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Cannabinoids and Cannabis-derived compounds have been receiving especial attention

in the epilepsy research scenario. Pharmacological modulation of endocannabinoid

system’s components, like cannabinoid type 1 receptors (CB1R) and their bindings,

are associated with seizures in preclinical models. CB1R expression and functionality

were altered in humans and preclinical models of seizures. Additionally,Cannabis-derived

compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in

a great variety of animal models. Audiogenic seizures (AS) are induced in genetically

susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the

Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina,

are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic

stimulation induces brainstem-dependent wild running and tonic-clonic seizures.

However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and

cortical structures are recruited, and the initially brainstem-dependent seizures give

rise to limbic seizures. The present study reviewed the effects of pharmacological

modulation of the endocannabinoid system in audiogenic seizure susceptibility and

expression. The effects of Cannabis-derived compounds in audiogenic seizures were

also reviewed, with especial attention to CBD. CB1R activation, as wellCannabis-derived

compounds, induced anticonvulsant effects against audiogenic seizures, but the effects

of cannabinoids modulation and Cannabis-derived compounds still need to be verified

in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived

compounds should be further investigated not only in audiogenic seizures, but also in

epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.
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INTRODUCTION

Epilepsy is a neurological disorder characterized by the presence
of epileptic seizures and their behavioral, physiological, and
social consequences (Fisher et al., 2014; Kanner, 2017). Despite
the great variety of antiepileptic drugs (Löscher, 2017) one
third of patients remain pharmacoresistant and cannot have
their seizures under control with the available pharmacological
treatment (Kwan and Brodie, 2010), indicating that new
therapeutic and pharmacological targets are needed. In that
context, the endocannabinoid system (ES) has been receiving
especial attention in the epilepsy research scenario. The ES
comprises the cannabinoids receptors type 1 (CB1R) and type 2
(CB2R) and their endogenous bindings, the endocannabinoids.
CB1R has been receiving especial attention in epilepsy due
to seizure control in several preclinical models and can also
be modulated by phytocannabinoids (Wallace et al., 2003;
Lutz, 2004; Blair, 2006; Huizenga et al., 2017; Britch et al.,
2020). Moreover, anticonvulsant effects were associated with
Cannabis-derived compounds, especially the cannabidiol (CBD),
reinforcing the role of cannabinoids in epileptic seizures
(Friedman and Devinsky, 2015; Rosenberg et al., 2017; Lazarini-
Lopes et al., 2020b). CBD, a phytocannabinoid present in
Cannabis sp. (Jacob and Todd, 1940; Mechoulam and Shvo,
1963), has receiving especial attention due to its anticonvulsant
properties in animal models of the epilepsies (Jones et al., 2012;
Do Val-da Silva et al., 2017; Lazarini-Lopes et al., 2020b) and
also in humans with pharmacoresistant epilepsy (Press et al.,
2015; Devinsky et al., 2016, 2017). Although CBD anticonvulsant
mechanisms of action seem to be related with a great diversity
of cellular and molecular targets, which include components
of the ES, the possible existence of synergistic effects between
CBD and conventional anticonvulsant drugs may not be ignored
(Mencher and Wang, 2005; Devinsky et al., 2014; Gaston
et al., 2017). Additionally, although CBD has limited effects at
cannabinoids receptors, CBD can modulate CB1R activity by
indirect mechanisms of action (Britch et al., 2020). Therefore, the
ES arise as important endogenous mechanism for seizure control
(Alger, 2004; Hofmann and Frazier, 2013).

Animal models are essential for the development and
screening of new anticonvulsant drugs and to evaluate their
effects on the brain and on behavior (Löscher, 2011, 2017). Since
epilepsies are greatly diverse in etiology, the differences between
seizure induction protocols are extremely important to help
understanding neuronal alterations associated with each type of
seizure induction and, consequently, their clinical applications
(Löscher, 2017). Audiogenic seizures (AS) are induced by
intense sound stimulation (∼100–120 dB) in susceptible animals
and are used to study epilepsies-related mechanisms such as
neuronal pathways and endogenous alterations associated with
seizure susceptibility (Garcia-Cairasco et al., 2017). Audiogenic
susceptible rodent strains are widely used around the world,
beginning with the oldest colony, the Krushinsky-Molodkina
(KM) rats in Russia (Poletaeva et al., 2017), followed by the
Genetically Epilepsy-Prone Rats (GEPR) in the United States
(Reigel et al., 1986; Dailey et al., 1989), the DBA/1 and DBA/2
mice (Jensen et al., 1983; Faingold et al., 2010), the Wistar

Audiogenic Rat (WAR) in Brazil (Doretto et al., 2003; Garcia-
Cairasco et al., 2017), among others (Ross and Coleman, 2000).

Acute AS are considered a model of generalized tonic-clonic
seizures, with seizures characterized by an initial wild running
phase with jumping and atonic falls followed by tonic or tonic-
clonic seizures (Faingold, 1988; Terra and Garcia-Cairasco,
1992; Garcia-Cairasco et al., 1996, 2017; Ross and Coleman,
2000). However, when animals are chronically exposed to the
AS protocol, called Audiogenic Kindling (AuK) (Marescaux
et al., 1987), some audiogenic susceptible animals develop limbic
seizures, characterized by the appearance of new behaviors such
as facial and forelimb clonus, usually followed by elevation
and falling (Naritoku et al., 1992; Garcia-Cairasco et al., 1996),
similar to those described by Racine’s scale (Racine, 1972). While
brainstem sensory motor structures are primarily involved in
the acute AS expression (Faingold, 1988; Terra and Garcia-
Cairasco, 1992), cortical and limbic structures are associated with
behavioral, EEG, and histological alterations during the AuK,
indicating an expansion of the initially brainstem-dependent
seizure networks to limbic regions and networks (Marescaux
et al., 1987; Naritoku et al., 1992; Garcia-Cairasco et al., 1996;
Moraes et al., 2000; Galvis-Alonso et al., 2004). Therefore, the
AuK is as a model of temporal lobe recruitment and consequently
of temporal lobe epilepsy (Moraes et al., 2000; Romcy-Pereira
and Garcia-Cairasco, 2003). Other quite important characteristic
is that genetic and chronic models, like susceptible strains and
the AuK, can be used also to study the comorbidities, usually
from neuropsychiatric origin, associated with epilepsies (Garcia-
Cairasco et al., 2017).

Therefore, the purpose of the present study was to review the
neuronal networks associated with AS expression. Additionally,
we reviewed the effects of ES modulation and Cannabis-derived
compounds in AS. We discussed cannabinoids modulation in AS
neuronal pathways and the future perspectives of cannabinoids
in AS and comorbidities.

NEURONAL NETWORKS INVOLVED IN
AUDIOGENIC SEIZURES

Since AS are evoked by a high-intensity acoustic stimulus,
the primary auditory pathway has been the first cluster of
structures to be evaluated in audiogenic susceptible rodent
strains. In this context, several research groups have detected
peripheral alterations associated with AS susceptibility, such as
hearing loss (Saunders et al., 1972; Glenn et al., 1980; Faingold
et al., 1990), unbalance between GABAergic and Glutamatergic
neurotransmissions between the inner hair cells and the cochlear
nerve (Altschuler et al., 1989; Bobbin et al., 1990; Lefebvre
et al., 1991), and tinnitus followed by intensity sound exposure
(Heffner and Harrington, 2002; Chen et al., 2013). Similarly,
anatomical and morphological alterations in the organ of Corti
and in the inner and outer hair cells of the GEPRs have already
been observed (Penny et al., 1983, 1986). However, despite the
importance of peripheral alterations in the onset of AS, the
present review will focus on brain sites involved on the onset,
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maintenance, and expression of AS, specifically in the brainstem
(acute AS) and limbic areas (AuK).

Brainstem Structures Critical for Acute
Audiogenic Seizure Expression
Inferior Colliculus
It is widely accepted that inferior colliculus (IC) circuits play a
pivotal role in the genesis and maintenance of sound-induced
seizures (Garcia-Cairasco, 2002; Coleman et al., 2017; Ribak,
2017). The IC anatomy in the rat presents a structure similar
to the human IC (Faye-Lund and Osen, 1985) and it is usually
divided into the central nucleus, dorsal cortex, and external
cortex (Faye-Lund and Osen, 1985; Coleman and Clerici, 1987).
The central nucleus of the IC is the largest division of the
IC, sends glutamatergic projections to both external cortex and
dorsal cortex of the IC, and receives projections from the dorsal
cortex (Coleman and Clerici, 1987; Saint Marie, 1996).

Glutamate is the main excitatory neurotransmitter into the IC
and it is also implicated in the expression of AS (Faingold, 2002).
Using WARs, Terra and Garcia-Cairasco (1994) showed that
AP-7 administration into de central nucleus of the IC or intra-
dorsal cortex of the IC, blocked or attenuated (wild runnings were
still present) AS, respectively. Therefore, these intracollicular
pathways may contribute to seizure propagation through its
known glutamatergic connections between the external cortex of
the IC and motor areas (Caicedo and Herbert, 1993; Saint Marie,
1996).

By contrast, intracollicular and extracollicular pathways are
mostly modulated by GABAergic signaling (Faingold, 2002;
Ribak, 2017). Therefore, deficits in GABA-mediated inhibition
may be a critical mechanism associated with AS susceptibility,
since a reduction in GABAergic neurotransmission in the IC was
shown to facilitate neuronal firing in response to high acoustic
stimuli and trigger AS (Faingold et al., 1986; Faingold, 2002).

Administration of GABA agonists into the central nucleus
of the IC blocked AS expression in GEPRs and similar results
were observed after pharmacological manipulations capable
of increasing endogenous GABA signaling (Faingold, 2002).
Administration of GABA agonists into the central nucleus of
the IC blocked AS expression and the same was observed
when endogenous GABA was increased in GEPRs (Faingold,
2002). Curiously, the number of GABAergic cells and the
labeling of GABA synthetic enzymes are higher in GEPRs than
in their Sprague-Dawley controls (Roberts et al., 1985; Ribak,
2017). However, in spite of the increased expression of all of
these GABAergic biomarkers, there is a paradoxical decreased
effectiveness of GABA-mediated inhibition in the IC of GEPRs
(Faingold et al., 1986). Furthermore, inhibition of GABAergic
neurotransmission into the IC observed in tissue slices of GEPRs
(Evans et al., 2006) is thought to be the clue alteration in the
triggering of AS in these animals (Faingold, 2012). Interestingly,
GABA synthesis was increased in IC of KM rats, whereas GABA
levels were not different from non-susceptible rats (Solius et al.,
2016). It is worth to note that pharmacological activation of CB1R
increased IC neuronal output, probably by activation of CB1R in
GABAergic pre-synaptic terminals (Valdés-Baizabal et al., 2017).

These results suggest that CB1R in the IC could play an important
role on AS susceptibility.

Superior Colliculus
The superior colliculus (SC) is the most important non-auditory
IC target (output) (Faingold, 2012). Interconnections between
the external cortex of the IC and the deep layers of the
superior colliculus (DLSC) seem to play an important role on AS
generation and propagation (Coleman and Clerici, 1987; García
del Caño et al., 2006). Since DLSC projects directly and indirectly
to the spinal cord and to brainstem motor areas, such as the
reticular formation (Masino and Knudsen, 1992; King et al.,
1996; May, 2005), excessive activity in this network may lead to
AS propagation.

Electrophysiological recordings in freely moving GEPR-9s
showed increased tonic firing of DLSC neurons just prior and
during the wild running, but not during the tonic behavior
(Faingold and Randall, 1999). The role of DLSC in AS
manifestations has already been demonstrated in WARs through
their mesencephalic pathways. Midcollicular transections (knife
cuts between IC and SC) blocked tonic-clonic seizures (Tsutsui
et al., 1992) in WARs. Similar effects were also confirmed by
Ribak et al. (1994) in GEPR-9s. Likewise, bilateral transections
separating DLSC and substantia nigra pars reticulata (SNr)
abolished tonic-clonic seizures and also attenuated wild running
behaviors (Doretto et al., 2009). Browning et al. (1999) confirmed
similar effects after pre-collicular transections in both GEPR
substrains, GEPR-3s and GEPR-9s. Similarly, electrolytic lesions
of the DLSC (but not dorsal SC) decreased AS severity in GEPRs
(Merrill et al., 2003) and abolished all seizure behaviors in DBA/2
audiogenic mice (Willott and Lu, 1980).

Additionally, optogenetic activation of DLSC neurons
attenuated seizures in several animal models, including AS in
GEPR−3s (Soper et al., 2016). The activation of neurons in the
DLSC is considered to be part of an endogenous seizure control
system with origin in neurons from SNr (Gale et al., 1993; Soper
et al., 2016). According to this idea, the activation of neurons
from DLSC will lead to the desynchronization of epileptic brain
networks (Dean et al., 1991; Soper et al., 2016). For this reasons,
optogenetic stimulation of specific neurons or projections
into the SC are considered an important approach to better
understanding the role of the SC in AS, although the role of
specific neuronal projections from SC still needs to be assessed.

Periaqueductal Gray Matter
Although the periaqueductal gray matter (PAG) is classically
involved in emotional-related behaviors, such as fear, anxiety and
panic-like behaviors (Bueno et al., 2005; Brandão et al., 2008;
Deng et al., 2016), the involvement of PAG with the motor AS
expression comes from findings that PAG blockade inhibits AS,
more specifically the tonic and clonic behaviors, in GEPR-9s
(N’Gouemo and Faingold, 1998).

Differences in the PAG neuronal firing pattern were observed
in GEPRs. PAG neuronal activity increased just before the onset
of the wild running, but the most remarkable neuronal tonic
firing pattern was observed just prior and during the tonic
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behavior, but this neuronal pattern disappeared when the post-
ictal depression began (N’Gouemo and Faingold, 1998). Also,
the blockade of NMDA receptors or GABAA activation into the
PAG were both capable of suppressing AS in GEPRs, with a
most potent effect associated with NMDA blockade (N’Gouemo
and Faingold, 1999). In the same line, Yang et al. (2003) showed
that intra-PAG AP-7 administration attenuated AS induced by
ethanol withdrawal in Sprague-Dawley rats.

Classically, it has been accepted that PAG receives projections
from neurons of the DLSC (King et al., 1996; Faingold et al.,
2014) and projects to the sites of initiation of the motor
responses associated with fight or flight reactions (Brandão
et al., 1999). Additionally, there are direct and indirect (through
BRF) connections between PAG and spinal cord motor neurons
(Mouton and Holstege, 1994; Bajic and Proudfit, 1999) that may
also contribute to AS expression. Additionally, a recent study
showed that IC neurons project directly to PAG and, when
optogenetically activated, triggered a sound-mediated escape
response (Xiong et al., 2015). Similarly, PAG might be important
not only in the acute AS, but in the kindled AS (AuK protocol). In
this respect, Tupal and Faingold (2012) showed that the electrical
stimulation of central nucleus of the amygdala induces intensity-
dependent firing in the PAG of GEPR-9s. Additionally, GEPR-
9s submitted to AuK present increased responsiveness of PAG
neurons to electrical stimulation of the amygdala when compared
to control GEPR-9s (Tupal and Faingold, 2012).

Brainstem Reticular Formation
Wada’s group demonstrated for the first time the role of BRF in
seizures using amygdala kindled cats, where electrolytic lesions
into the BRF attenuated amygdaloid seizures and these effects
were not dependent on forebrain sites (Wada and Sato, 1975).

Sprague-Dawley rats submitted to ethanol withdrawal
presented increased AS susceptibility and increased spontaneous
neuronal firing in the BRF, as well as increased sound-evoked
activity in neurons from the same structure (Faingold and Riaz,
1994). Moreover, there is an increase in neuronal firing into
the pontine nucleus of the BRF, once the AS begins and an
additional increase simultaneously with the onset of the tonic
seizure, that remained until the end of the tonic hind limb
extension (Faingold and Randall, 1995). These data suggested
that pathological conditions, like ethanol withdrawal, may
induce physiological changes in the BRF, which in turn, facilitate
AS expression.

Both systemic and intra-BRF NMDA antagonist
administration blocked AS during ethanol withdrawal.
Moreover, the increase in BRF excitatory activity was capable of
inducing AS-like behaviors in previously non-susceptible rats
treated with NMDA. These effects were dose-dependent, with
lower dose inducing wild running behaviors and higher dose
inducing wild running and generalized tonic-clonic seizures,
in both cases sound-independent set of behaviors. Moreover,
sound stimulation was also capable of inducing AS with wild
running and generalized tonic-clonic behaviors in these animals
(Ishimoto et al., 2000). In susceptible GEPR-3s, NMDA infusion
into the BRF was capable of inducing seizures without the
presence of acoustic stimulation (Faingold et al., 1989). On

the other hand, blockade of NMDA receptors into the BRF
induced a decrease in AS severity in GEPRs (Millan et al., 1988).
Additionally, increased glutamate levels into the BRF had been
previously observed during the tonic phase of AS in GEPRs
(Chapman et al., 1986).

These data, therefore, suggest that excitatory connections
between IC and BRF (Browning, 1986; Caicedo and Herbert,
1993; Riaz and Faingold, 1994) and between BRF and spinal cord
(Jones and Yang, 1985) should be important efferent neuronal
pathways for motor manifestation of AS (Garcia-Cairasco, 2002;
Faingold et al., 2014).

Substantia Nigra
During the 80’s, Karen Gale’s group proposed that GABAergic
neurotransmission into SNr should be part of what they called as
an endogenous anticonvulsant system (Iadarola and Gale, 1982;
Maggio and Gale, 1989). These authors proposed that a decrease
in the inhibitory tonus from the SNr to the midbrain tectum
might enhance seizure susceptibility.

Following up on those proposals, a series of experiments
in control Wistar rats gave support to that hypothesis.
Electrolytic lesions in the SNr increased AS susceptibility
in Wistar rats, without any modification on locomotion,
exploratory activity or grooming behaviors (Garcia Cairasco
and Sabbatini, 1983; Garcia-Cairasco and Sabbatini, 1991;
Garcia-Cairasco and Triviño-Santos, 1989). Nonetheless, the
same SNr electrolytic lesion did not induce any alterations
in AS displayed by WARs (Doretto and Garcia-Cairasco,
1995). However, neuroethological analysis based upon detailed
behavioral descriptions, demonstrated changes in the behavioral
structural sequence of tonic-clonic seizures in SNr-lesioned
WARs. Behavioral components were present no more in a
defined pattern, but randomly and fragmented, indicating that
GABAergic signaling from SNr should play an important
role in temporal and spatial motor integration during AS
(Garcia Cairasco and Sabbatini, 1983; Doretto and Garcia-
Cairasco, 1995). Curiously, it was observed that GEPRs present a
disruption in the nigral GABAergic signaling, detected as a failure
to release GABA from SNr, when animals were stimulated with
KCl in a depolarizing protocol with microdialysis membranes
into SNr (Doretto et al., 1994). These GABAergic deficits could be
an explanation for the lack of seizure behavioral alteration in SNr-
lesionedWARs, but, at the same time, it explains and strengthens
the view that lesioned normalWistar ratsmay become susceptible
to AS (Garcia Cairasco and Sabbatini, 1983; Doretto and Garcia-
Cairasco, 1995).

In ethanol withdrawal-induced AS, muscimol, a selective
GABAA agonist, applied intra-SNr reduced seizure severity
during themost critical period of hyperexcitability (Gonzalez and
Hettinger, 1984). Also, pharmacological activation of GABAA

receptors into SNr was capable of blocking AS induced by IC
bicuculline injections (Terra and Garcia-Cairasco, 1992) and
decreased spontaneous spike-wave discharges duration in a
model of absence seizure (Depaulis et al., 1988). Conversely,
specific lesions in dopaminergic neurons of the substantia nigra
compacta (SNc) with the 6-OHDA toxin, an experimental model
of Parkinson (Schober, 2004), did not produce AS sensitivity in
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resistant animals, suggesting that changes in AS susceptibility are
associated with GABAergic neurons, mostly present into the SNr.

SNr projects to IC (Olazábal andMoore, 1989) and SC (Appell
and Behan, 1990), regulating efferent seizure pathways (Gale,
1992). Additionally, modulation of SC by SNr may involve the
neostriatum activity, which sends the main GABAergic input
to SNr (Nisenbaum et al., 1992). Therefore, increasing GABA
activity in the SNr is believed to be pro-convulsant because the
resulting reduction of GABAergic neurotransmission into SNr-
SC pathway facilitates output from SC to motor structures, such
as the BRF, which may lead to seizure expression.

The findings on the so-called endogenous anticonvulsant
system were supported by optogenetic inhibition of the
nigrotectal terminals into the DLSC, attenuating AS in GEPR-
3s. Light delivery increased the latency to the onset of AS and
decreased their duration and severity in GEPR-3s (Wicker et al.,
2019). These results can be explained by a decrease of GABAergic
neurotransmission from SNr to the SC and are in agreement with
Soper et al. (2016), who showed attenuation of AS associated
with optogenetic activation of the DLSC and it is in line with the
activation of SC as capable of desynchronizing cortical activity
(Dean et al., 1991). In spite of this highly coherent group of
studies and results, specific neurons and projections associated
with the mentioned anticonvulsant effects still need to be verified
in vitro and in vivo.

Chronic Audiogenic Seizures and
Neuroplastic Effects in Neuronal Networks
The repetitive audiogenic stimulus, or AuK, results in behavioral,
EEG, and histological alterations in forebrain structures, such
as amygdala, hippocampus, and cortex, indicating limbic
recruitment (Marescaux et al., 1987; Naritoku et al., 1992; Moraes
et al., 2000; Vinogradova, 2017). Marescaux et al. (1987) did
behavioral observations and cortical (surface) EEG recordings
in Wistar rats and proposed the term “kindling,” analogous
with the limbic seizures protocols published by Goddard (1967)
and Goddard et al. (1969). Naritoku et al. (1992) confirmed
similar results in both GEPRs substrains: GEPR-3s and GEPR-
9s, moderate and severe AS, respectively. Similar protocols and
studies with quantitative behavioral methods of the evolution of
AuK were made in WARs (Garcia-Cairasco et al., 1996; Galvis-
Alonso et al., 2004).

The neuroanatomical and functional interaction between
midbrain auditory and forebrain limbic systems can be
particularly well-observed during the AuK. Local changes in the
IC circuits can lead to increased collicular outputs to the limbic
system, causing the seizure spread. Coupled video-EEG allowed
a detailed characterization of the progression of synchronized
behavior and electrophysiology with EEG recording from IC
(brainstem) to hippocampus, amygdala and cortex (Moraes et al.,
2000; Romcy-Pereira and Garcia-Cairasco, 2003). Furthermore,
it was reported an increase in the firing rate of neurons from
the central nucleus of the IC of GEPR-9s before the appearance
of generalized post-tonic clonus during the AuK (N’Gouemo
and Faingold, 1996). Neurons from the central nucleus of the
IC project to the medial geniculate nucleus of the thalamus

(MGN), as part of the primary auditory system, where they
make synapsis with neurons projecting to the auditory cortex,
amygdala and the hippocampus (Ledoux et al., 1985; Clugnet
and LeDoux, 1990). Indeed, the amygdala and the hippocampus
are the major limbic structures that receive the output from the
brainstem central auditory system (Kraus and Canlon, 2012).
These structures, more remarkably the amygdala, are associated
with emotional context and sensorial perception, including
sound stimuli (LeDoux, 2007; Kraus and Canlon, 2012).

As a clear evidence of the activation of prosencephalic
structures, Simler et al. (1999) demonstrated increase c-Fos
expression directly related with AuK progression: from the
auditory brainstem to amygdala and perirhinal cortex, then
to the frontoparietal cortex, and finally to the hippocampus
and the entorhinal cortex. Simultaneous EEG recordings of IC,
amygdala and auditory cortex were analyzed in WARs during
AuK and it was observed that the epileptiform activity in the
IC increases as AuK progresses and limbic seizures start to
co-exist with brainstem seizures (Garcia-Cairasco et al., 1996;
Moraes et al., 2000). Altogether, these data indicate that the
progression of seizures during AuK may not be the linear
expression of a simple system, but rather a complex expression
of a bi-directional interaction between limbic and brainstem
circuits. This is absolutely clear from the observation of a
mirror (opposite) image of the decrease of brainstem-dependent
seizure severity index, as soon as the AuK progress, and the
increase (from zero) of the limbic-dependent seizure severity
index (Garcia-Cairasco et al., 1996; Moraes et al., 2000; Rossetti
et al., 2006).

Differences in hippocampus activity have been reported in
audiogenic rodent strains. GABAergic currents in pyramidal
neurons from CA1 of WARs are less frequent and have
faster kinetics, indicating that some particular populations of
interneurons might be absent in WARs (Cunha et al., 2018b).
Moreover, during chronic high-intensity sound stimulation it
was observed an impairment in the long-term potentiation (LTP)
in non-susceptible (resistant) Wistars, but not in WARs (Cunha
et al., 2015). Additionally, a decrease in the hyperpolarization
activated cationic current (Ih) was observed in resistant animals,
indicating that auditory inputs to the hippocampus might lead
to compensatory homeostatic and long-term synaptic plasticity,
which could be blocking the hyperexcitability of auditory
pathways to the hippocampus of seizure resistant animals (Cunha
et al., 2018a). In contrast, Evans et al. (1994) found different
results using hippocampal slices of GEPR-9s. According to
these authors, animals showed single excitatory post-synaptic
potentials similarly to their control strain. However, when
submitted to AuK GEPRs exhibited a more pronounced synaptic
facilitation indicating that short-term potentiation is enhanced in
the hippocampus of these animals (Evans et al., 1994).

ENDOCANNABINOID SYSTEM AND CB1R
IN AUDIOGENIC SEIZURES NETWORK

The ES is classically composed by endogenous receptors, CB1R
and CB2R (Matsuda et al., 1990; Munro et al., 1993), and their
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endogenous ligands, anandamide, and 2-arachydonil glycerol
(Devane et al., 1992; Mechoulam et al., 1995; Sugiura et al.,
1995). It is widely accepted that the ES modulates neuronal
activity through its retrograde action based “on-demand”
endocannabinoid synthesis and release (Lutz, 2004; Alger and
Kim, 2011; Castillo et al., 2012; Fitzgerald et al., 2012). However,
before discussing the role of the ESmodulation on seizure control
in audiogenic models, it is worth to note how these cannabinoids
receptors are distributed on the brain, especially on structures
important to AS expression.

Autoradiography assays were used to assess CB1R distribution
in several brain structures (Herkenham et al., 1990, 1991).
The most intense binding was observed in the cerebellum and
forebrain structures, such as several cortical and hippocampal
areas. The frontal cortex presented the greater density of
CB1R compared to other cortical regions, while the dorsal
hippocampus seems to present more CB1R than the ventral
hippocampus. The amygdaloid complex presented a moderate
binding, with exception of the central nucleus that showed the
lowest CB1R levels. Brainstem structures, like PAG, BRF, SC, IC,
and hypothalamus presented lower levels of CB1R and sparse
binding when compared to the forebrain. Like in brainstem
structures, the spinal cord showed sparse binding, specifically in
the dorsal horn. It is worth to note that the SNr, but not the SNc,
showed the highest density levels of CB1R in the entire rat brain
(Herkenham et al., 1990, 1991). Similar expression patterns were
observed in others species of mammals, such as dogs, Rhesus
monkeys, and humans (Herkenham et al., 1990).

Tsou et al. (1998) used immunohistochemical analysis to
assess CB1R distribution in the rat brain. These authors showed
CB1R in axons, dendrites, and in soma of neurons in several brain
structures. Intense and widely CB1R distribution were detected
in forebrain structures, such as cortical areas, as well as in
amygdala, and hippocampal formation, although very restricted
immunostaining were present in the brainstem, in structures like
the PAG and SC. Additionally, the SNr presented a very intense
immunostaining (Tsou et al., 1998), confirming those previous
results observed by Herkenham’s research group.

Changes in CB1R expression and functionality have already
been detected in animal models of epileptic seizures and in
humans with chronic seizures (Maglóczky et al., 2010; Karlócai
et al., 2011; Rocha et al., 2020). Goffin et al. (2011) assessed
CB1R expression in tissue from humans with TLE and observed
increased CB1R receptors expression in the seizure onset
area, while CB1R expression was decreased in other areas,
like the insular cortex, suggesting that different alterations
in cannabinoid receptors expression could be associated with
seizures expression and brain hyperexcitability (Goffin et al.,
2011). However, data of CB1R expression in audiogenic strains
are scarce. Increased CB1R expression was observed in the
inner molecular layer of WARs, when compared to control
Wistars. Additionally, in WARs, acute and chronic AS increased
CB1R expression in several hippocampal layers and in specific
amygdala subnuclei, the basolateral, lateral, and basomedial
nuclei. Acute AS also induced changes in CB1R in the central
and medial amygdala nuclei. Moreover, it is worth to note
that, changes in CB1R expression in lateral, basolateral, and

basomedial amygdala nuclei were correlated with limbic seizure
severity during the AuK (Lazarini-Lopes et al., 2020a). See
Figure 1 for a representative view of CB1R expression in limbic
and cortical structures of audiogenic susceptible rats from the
WAR strain.

Wistar Albino rats from Rijswijk (WAG/Rij strain) develop
absence seizures along their life (van Luijtelaar and Coenen,
1986; van Luijtelaar and Sitnikova, 2006) and a subpopulation
of WAG/Rij rats can also develop AS with limbic recruitment
during the AuK (Vinogradova, 2008). These animals present
endogenous alterations in the ES, like reduced CB1R mRNA,
demonstrated by in situ hybridization, in the hippocampus
and thalamic nuclei, brain regions associated with the genesis
of absence seizures (Van Rijn et al., 2010). Therefore, further
characterization of CB1R expression and functionality in
brainstem and limbic sites in audiogenic WAG/Rij rats can bring
important information regarding the susceptibility to AS in the
WAG/Rij subpopulation.

Pharmacological CB1R activation in the intermediate layers
of SC induced a robust turning behavior, these effects may
be associated with modulation of GABAergic input from SNr
to SC (Sañudo-Peña et al., 2000). In the SNr, CB1R are
located in presynaptic terminals from the striatonigral pathways,
they modulate GABA release from the nigrotectal GABAergic
projections (Wallmichrath and Szabo, 2002), which may play
an important role on seizure propagation and expression
(Iadarola and Gale, 1982; Gale, 1986). Miller and Walker
(1995) explored how the ES modulates SNr activity. WIN
55,212-2, systemically administered in normal Sprague-Dawley
rats increased spontaneous firing rate in neurons from the
SNr. In addition, WIN 55,212-2 also attenuated the inhibition
of neuronal firing in the SNr induced by striatum electrical
stimulation. In the same study, bicuculline antagonized the
effects of striatum stimulation, suggesting that WIN 55,212-
2 effects on SNr activity were dependent on GABAergic
neurotransmission (Miller and Walker, 1995), although specific
neurons and projections associated with these effects still need
to be verified. Therefore, the GABAergic signaling from SNr
to mesencephalic tectum may be, somehow, enhanced by
cannabinoids administration, increasing the inhibitory tonus
generated by this endogenous anticonvulsant system. Although,
this hypothesis still needs to be further elucidated, measuring
GABA release and also CB1R activity in the SNr.

Based on these previous evidences, we proposed a schematic
representation of how brainstem and forebrain structures with
different distribution of CB1R might modulate AS susceptibility
and expression (Figure 2).

ENDOCANNABINOID SYSTEM
MODULATION IN AUDIOGENIC SEIZURES

Although cannabinoids induce modulation have already been
shown as capable of epileptic seizures in several animal models
(Rosenberg et al., 2017; Lazarini-Lopes et al., 2020b), studies
evaluating the role of the ES on AS experimental models are still
scarce. See Table 1 for main results from the literature.
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FIGURE 1 | Representative CB1R immunostaining in limbic and cortical brain

structures of Wistar Audiogenic Rats (WAR). It is possible to observe the

increased CB1R immunostaining in limbic (hippocampus and amygdala) and

cortical areas of WARs after acute audiogenic seizures (WAR AS) and chronic

audiogenic seizures (WAR AuK). Wistar represents a control non-audiogenic

strain. Image obtained from Lazarini-Lopes et al. (2020a).

Vinogradova et al. (2011) showed that acute and chronic
treatment with SR141716, a CB1R antagonist, presented pro-
epileptic effects in audiogenic Wistar rats and facilitated the
AuK progression. These authors reported that acute treatment
with SR141716 in susceptible rats increased AS duration and
severity and induced the appearance of limbic seizures behaviors.
Interestingly, the treatment with the CB1R antagonist did not
modify AS susceptibility in normal rats, but in susceptible
animals that developed resistance to AS, the seizures reappeared
after SR141716 administration (Vinogradova et al., 2011). It is
worth to notice that similar results were observed in a patient
that was free of seizures for more than 20 years, but after
administration of CB1R antagonist for obesity treatment the
seizures reappeared. In that case, when the CB1R antagonist
treatment was interrupted, the seizures disappeared (Braakham
et al., 2009).

Conversely, a single administration of WIN 55,212-2, a CB1R
agonist, presented long-term, but not acute effects, against
AS, increasing the latency to the onset of post-tonic clonus
in KM rats (Vinogradova and Van Rijn, 2015). Moreover,
pharmacological treatments with different cannabinoid receptors

agonists were capable of attenuating AS in DBA/2 mice,
reducing wild running, clonus, and tonus behaviors. These
anticonvulsant effects were blocked by previous administration
of NIDA-41020, a selective CB1R antagonist (Citraro et al.,
2016). Additionally, these authors also demonstrated that
when ineffective doses of cannabinoid receptors agonists were
co-administered with classical anticonvulsant drugs, such as
carbamazepine, gabapentin, phenobarbital, and valproate, the
anticonvulsant effects of all these drugs were potentiated (Citraro
et al., 2016). In GEPR-3s, systemic administration of WIN
55,212-2, was effective against AS, suppressing seizures in 9/10
animals and attenuating seizure severity in 1/10 rats. Similarly,
central administration of CP 55940, a CB1/2 agonist, directly into
the DLSC of GEPR-3s, suppressed seizures in 6/9 rats, reduced
seizure severity in 2/9, and had no effect in 1/9. Additionally,
intra-DLSC administration of SR141716 did not modify AS in
control GEPRs and did not antagonize the anticonvulsant effects
induced by systemic WIN 55,212-2 (Santos et al., 2020). Also
using GEPRs, Samineni et al. (2011) showed that central injection
of AM251, a CB1R antagonist, directly into the ventrolateral
PAG, attenuated post-ictal analgesia in GEPR-9s. These data
suggest that AS results in increased endocannabinoid levels in
the PAG, which maymediate post-ictal analgesia (Samineni et al.,
2011). Since the last study did not look at seizure expression
after CB1R modulation, it should be interesting to assess the
role of CB1R from PAG in AS expression in GEPRs and other
audiogenic strains.

Using the Fmr1 knockout mice to mimic the fragile X
syndrome, authors observed that pharmacological blockade of
CB1R rescued several pathological alterations, including the
increased susceptibility to AS. Additionally, blockade of CB2R
also induced anxiolytic behavior in the elevated plus maze
(Busquets-Garcia et al., 2013). In the WAG/Rij strain, a model
of absence seizures with a subpopulation also susceptible to AS,
systemic administration of WIN 55,212-2 reduced the number
of spontaneous spike-wave discharges, but increased seizure
duration, in WAG/Rijs, whereas administration of AM251
attenuated the effects of CB1R activation (Van Rijn et al., 2010).
Reduced number and duration of spike-wave discharges were
observed after central (intra-thalamic nucleus) anandamide or
WIN 55,212-2 administration (Citraro et al., 2013). However,
it is unclear if the pharmacological modulation of CB1R, or
endocannabinoids, can attenuate AS in the WAG/Rij strain and
the exploration of this research field, assessing acute and chronic
AS in WAG/Rij rats, can bring important information and
insights about ES functionality in two different types of seizures
(absence and audiogenic) in the same strain.

CANNABIS-DERIVED COMPOUNDS IN
AUDIOGENIC SEIZURES

After 40 years of the demonstration of CBD as anticonvulsant
in humans (Cunha et al., 1980), the interest in medical
Cannabis-derived compounds, especially CBD, has substantially
increased, as an alternative treatment for pharmacoresistant
epilepsy (Porter and Jacobson, 2013; Press et al., 2015; Devinsky
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FIGURE 2 | Cannabinoid receptors type 1 (CB1R) in neuronal networks associated with acute and chronic audiogenic seizures. The inferior colliculus is the main

brainstem structure related to sound perception and plays a key role in the genesis of audiogenic seizures. Inferior colliculus projects to different brainstem areas, like

superior colliculus, periaqueductal gray matter, and brainstem reticular formation. This brainstem neuronal network is crucial to acute audiogenic seizures

manifestation, that are behaviorally characterized by wild running followed by tonic-clonic seizures. The substantia nigra pars reticulata sends GABAergic projections

to the mesencephalic tectum. This inhibitory projection is involved with the so-called endogenous anticonvulsant system. During the audiogenic kindling protocol, the

chronic seizures, and the epileptogenic events lead to forebrain/limbic recruitment. The limbic recruitment during the chronic seizures involves projections from inferior

colliculus to medial geniculate nucleus and then to the dorsal hippocampus and basolateral amygdala nucleus. This brainstem-limbic network is crucial to limbic

motor seizures expression during the audiogenic kindling. Spinal cord neurons receive inputs from central neuronal networks and lead to audiogenic seizures’ motor

manifestation. The intensity of green color represents the amount of CB1R in each structure. Therefore, the endocannabinoid system is directly associated with

brainstem and limbic neuronal networks responsible for tonic-clonic and limbic audiogenic seizures manifestation. IC, inferior colliculus; SC, superior colliculus; PAG,

periaqueductal gray matter; BRF, brainstem reticular formation; SNr, substantia nigra pars reticulata; MGN, medial geniculate body; DH, dorsal hippocampus; AMG,

amygdaloid complex (basolateral amygdala nucleus, BLA). Red arrows represent inhibitory projections, blue arrows represent excitatory projections.

et al., 2016, 2017). In 2018, the United States Food and Drug
Administration (FDA) approved its first Cannabis-derived drug,
the Epidiolex, a highly purified CBD oil solution (Corroon and
Kight, 2018). This compound presents important therapeutic
effect, especially in treatment-resistant epilepsy (Devinsky et al.,
2018; Hausman-Kedem et al., 2018). However, although some
studies have already demonstrated significant effects of Epidiolex
against seizures, longitudinal studies to investigate long-term
efficacy and safety are necessary, especially to assess its effects on
cognitive and hormonal functions after chronic administration
(Sekar and Pack, 2019).

In the basic research, CBD exerts not only anticonvulsant
effects (Gobira et al., 2015; Kaplan et al., 2017; Klein et al.,
2017; Lazarini-Lopes et al., 2020b), but also presents additional
prominent effects important for epilepsy treatment, such as
neuroprotective (Campos et al., 2016; Do Val-da Silva et al.,

2017) and anti-inflammatory effects (Costa et al., 2004; Esposito
et al., 2011). Because the epilepsies usually are accompanied
by neuropsychiatric comorbidities, it is also important to know
that CBD has antipsychotic, anxiolytic, and antidepressant
effects (Zuardi et al., 1991; Crippa et al., 2011; Linge et al.,
2016). As previously reported for pharmacological modulation
of cannabinoid receptors, studies regarding Cannabis-derived
compounds in AS are limited. See Table 1 for main results.

CBD anticonvulsant effects against AS were firstly
demonstrated by Carlini’s research group during the 70’s,
in Brazil, when audiogenic susceptible Wistar rats were treated
with CBD and then exposed to high-intensity sound stimulation.
CBD drastically reduced the incidence of AS, decreasing the
expression of wild running followed by tonic-clonic seizures
from 60 to 10% after an acute acoustic stimulation (Carlini et al.,
1973). Using audiogenic susceptible rats, Consroe and Wolkin
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TABLE 1 | Effects of cannabinoids modulation and Cannabis-derived compounds in audiogenic seizures.

References Subjects Treatment/manipulation Results

Carlini et al. (1973) Male mice

Male rats

CBD (10, 50, and 200 mg/kg; i.p.),

CBD (25 mg/kg; i.p.)

Reduced wild running and tonic-clonic seizures

Boggan et al. (1973) C57BL/6 mice submitted to

AS priming

THC (2.5, 5, and 10 mg/kg; i.p.) Reduced wild running, tonic, and clonic seizure

Consroe and Wolkin (1977) Adult male rats CBD (17 mg/kg; orally) Reduced tonic-clonic seizures

Consroe et al. (1981) Adult male rats CBD (82.4 mg/kg; i.p.),

CBD (14.9 mg/kg; i.v.)

Reduced AS frequency

Samineni et al. (2011) Male and Female GEPR-9s AM 251 (50, 100, and 200 pmol;

intra-ventrolateral PAG; bilateral)

Decreased post-ictal analgesia (AS was not assessed)

Vinogradova et al. (2011) Wistar rats susceptible to AS SR 141716 (30 mg/kg; i.p.) Facilitated AS in resistant animals; increased AS

duration; facilitated limbic seizure expression

Busquets-Garcia et al. (2013) Fmr1–/y mice: Fragile X

Syndrome model

SR 141716 (1 mg/kg; i.p.)

AM 630 (1 mg/kg; i.p.)

Attenuated AS and anxiety-like behavior

Hill et al. (2012) DBA/2 mice CBDV (50, 100, and 200 mg/kg; i.p.) Reduced tonic seizures; Reduced mortality; increased

the number of seizure-free animals

Hill et al. (2013) DBA/2 mice Cannabis-derived compounds rich in CBD

+ CBDV (Several doses)

Reduced wild running, tonic, and clonic seizures

Vinogradova and Van Rijn

(2015)

Adult male KMs WIN 55,212-2 (4 mg/kg; s.c.) Increased the latency to post-tonic clonus behaviors

Citraro et al. (2016) DBA/2 mice Cannabinoid agonists:

N-palmitoylethanolamine (5–40 mg/kg; i.p.),

Arachidonyl-2-chloroethylamide (0.5–30

mg/kg; i.p.),

WIN 55,212-2 (2.5–60 mg/kg; i.p.)

All drugs attenuated AS. Anticonvulsant effects were

antagonized by NIDA-41020 (0.5–2 mg/kg; i.p.), a

CB1R antagonist.

Gu et al. (2019) Angelman Syndrome mice

susceptible to AS

CBD (10, 20, 50, and 100 mg/kg; i.p.) Attenuated wild running and tonic-clonic seizures. More

than 80% of mice were seizure-free with CBD 100

mg/kg

Santos et al. (2020) Male GEPR-3s WIN 55,212-2 (1, 1.5, 2 mg/kg; i.p.),

CP 55940 (26.5 nmol; intra-DLSC, bilateral)

Systemic and intra-DLSC CB1R activation attenuated

AS severity; Systemic effect was not modified by

intra-DLSC CB1R antagonist

Lazarini-Lopes et al. (2020a) Male WARs Characterization of CB1R expression after

acute and chronic AS

Increased CB1R in the hippocampus of WAR (WAR ×

Wistar); Acute and chronic AS increased CB1R in

amygdala and hippocampus of WARs

(1977), evaluated CBD effects in a great variety of epileptic
seizure models, including AS. After three consecutive screenings
for AS to confirm seizure susceptibility, CBD treatment was
capable of preventing AS in a posterior stimulus. Moreover,
the same research group showed that not only CBD, but also
its analogs, prevented AS in 70% of animals after intravenous
administration (Consroe et al., 1981). However, these studies did
not discuss additional information regarding behavioral seizure
profile or brain sites associated with CBD effects.

Cannabidivarin (CBDV), a CBD analog, presented dose-
dependent protective effects against AS in DBA/2 mice, reducing
the percentage of animals that developed tonic seizures, dropping
to zero the mortality, and increasing the number of animals
seizure-free (Hill et al., 2012). Similarly, Cannabis-derived
botanical drug compounds rich in CBD were capable of reducing
clonic seizures, and the co-administration of CBD and CBDV
had synergic effects against generalized AS in DBA/2 mice,
reducing wild running and clonic behaviors and blocking tonic
seizures. This result is particularly interesting because although
the authors confirmed CBD protective effects against AS, CBD

anticonvulsant effects were independent of CB1R mechanisms
(Hill et al., 2013). Gu et al. (2019) investigated CBD effects
against AS in an animal model of Angelman Syndrome. In this
model, mice are susceptible to AS, expressing wild running and
tonic-clonic behaviors in response to intense sound stimulation
(125 dB). CBD pretreatment presented dose-response effect,
attenuating seizure expression, blocking tonic-clonic behaviors,
and preventing seizure behaviors in more than 80% of Angelman
Syndrome-mice tested (Gu et al., 2019). Furthermore, (–)
1

9-tetrahydrocannabinol (THC) protect animals against AS.
Authors observed a dose-dependent effect of THC, attenuating
wild running, tonic, and clonic seizures (Boggan et al., 1973).

The current data about Cannabis-derived compounds on AS,
especially CBD, CBDV, and THC, are convergent, suggesting
attenuation of wild running and tonic-clonic behaviors in acute
AS. Nevertheless, cannabinoids in the context of chronic AS still
need to be explored. Chronic seizure protocols, like the AuK,
allow the study of drugs with anticonvulsant effects and potential
antiepileptogenic effects associated with seizures progression
during the chronic protocol (Simonato et al., 2014). Therefore,
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exploration of this research field using audiogenic strains could
bring important information, especially regarding cannabinoids
and the epileptogenic process.

CONCLUSION AND FUTURE
PERSPECTIVES

Although with some paradoxical puzzling data, AS susceptibility
in several of the mentioned networks converge to a more
hyperexcitable brainstem state, either by an increase in
glutamatergic neurotransmission or by a decrease in GABAergic
signaling. Intra-collicular circuits receive and integrate
information and send projections to extra-collicular afferent and
efferent pathways and excessive excitatory activity into IC, SC,
PAG, and BRF seems to be related with AS expression. On the
other hand, GABA signaling into SNr is believed to be part of an
endogenous anticonvulsant system that seems to be modulated
by the ES, especially by CB1R, which could be an important clue
to explain the neuronal basis of cannabinoids effects in AS.

Genetic strains used to study AS present advantages over
chemical models, such as pilocarpine- and kainic acid-induced
Status Epilepticus, where extended lesions are displayed by the
animals (Leite et al., 2002; Castro et al., 2011; Furtado et al.,
2011), but the neuroplasticity in AS is not accompanied by
huge structural abnormalities (Galvis-Alonso et al., 2004). Other
important characteristic of genetic models of AS is the absence
of possible pharmacological interaction between cannabinoids
and convulsant drugs. The AS model does not require previous
invasive protocols for seizure induction (i.e., stereotaxic surgery
or drug administration) and the trigger is an external high
intensity stimulus directly controlled by the researcher. Because
of these advantages, audiogenic strains seem to be interesting
and appropriate approaches for epilepsies studies (Faingold et al.,
2014).

Treatment with CB1R agonists, as well as with Cannabis-
derived compounds, like CBD and CBDV, presented
anticonvulsant activity against acute AS. The most prominent
effects are associated with tonic behaviors, but wild running
and clonus were also attenuated by these treatments. CB1R
location in brainstem and forebrain structures also supports
ES modulation on AS, especially into the SNr, amygdala,
hippocampus, and cortex, the brain sites with most intense CB1R
expression. Although there is a lack of studies investigating
CBD and ES on chronic seizures in protocols like the AuK, the
current data suggest that this is a prominent research area of
study for epilepsies treatment. Since chronic protocols of AS
allow the study of the epileptogenic process, the AuK could be an
interesting tool to assess the role of the ES and Cannabis-derived
compounds on limbic and forebrain recruitment.

Moreover, CBD anticonvulsant effects are associated with a
great variety of mechanisms of action, such as GPR55, TRPV1,
5-HT1A, BK channels, increased GABAergic neurotransmission,
changes in calcium signaling, an indirect modulation of CB1R
(Devinsky et al., 2014; Britch et al., 2020; Lazarini-Lopes
et al., 2020b). In that context, antagonism of TRPV1 receptors
suppressed AS in female GEPR-3s and attenuated seizures in
male GEPR-3s (Cho et al., 2018). Therefore, the exploration of

these mechanisms associated with cannabinoids in audiogenic
strains is an interesting approach that should be further
investigated. Furthermore, recent clinical data indicate that,
regardless of the CBD low affinity for 5-HT1A receptors, at
high concentration, CBD reduced the constitutive activity of
receptors coupled to Gi/o receptors and these effects were
reversed in the presence of 5-HT1A antagonist, suggesting that
CBD can act as a 5-HT1A inverse agonist (Martínez-Aguirre et al.,
2020). Therefore, the linking behind CBD anticonvulsant effects
and the serotonergic system, should be further investigated in
audiogenic strains.

Recent data showed that CBD attenuated seizures and restored
the impaired hippocampal GABAergic neurotransmission
observed in an animal model of Dravet-Syndrome (Kaplan
et al., 2017). Likewise, audiogenic susceptible animals from
the WAR strain present reduced GABAergic activity in the
hippocampus (Cunha et al., 2018b) and the evaluation of CBD
effects at GABAergic hippocampal network of WARs and
other audiogenic strains could bring important information
regarding CBD effects on epileptogenic process. Similarly,
characterization of endocannabinoids levels and CB1R
expression and functionality in brainstem and forebrain
networks could help to explain the susceptibility to brainstem
and limbic seizures in audiogenic strains. Data about CB1R
expression in audiogenic susceptible strains are still very limited,
but the current data suggest that endogenous alterations in
CB1R could be related with seizure susceptibility, corroborating
clinical data. Moreover, chronic alcohol exposure impairs CB1R
functionality in the basolateral amygdala nucleus, which in
turn, affects GABAergic signaling in this structure (Varodayan
et al., 2016). Therefore, it should be an interesting approach to
investigate changes in endocannabinoids levels and functionality
in AS induced by ethanol withdrawal.

Finally, CBD presents different physiological and
pharmacological mechanisms of action associated with its
anticonvulsant effects and improvement of epilepsy-related
neuropsychiatric comorbidities in basic and clinical research
(Bergamaschi et al., 2011; Devinsky et al., 2014; Campos et al.,
2017; Patra et al., 2020). Anxiety- and depressive-like behaviors
are associated with genetic predisposition to seizure in strains
like WAR, GEPR, KM, and audiogenic-susceptible WAG/Rij
rats (Sarkisova and Kulikov, 2006; Castro et al., 2017; Sarkisova
et al., 2017; Aguilar et al., 2018). However, the assessment of
cannabinoids in epilepsy related comorbidities is an under-
explored research field. Therefore, the ES in brainstem and
limbic structures should be investigated not only in seizure
susceptibility and expression, but also in neuropsychiatric
comorbidities related to epilepsies.
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