here differed on many aspects aside from whether risk was
experienced or described, previous research (FitzGerald et al.,
2010) with carefully matched task implementations has shown
that outcome probability correlated more strongly with activity
in ACC for experienced but AIns for described risk. In other
words, the same choice component can indeed be represented
differently as a function of the task. One explanation may be
found in the low test–retest reliability of fMRI signal elicited
with reward-based decision making tasks (Elliott et al., 2020); a
highly variable brain signal creates a bottleneck for the extent to
which activations from different tasks correlate within subject (or
with external variables), even in canonical risk-taking regions like
NAcc, AIns, and ACC.

Turning to our brain–behavior associations, it has been
suggested that experience-based risk-taking measures such as the
BART are ecologically more valid exactly because the sequential
nature and exposure to outcomes elicits stronger affective
responses (Lejuez et al., 2002; Schonberg et al., 2011; Rosenbaum
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et al., 2018). Whether this translates into stronger brain–behavior
associations, however, is an open empirical question. Although
our results revealed significant brain–behavior associations
within fMRI task for both BART and monetary gambles, we
observed larger effect sizes [i.e., higher (absolute) correlation
coefficients] for activation extracted from monetary gambles
compared with BART. Importantly, our supplementary analyses
suggest that our findings are not tied to a particular BART
contrast analysis. Instead, the observed differences in brain–
behavior associations may arise as a result of varying task
demands (Figner et al., 2009; Hertwig and Erev, 2009; Mata
et al., 2011; Mamerow et al., 2016; Rosenbaum et al., 2018).
For example, if the sequential (feedback-based) aspect of the
BART involves more attention than the descriptive aspect of
monetary gambles, and if attention can drive signal in the ventral
striatum, perhaps even independently of anticipated rewards
(Bjork, 2020), then one hypothesis may be that the contribution
of attentional demand to NAcc signal attenuates brain–behavior
associations for external variables that assume a link based
on reward sensitivity. Pinning down the mechanisms that give
rise to NAcc signal in different tasks will directly inform our
expectations for brain–behavior associations.

Furthermore, the reliability of the brain signal itself may
also attenuate brain–behavior associations (Elliott et al., 2020).
For example, reliable group- and individual-level risk-related
activation has been reported for the BART, especially in
canonical regions (Korucuoglu et al., 2020; Li et al., 2020).
However, the reported reliability estimates are based on BART
implementations that included only one type of balloon, and
as our behavioral analyses suggested, balloon capacity affects
risk-taking behavior. Thus, certain BART implementations may
reduce test–retest reliability, which in turn constrains the extent
to which strong brain–behavior associations can be expected.

Concerning the directionality of associations between risk-
related neural function and outcomes, our negative brain–
behavior associations for AIns and ACC are in line with proposed
functional dissociations, whereby more affect-based inhibition
and control-related processes are associated with less risk taking
(Knutson and Huettel, 2015; Pletzer and Ortner, 2016). The
observed negative association(s) between NAcc activation and
risky choice within task mirror(s) previous results suggestive of
a compensatory link between hyporesponsiveness of dopamine-
modulated brain regions in the reward circuit and risk-related
or impulsive behaviors (Pletzer and Ortner, 2016; Büchel et al.,
2017). However, existing studies that have focused on brain–
behavior associations for (reward and/or risk-related) NAcc
activation have reported both positive and negative associations
(Sherman et al., 2018; Bjork, 2020). For neural markers elicited
with the same fMRI task (Büchel et al., 2017; Courtney
et al., 2018; MacNiven et al., 2018), different directionalities
may provide candidate mechanisms for how relative NAcc
activation in anticipation of reward from generic (e.g., points,
money) versus phenotype-specific (e.g., drug paraphernalia)
cues underpin the initiation and trajectory of pathological risk
taking (e.g., substance use). In contrast, for neural markers
elicited with different fMRI tasks, opposing directionality for
brain–behavior associations may harbor effects of task-specific

parameters, including attentional demands, the presence of
ambiguity, or the exact loss function (Congdon et al., 2013;
Sherman et al., 2018; Bjork, 2020).

Interestingly, brain–behavior associations for specific kinds
of risk taking, as operationalized by the domain-specific risk
preference factors, revealed the highest absolute (albeit non-
significant after FWE correction) correlations for the factors F2
(financial risk taking) and F4 (impulsivity) but with differing
directions for BART and monetary gambles. The negative
associations between NAcc, AIns, and ACC activation in
monetary gambles and the proportion of Accept decisions
(within task) as well as F2 (out of task) may point toward
the monetary aspect of both outcome variables as a potential
mechanism, yet we did not observe similar associations with
F7 (choices in monetary lotteries). In turn, the negative
association between F4 and BART AIns activation follows
research highlighting the role of the AIns for incentivized
inhibition (Leong et al., 2018), yet at the same time underlines the
role of the task considering that we found no association between
AIns activation in monetary gambles and F4. To the extent that
the BART assesses impulsive risk taking, and description-based
gambles tap more into reflective risk taking (Pletzer and Ortner,
2016), these findings provide informative starting points for
future research on phenotypes with strong links to impulsivity,
such as addiction (Verdejo-García et al., 2008).

Our study has some limitations worth addressing. First, we
analyzed data from two fMRI tasks as prototypical examples of
experienced and described risk, limiting generalization. However,
research suggests that other risk-taking measures do not fare
much better regarding behavioral consistency (Frey et al., 2017),
thus would probably not yield higher convergence at group
or individual level. Implementing additional measures based
on experienced (Bechara et al., 1994; Figner et al., 2009) and
described risk (Holt and Laury, 2002) could nevertheless address
questions such as whether the convergence of measures is
overall higher for experienced or described risk and within the
respective classes of experienced versus described risk. On a
related note, implementations of decision-theoretic models of
risky choice do not fare much better with regard to convergence
of computationally derived parameters (Pedroni et al., 2017);
thus, we do not expect the overall pattern of results to be
substantially different for latent performance-related outcome
variables instead of the simpler behavioral indices used here for
BART and monetary gambles.

Second, our results do not speak to the neural correlates of
specific decision components or motivational factors, including
reward, uncertainty, variance, or probability (of incurring a
loss). In part, this is a limitation for contrast analyses that
average activation over particular events (e.g., Pump or Accept
decisions), and one way to disentangle different components is
to use parametric analyses that map neural activation to specific
functional forms, such as increases in reward or probability
of loss. However, standard implementations of the BART, such
as the one used here and elsewhere (Schonberg et al., 2012;
Helfinstein et al., 2014; Braams et al., 2015), do not allow for
the isolation of these signals even with parametric analyses
because reward and probability of loss increase monotonically
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over a given trial, that is, many individually contributing
decision components are confounded. However, it should also
be noted that reward and the probability of loss are correlated
in many real-world domains (Pleskac and Hertwig, 2014).
Similarly, the current implementation of monetary gambles,
although following on from previous studies (Tom et al., 2007;
Barkley-Levenson et al., 2013), is unsuitable for investigating
the effect of probability (because this was kept constant across
trials) or dissecting the effects of choice-motivating aspects
such as variance, expected value, gains, and losses (because
these are confounded). Whether disentangling and comparing
specific choice-related components (e.g., value, probability of
loss) achieves a more successful mapping of the neural correlates
of risk taking between different measures, and also whether
this would result in successful out-of-measure brain–behavior
associations, is an empirical question.

A third and related limitation stems from the temporal
characteristics of the two measures used. The current
implementations do not allow us to incontrovertibly dissociate
different decision stages, such as the separation of reward
anticipation and decision. Previous studies have focused
predominantly on neural signals associated with the anticipation
of rewards, showing the signal’s potential for prediction (Büchel
et al., 2017; Courtney et al., 2018; MacNiven et al., 2018; Krönke
et al., 2020). However, other studies have focused on the neural
signal associated with actual choice or receipt of an outcome,
also showing potential of the signal for explaining individual
differences in risk and ambiguity preferences (Blankenstein et al.,
2018). Returning to the point of understanding our measures
better, it would be exceptionally useful to make more principled
decisions about which measure to use and which decision stage
for a given measure isolates the most informative neural signal
for brain–behavior associations.

Fourthly, our design is prey to order effects because we
opted for a fixed task order. Randomization would have required
splitting the sample into two groups based on order, thus
reducing power; however, risky choice was relatively consistent
across the two runs for each measure, plus the overall level of
observed risk taking in the BART and monetary gambles as
well as group-level neural activation was comparable to previous
independent investigations (Tom et al., 2007; Schonberg et al.,
2012). Taken together, our behavioral and neural results for the
individual measures do not indicate major order effects.

Many longitudinal, clinical, and developmental research
designs focus on risk preference as a critical predictor or outcome,
often aiming to establish links between individual differences in
risk preference and neural function (Moffitt et al., 2011; Braams
et al., 2015; Büchel et al., 2017; Casey et al., 2018). Such endeavors
are undoubtedly commendable and have the scope to be hugely
beneficial for individuals and societies, but it is currently unclear
to what extent previous results vary as a function of the measures
used to operationalize risk taking and indeed what the best
operationalizations are to isolate (neural) targets for prediction.
To be clear, we do not advocate that neural markers have no
predictive validity, in general or for risk preference, neither do
we ignore the complexity of the phenotype under investigation.
We simply wish to highlight the challenges ahead and open
the discourse by empirically comparing two widely and often

interchangeably used risk-taking measures, in particular their
potential for brain–behavior associations.

Based on our results, we make the following recommendation
for future work. First and foremost, we are hopeful that
our findings motivate further research into the nature and
assessment of risk preference, risk-taking behavior, and their
neural underpinnings. We still know comparatively little about
how the brain integrates different aspects of a decision situation
under uncertainty, especially when this is laden with incidental
or contextual variables such as affect or prior experience
(Knutson and Huettel, 2015; Samanez-Larkin and Knutson,
2015). To this end, it may be indispensable to develop novel and
representative behavioral measures (Steiner and Frey, 2020) that
facilitate the disentangling of risk-related cognitive and affective
processes. Second, the assumption of generalizability from group
to individuals is often not backed up by empirical evidence,
posing a threat for individual studies and also research involving
human subjects in general (Fisher et al., 2018). To successfully
target individual differences in risk taking and understand the
biological underpinnings, a switch is required—especially within
neuroscience—from group- to individual-level research (Foulkes
and Blakemore, 2018; Rosenberg et al., 2018) and from single-
to multimeasure research (Poldrack et al., 2018). As a third
and final recommendation, we call for greater transparency
in the reporting of how and why risk-taking measures were
selected for a given research study. This will not only lead to
more principled decisions during the research design stage but
hopefully push the research community toward establishing a
much-needed taxonomy of measures and their core biological
underpinnings. Regrettably, at present, we cannot formally
compare our risk-taking measures because despite promising
attempts to bring order to measurement chaos (Mata et al.,
2011; Poldrack et al., 2011; Frey et al., 2017; Pedroni et al.,
2017; Eisenberg et al., 2019), we still lack a clear understanding
of the data-generating processes involved. At a time when the
reliability and replicability of neuroimaging research has come
under scrutiny (Botvinik-Nezer et al., 2020; Elliott et al., 2020),
tackling these open issues is crucial for the interpretation and
generalizability of studies linking neural correlates with risk-
taking-related developmental trajectories (Moffitt et al., 2011;
Braams et al., 2015; Casey et al., 2018; Rosenbaum et al., 2018)
and clinical outcomes (Büchel et al., 2017; MacNiven et al.,
2018). If the ultimate aim is to help individuals navigate an
uncertain, risk-laden world and make better choices, we first need
to navigate and map the mainly uncharted territory of our risk
preference measures.
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