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The sex hormone estradiol has recently gained attention in human decision-making
research. Animal studies have already shown that estradiol promotes dopaminergic
transmission and thus supports reward-seeking behavior and aspects of addiction. In
humans, natural variations of estradiol across the menstrual cycle modulate the ability
to learn from direct performance feedback (“model-free” learning). However, it remains
unclear whether estradiol also influences more complex “model-based” contributions
to reinforcement learning. Here, 41 women were tested twice – in the low and high
estradiol state of the follicular phase of their menstrual cycle – with a Two-Step decision
task designed to separate model-free from model-based learning. The results showed
that in the high estradiol state women relied more heavily on model-free learning,
and accomplished reduced performance gains, particularly during the more volatile
periods of the task that demanded increased learning effort. In contrast, model-based
control remained unaltered by the influence of hormonal state across the group. Yet,
when accounting for individual differences in the genetic proxy of the COMT-Val158Met
polymorphism (rs4680), we observed that only the participants homozygote for the
methionine allele (n = 12; with putatively higher prefrontal dopamine) experienced a
decline in model-based control when facing volatile reward probabilities. This group also
showed the increase in suboptimal model-free control, while the carriers of the valine
allele remained unaffected by the rise in endogenous estradiol. Taken together, these
preliminary findings suggest that endogenous estradiol may affect the balance between
model-based and model-free control, and particularly so in women with a high prefrontal
baseline dopamine capacity and in situations of increased environmental volatility.

Keywords: reinforcement learning, estrogen, menstrual cycle, dopamine, reward learning, reward volatility,
COMT-Val158Met genotype
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INTRODUCTION

Neuroactive steroid hormones like 17β-estradiol (estradiol) are
important modulators of neural processing (Becker, 2016). As
a natural dopamine agonist, estradiol has been implicated in
reward processing and basic aspects of reinforcement learning
and may modulate activity in the associated frontostriatal circuits
(Sakaki and Mather, 2013; Diekhof, 2018). In the striatum,
estradiol modulates dopaminergic transmission, which increases
the incentive salience of immediate reward and promotes the
development of behavioral habits that are inflexible and difficult
to overcome. This is why estradiol may also play a central
role in the initiation and reinstatement of female addiction
(Becker, 2016). However, estradiol is also involved in higher-
order prefrontal functions such as working memory (Dumas
et al., 2010; Jacobs and D’Esposito, 2011; Hampson and Morley,
2013). This suggests that estradiol could contribute to the more
goal-directed aspects of the decision-making process, which
enable more structured choices that can override existing habits
(Daw et al., 2005). However, this association hasn’t been assessed
yet and it remains elusive to what extent variations in estradiol
influence higher-order cognitive operations during the decision-
making process.

Decision-making in complex environments involves different
learning strategies. Action selection can be based on previous
performance feedback. However, such a “model-free” strategy
that requires agents to simply repeat actions that are reinforcing
is too inflexible to account for more complex cognitive strategies.
These latter strategies become necessary in more structured
decision environments that for instance require the prospective
anticipation of action consequences using a previously learned
map or model (Doll et al., 2015). Recent accounts on
reinforcement learning theory thus propose a dual-architecture
of two functionally distinct computational processes in decision-
making, thereby dissociating “model-free” and “model-based”
control (Daw et al., 2005; Dolan and Dayan, 2013; Daw and
Dayan, 2014). This dual-architecture is based on the assumption
that optimization of reward outcome does not always depend on
the most recent choice, but may require taking into consideration
the most likely cause of a reward and to do so the learner must
represent the task structure. Therefore, a second functionally
distinct computational process, “model-based” control, has been
proposed to support sequential choice that combines short-term
predictions of immediate actions in a sequence of choices that are
used to build a prospective model of the world. The process of
model-based control is assumed to capture the overall complexity
of the environment beyond model-free learning and enables
reflective planning (Daw et al., 2005). In humans, the relative
dominance of model-based control over the model-free system
is correlated with other higher-order cognitive operations like
declarative memory (Doll et al., 2015), working-memory span
(Potter et al., 2017), and attentional control (Otto, 2013).

Model-free control is believed to rely on the prediction error
signal of mesencephalic dopamine neurons (Glimcher, 2011).
Transient changes in dopamine thereby signal the difference
between received and predicted reward in the striatum, where
these signals have opposing effects on the dopamine D1- and

D2-receptors, i.e., DRD1 and DRD2, respectively, as well as on
the associated processes of approach and avoidance learning
(Collins and Frank, 2014). Model-based control depends on
central dopamine that modulates activation in both the striatum
and the prefrontal cortex. Deserno et al. (2015) found that
a higher presynaptic dopamine level in the ventral striatum
was associated with a bias toward model-based learning and
promoted model-based activation in the lateral prefrontal
cortex at the expense of model-free prediction errors in the
ventral striatum. Further, the transient enhancement of central
dopamine by agonist treatment enhanced model-based learning
capacity in healthy young men (Wunderlich et al., 2012; but
see Kroemer et al., 2019 for a null finding). In contrast,
reductions in the ability to rely on the model-based component
have been found in male addicts with a disturbed dopamine
system (Sebold et al., 2014), in Parkinson patients in the
dopamine-deprived state (Sharp et al., 2016), and following
disruptions of the prefrontal cortex by transcranial magnetic
stimulation (Smittenaar et al., 2013). These observations fit with
the idea that prefrontal and striatal dopaminergic mechanisms
interact in higher-order cognitive operations, such as model-
based learning, both supporting the stabilization and flexible
updating of goal representations (Frank and O’Reilly, 2006;
Cools and D’Esposito, 2011).

The COMT-Val158Met polymorphism codes for the activity of
the dopamine-degrading enzyme catechol-o-methyltransferase
(COMT) (Apud et al., 2007; Käenmäki et al., 2010), which
is more active in the prefrontal cortex of carriers of the
Val allele than of individuals homozygote for the Met allele.
This may lead to higher prefrontal dopamine availability
in Met-homozygotes (see also Schacht, 2016). It has been
proposed that the Met allele is more beneficial for the
stabilization of prefrontal information processing and may
protect goal-directed information from interference, supposedly
by optimizing signaling through prefrontal DRD1 in relation to
DRD2. In contrast, homozygosity for the Val allele may predict
less balanced signaling through these receptors, which results
in reduced cognitive capacity (Durstewitz and Seamans, 2008;
Slifstein et al., 2008; Schacht, 2016). The COMT-Val158Met
polymorphism has been associated with model-based control
(Doll et al., 2016), as well as with other aspects of higher-order
cognition including working memory and executive function
(Mier et al., 2010; Schacht, 2016). Homozygosity for the Met
allele thereby predicted an overall advantage in prefrontal tasks,
especially those with increased cognitive load (Mier et al., 2010).

As an indicator of dopamine baseline capacity in the
prefrontal cortex, the COMT-Val158Met polymorphism has
further been observed to interact with (pharmacological) agents
that transiently enhance dopamine. Notably, the resulting
relationship between the combined effect of tonic and phasic
dopamine on cognitive performance was not linear, but rather
followed an inverted U-shape. This has led to the “Inverted-U-
Hypothesis,” which presumes that peak cognitive performance is
linked to an optimal dopamine level that lies in the intermediate
physiological range, while cognitive performance is believed to
decline in individuals with either higher or lower than this
optimal dopamine range, which has been shown repeatedly
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(Cools and D’Esposito, 2011). Therefore, in the present study we
decided to account for the COMT-Val158Met polymorphism as
a baseline marker of prefrontal dopamine, when assessing the
phasic influence of estradiol on model-based control.

Apart from baseline differences in dopamine, our study
assessed the role of estradiol as a natural dopamine agonist
in model-based reinforcement learning. In rodents, estradiol
modulates dopamine within frontostriatal networks. Estradiol
increases dopaminergic transmission and amplifies the reward-
related dopamine release, for example by augmenting DRD1
action, while concurrently suppressing DRD2 action (Lévesque
et al., 1989; Krentzel and Meitzen, 2018; see also Becker,
2016; Yoest et al., 2018 for review). Similarly, estradiol down-
regulates the dopamine-degrading enzyme COMT in the female
prefrontal cortex, which in turn increases dopamine content
in this structure (Xie et al., 1999; Schendzielorz et al., 2011).
For these reasons, we expected an interaction between baseline
dopamine and the phasic influence of estradiol in women,
when comparing distinct high and low estradiol phases of
the natural menstrual cycle. We decided to test women twice
during the follicular phase. During the follicular phase estradiol
level rises from its nadir until it reaches its cyclic peak
right before ovulation. Progesterone, another steroid hormone
important for female reproductive function, remains at a low
concentration throughout the follicular phase. In the second
half of the menstrual cycle, estradiol rises again toward the mid
luteal phase. But this time, progesterone concentration is also
increased (Sakaki and Mather, 2013). This is insofar important,
since progesterone inhibits dopaminergic transmission through
various physiological mechanisms, and could thus antagonize the
dopamine agonistic effect of estradiol during the luteal phase
(e.g., Luine and Rhodes, 1983; Dluzen and Ramirez, 1984, 1987;
Luine and Hearns, 1990). By restricting our tests to the early
(low estradiol) and late (high estradiol) follicular phase, we were
able to assess the effect of the dopamine agonist estradiol widely
uncontaminated by the dopamine antagonist progesterone.

In line with the dopamine-agonistic properties of estradiol,
previous studies with humans showed that estradiol influenced
model-free learning, also in interaction with the dopaminergic
baseline capacity of the striatum that followed an inverted
U-shape relationship (Diekhof, 2015; Jakob et al., 2018; see also
Diekhof, 2018). In one study reward sensitivity was compromised
when estradiol level reached its peak in the late follicular phase of
the menstrual cycle. Conversely, intermediate estradiol levels at
the beginning of the follicular phase promoted reward sensitivity.
This was especially true for individuals with a lower dopamine
baseline capacity in the striatum (Diekhof, 2015), as indicated
by lower trait impulsivity (see also Buckholtz et al., 2010).
In a similar vein, Jakob et al. (2018) observed that carriers
of the 9-repeat-allele of the DAT1 genotype, with a higher
dopamine transporter (DAT) density in the striatum, apparently
experienced a marked reversal of DAT function as a consequence
of rising estradiol, which led to a significant decline in the
capacity to avoid negative outcomes in the high estradiol phase.

In the human prefrontal cortex, estradiol has been found
to stabilize working memory representations, most likely also
through its interaction with dopamine, and particularly so

in situations of high cognitive demand (Dumas et al., 2010;
Hampson and Morley, 2013). One prominent finding also
supported the “Inverted-U-Hypothesis,” by demonstrating
that the effect of estradiol on working memory performance
and prefrontal activity depended on baseline dopamine
concentration, and particularly so in high-load conditions
(Jacobs and D’Esposito, 2011). A dose-dependency of estradiol
could further be observed in ovariectomized rats in that only a
moderate dose, but neither a low nor high dosage of estradiol
preserved cognitive performance under high-load working
memory demands (Bimonte and Denenberg, 1999). This
shows that even independent of tonic dopamine, a deficit or
abundance of estradiol could destabilize prefrontal working
memory representations.

Until now, neurocognitive research has only addressed
the role of estradiol in model-free learning (Diekhof, 2018).
Considering the modulatory influence of estradiol on
frontostriatal networks and dopamine (Becker, 1999; Yoest
et al., 2018), and its association with both probabilistic feedback
learning (e.g., Diekhof, 2015) and higher-order working memory
processes (e.g., Jacobs and D’Esposito, 2011), we hypothesized
that estradiol – as a natural dopamine-agonist – should also
modulate model-based learning. The major aim of the present
study was to examine whether model-based reinforcement
learning is affected by the high estradiol state of the late follicular
phase compared to the low estradiol state at the beginning
of the follicular phase. Further, we also assessed whether the
hypothesized effect of estradiol on model-based learning depends
on prefrontal dopaminergic baseline capacity, similar to what has
been demonstrated for model-free control in relation to striatal
dopamine (Diekhof, 2018).

For this purpose, 41 women performed a Two-Step Markov
Decision Task (TS-task), once in the low estradiol state of the
early follicular phase and once during the high estradiol state
of the late follicular phase. The TS-task combined features of a
sequential choice task and a probabilistic selection task, which
allowed us to assess model-based relative to model-free choice,
while participants tried to maximize overall gain (Doll et al.,
2016). Each of the 300 experimental trials consisted of two
consecutive decision stages. At the initial stage of the TS-task,
the participants had to decide between two arbitrary stimuli (a
pair of Sanskrit symbols). The initial decision for one of the
symbols then stochastically determined a set of second-stage
options, i.e., one of the two second-stage stimulus pairs, with
fixed transition probabilities (0.7 and 0.3). Depending on the
initial choice, one set of options at the second-stage occurred
more often, i.e., the “common transition” occurred in 70% of
selections of the given first-stage symbol. The other second-
stage set is denoted as the “rare transition” that occurred only
in 30% of a given first-stage selection. After the selection of a
symbol at the second stage, subjects received feedback, either
in form of a monetary token or a feedback indicating outcome
omission. The outcome was probabilistic. In the first 150 trials
(the “drift phase”), outcome probability was slowly and randomly
drifting between 0.25 and 0.75, while in the remaining 150 trials
(the “stable phase”) the reward probabilities for each of the two
second-stage sets reached their final values, which was 0.7:0.3
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for one and 0.6:0.4 for the other set (see also Doll et al., 2016).
This enabled us to dissociate model-free control, i.e., the simple
repetition of rewarded choice regardless of the transition, from
model-based control, which also takes into account whether the
second-stage reward was linked to a rare transition (model-
based control would demand a switch to the other option at
the first-stage after a rare transition). Additionally, women were
genotyped for the COMT-Val158Met polymorphism, a proxy
of prefrontal dopamine content, in order to further examine
the potentially non-linear relationship between estradiol and
model-based control. Since none of the many previous studies
on model-based learning controlled for the hormonal state of
female subjects nor did they assess the interaction of estradiol
with baseline dopamine content, the present study is the first to
provide evidence regarding the role of endogenous estradiol in
higher-order reinforcement learning.

MATERIALS AND METHODS

Sample
In this study, 41 healthy young women [mean age
(±SEM) = 24.6 ± 0.5 years; age range = 20–30 years], were
tested with a TS-task in the early follicular phase, when
circulating estradiol levels were low, and the late follicular phase,
when circulating estradiol levels were high. Women were free
of medication and hormonal contraceptives. For the 26 women
who had previously taken hormonal contraceptives the mean
distance of the first test day to the last intake of hormonal
contraception was 15.8 months (SEM = 2.5 months; range = 2–
36 months). Four women had stopped the intake 2 months
before participation.

Women were included in the study if they had regular
menstrual cycles and no gynecological problems, like polycystic
ovary syndrome or endometriosis, or any other chronic
disorder of the hormone system, e.g., Diabetes, Hashimoto’s
thyroiditis. Current or previous psychiatric or neurological
problems precluded study enrollment as did the present use
of hormonal contraceptives. Subjects were of Middle European
origin as determined by the place of birth of their parents
and grandparents. All subjects gave written informed consent
and were paid for participation. The present study was
approved by the local Ethics Committee (Ethikkommission der
Ärztekammer Hamburg).

The women were tested twice within the follicular phase of
the menstrual cycle. One test occurred during the first 3 days
following the onset of menstruation, i.e., the early follicular phase,
which is characterized by low estradiol. The other one took
place 2–3 days before expected ovulation in the late follicular
phase, when estradiol approached its cyclic maximum. For
determination of the actual test day participants stated their
average cycle length based on previous menstrual cycles. Upon
the onset of menstrual bleeding (cycle day 1) we then used
the average cycle length to calculate the last expected cycle day
(anticipated cycle end) in the given menstrual cycle. This enabled
us to determine the optimal test day with a common counting
method: For all subjects with an average cycle length shorter than
28 days, we subtracted 15 days from the anticipated cycle end. For

subjects with an average of 28–31 days, 16 days were subtracted,
and for cycle lengths longer than 31 days, 17 days were subtracted
to schedule the late follicular phase test. Our subjects also tracked
the daily concentration of the gonadotrophin Lutropin, which
experiences a steep rise approximately 36 h prior to ovulation.
For this, a common urine test (One Step R© by AIDE Diagnostic
Co., Ltd.) was used. The urine test was performed on a daily
basis starting 2 days before the scheduled late follicular phase
test. In case of a positive result either before or on the day
of the scheduled test, the behavioral test was postponed to the
subsequent menstrual cycle. Test order was balanced between
subjects and half of the subjects started in the early follicular
phase. We initially recruited 48 women for the study. Of these,
seven women dropped-out after completion of the first test day.
Therefore the test order of the repeated tests was slightly biased
toward the early follicular phase (24 women started in the early
follicular phase). There was no significant interaction between
test order and cycle phase when assessing the two learning
components as shown in Table 1.

Collection and Analysis of Salivary
Estradiol
On each test day, subjects collected five samples of morning saliva
at home. Starting at their normal wake-up time, each subject
collected the samples (2 ml Eppendorf tubes) at regular intervals
over 2 h, in order to control for the episodic secretion pattern of
steroid hormones. During the sampling period, no consumption
of food or beverages other than water was allowed to avoid sample
contamination. Also, 12 h before sample collection subjects
refrained from eating meat or other animal products. On the
same day, the participants brought the samples to the lab, where
they were immediately frozen at −20◦C until further analyses.
The subsequent analysis of free estradiol content was based on
the aliquots of the five samples and used a 17beta-Estradiol
Luminescence Immunoassay (IBL International, Tecan Group,
Hamburg, Germany). The analysis followed the instructions
provided by the manufacturer. Altogether, this allowed us to
analyze the salivary estradiol level from the repeated tests of 39
subjects. The remaining samples of two women could not be
analyzed as the two Immunoassay-plates we used each provided
only 39 wells for double sampling.

DNA Collection, Extraction, and
Genotypic Analysis
Genotyping was performed by a commercial laboratory
(Bioglobe, Hamburg, Germany). DNA was extracted from buccal
swabs and purified with a standard commercial extraction
kit. The analysis of the single nucleotide polymorphisms
(SNP) rs4680 was performed on the MassARRAY R© system
(Agena Bioscience) applying the iPLEX R© method and MALDI-
TOF mass spectrometry for analyte detection. In general, all
iPLEX reactions were performed according to the standard
protocol recommended by the system supplier. The protocol
generates allele-specific analytes in a primer extension reaction
applying a primer directly adjacent to the SNP site. Assay
design was performed with platform-specific software for the
SNP sequences, aided by database information accounting
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TABLE 1 | Results of the repeated-measures ANOVAs with the factors “cycle phase” and “test-order” separately for drift and stable phase.

Main effect or interaction F-value df p-value Partial eta2

(A) Drift-phase – model-free component

Cycle phase* 7.45 1, 39 0.009 0.16

Test order 0.002 1, 39 0.969 <0.01

Cycle phase × test order 2.60 1, 39 0.115 0.06

(B) Stable-phase – model-free component

Cycle phase 0.13 1, 39 0.719 <0.01

Test order*,1 4.24 1, 39 0.046 0.10

Cycle phase × test order 0.84 1, 39 0.365 0.02

(C) Drift-phase – model-based component

Cycle phase 0.05 1, 39 0.828 <0.01

Test order 0.88 1, 39 0.355 0.02

Cycle phase × test order 0.29 1, 39 0.594 0.01

(D) Stable-phase – model-based component

Cycle phase 0.21 1, 39 0.648 <0.01

Test order 2.66 1, 39 0.111 0.06

Cycle phase × test order 0.32 1, 39 0.573 <0.01

*Significant effects (p < 0.05) are plotted in bold and are marked with an asterisk.
1The direct comparison of subjects who started their first test in the early follicular phase (early-to-late group; n = 24) with those that started in the late follicular phase
(late-to-early group; n = 17) yielded a significant difference in the model-free score of the stable phase (mean ± SEM: early-to-late = 20.6 ± 2.7; late-to-early = 11.8 ± 3.4;
t(39) = 2.06, p = 0.046). This suggests that one group of participants used the model-free learning component to a greater extent, yet this effect was independent of cycle
phase. This was also supported by the exploratory analysis of the respective test days. It showed that subjects from the early-to-late group, who were in the late follicular
phase on the second test day, had a trend-wise higher model-free score than subjects in the early follicular phase (2nd test day: Early = 9.8 ± 4.1; Late = 19.8 ± 3.5;
t(39) = −1.86, p = 0.071). Similarly, on the first test day the subjects from the early-to-late group being in the early follicular phase now had a somewhat higher score on
that day, even though again this difference was not significant (1st test day: Early = 21.5 ± 3.0; Late = 13.9 ± 4.6; t(39) = 1.46, p = 0.153).

for homologous regions and annotated secondary sequence
variations in close proximity to the target SNP (proxSNPs).
Based on rs-IDs, the multiplex assay design was performed
with MassARRAY assay design suite v2.0. The final in silico
design output was composed of a single multiplex reaction
(8plex). The PCR amplification procedure used the following two
primers: ACGTTGGATGTTTTCCAGGTCTGACAACGG and
ACGTTGGATGACCCAGCGGATGGTGGATTT. The iPLEX
primer was tCATGCACACCTTGTCCTTCA. The distribution
of genotypes was in Hardy-Weinberg equilibrium (p = 0.18;
two-tailed) as determined by the HW-Quick Check software by
Steven T. Kalinowski1.

Altogether, four participants were homozygote for the Val
allele (Val/Val), while 25 subjects were heterozygote (Met/Val),
and 12 subjects were homozygote for the Met allele (Met/Met).
Based on the distribution of genotypes, we decided to combine
the Val/Val and Met/Val, who constitute the group of “Val-
carriers” in all subsequent analyses. The two groups, Met/Met and
Val-carriers did not differ in most demographic characteristics
like average cycle length, cycle day of early and late follicular test,
estradiol level on the respective test day, and trait impulsiveness
as determined by Barratt Impulsiveness Scale (BIS-11) (Patton
et al., 1995), however, Met allele homozygotes were slightly older
than Val allele carriers (see Table 2).

Task Description
Participants started the Two-Step task with a computer-based
tutorial and a short training of 20 trials, which was supervised

1http://www.montana.edu/kalinowski/software/hw-quickcheck.html

by the experimenter. Then the sequential TS-task with 300 trials
in total was performed. Participants were tested with the version
of the TS-task already employed by Doll et al. (2016). The TS-
task incorporates a two-stage choice structure to achieve positive
feedback (a virtual 1 Euro-coin) and tests for the individual
model-free and model-based learning capacity. It thus captures
the distinction between model-free learning behavior, i.e., the
ability to adapt behavior based on direct performance feedback,
and prospective model-based learning (Daw et al., 2005; Dolan
and Dayan, 2013). In the first step of the TS-task, participants
choose between two options (two Sanskrit symbols) within a time
window of 2 s, which stochastically determines another set of
choices with fixed transition probabilities between steps (i.e., 0.7
and 0.3, see Doll et al., 2016).

In the TS-task, model-free control of behavior describes
the aspect of learning that increments the value of choices
based on the outcome that directly follows, and regardless of
the transitions experienced between task stages. In contrast,
model-based control takes the history of outcomes as well
as the noisy task structure prospectively into account (Daw
et al., 2005). Model-based learning is particularly important
in the TS-task, since an actual reward can only be reached
after the two consecutive choices. The first stage choice thereby
determines with a certain probability, which pair of options is
available for the second stage choice. For each action at the
first stage, one pair of options at stage 2 is more likely to
occur (common transition), while the other pair is less likely
(rare transition). The model-based component is assumed to
take these transition probabilities into account, while the model-
free component is not. From this, certain predictions can be
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TABLE 2 | Demographic data divided by genotype.

Met allele homozygotes Val allele carriers

Mean ± SEM Mean ± SEM t-value (p-value)

Age (years)* 26.6 ± 0.7 23.8 ± 0.5 2.95 (0.005)

Mean length of two consecutive menstrual cycles (days) 29.2 ± 1.1 30.7 ± 0.7 −1.18 (0.245)

Cycle day of early follicular phase 1.8 ± 0.4 2.5 ± 0.3 −1.29 (0.206)

Cycle day of late follicular phase 13.4 ± 0.8 13.2 ± 0.4 0.20 (0.839)

Estradiol level of early follicular phase (pg/ml) 2.98 ± 0.63 3.00 ± 0.27 −0.04 (0.969)

Estradiol level of late follicular phase (pg/ml) 3.81 ± 0.60 4.56 ± 0.35 −1.11 (0.274)

Impulsiveness score (BIS-11) 60.9 ± 2.5 62.7 ± 1.4 −0.64 (0.526)

*Significant differences (p < 0.05) are plotted in bold and are marked with an asterisk.

made: In case of a rare transition, the model-free component
would use the feedback at stage 2 to choose the stage 1 stimulus
independent of the nature of the transition. It would stay
with the previous first-stage choice, even after a rare second-
stage reward, which would lower overall reward outcome. In
contrast, after receiving a rare reward, model-based control
would probably bias the decision toward a switch at stage 1
and the choice of the option more likely to transition to the
second-stage state that would have produced reward on the last
trial (switch to the common transition) (Doll et al., 2016). Based
on these predictions and the stay frequencies from stage 1, we
calculated the model-based and model-free learning components
according to Sebold et al. (2014), which could then be compared
between cycle phases.

The model-free score thereby reflected the main effect of
reward on stay frequencies that was calculated by:

model− free score = % rewarded common transition

+% rewarded rare transition−% unrewarded common

transition−% unrewarded rare transition

The model-based score mirrored the interaction between
transition frequency and reward, which was indicated by:

model− based score = % rewarded common transition

+% unrewarded rare transition−% rewarded rare transition

−% unrewarded common transition

In contrast to other versions of the TS-task, the specific version
employed by Doll et al. (2016) included two task phases, the
drift phase of the first 150 trials and the stable phase of the
remaining 150 trials, which were characterized by different
degrees of reward uncertainty at the second stage choice. During
the drift phase the second stage choice is followed by reward
with a slowly and randomly drifting probability set within
the boundaries of 0.25 and 0.75. In the present study, one
of four sets of drifts was randomly assigned to each person
in each cycle phase, whereby the assignment did not differ
between cycle phases or COMT genotypes (p> 0.39). The design
feature of the drift phase emphasized model-free updating, as
subjects learned the values of these stimuli incrementally. In the
remaining 150 trials (the stable phase) the reward probabilities

reached their final values of 0.7 versus 0.3 in state 1, and 0.6
versus 0.4 in state 2.

Statistical Analysis
First, we analyzed the individual stay frequencies at the first
stage choice with a repeated-measures analysis of variance
(ANOVA). This was done separately for the drift and the
stable phase in order to account for the different degrees of
reward uncertainty (see task description above). The ANOVA
assessed stay frequencies in relation to the reward achieved at
stage 2 of the previous trial, i.e., the factor “previous reward”
(yes, no), and the previous transition that led to this reward,
i.e., factor “previous transition” (rare or common), as well
as their interaction. Additionally, the ANOVA also included
the within-subject factor “cycle phase” (early or late follicular
phase) and the between-subjects factor “COMT genotype”
(Val-carriers, Met-homozygotes). The effect size is reported
as partial eta2. Post hoc tests used paired or independent
t-tests. For effect sizes we use Cohen’s d or Hedge’s g for
comparisons including one group with n < 20. Statistical
significance was assumed at p < 0.05, two-tailed, if not
indicated otherwise.

In a second step, we looked more specifically at differences
in the model-free and model-based learning components.
For this, we calculated the model-based and model-free
learning components according to Sebold et al. (2014) (see
above), which were then compared between cycle phases and
genotypes, respectively.

RESULTS

Analysis of Menstrual Cycle Phase
Related Changes in Estradiol Level
Estradiol level followed the predicted cycle-typical pattern
and significantly increased from the early to the late follicular
phase [mean ± SEM: estradiolearly = 2.99 ± 0.26 pg/ml;
estradiollate = 4.35 ± 0.31 pg/ml; t(38) = 4.48, p < 0.001,
one-tailed], also within the subgroup of Val-carriers
[t(27) = 4.03, p < 0.001, one-tailed] and in the Met-
homozygotes [t(10) = 2.06, p < 0.034, one-tailed]. In
that way, the early follicular and the late follicular phase
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can be considered as the low and the high estradiol
state, respectively.

Analysis of Stay Frequencies and
Learning Scores of the Drift Phase
In the drift phase, the choice at stage 2 was followed by
probabilistic reward with a slowly and randomly drifting
probability. Thus, the drift phase required a constant updating of
the current decision to maximize reward, like in other versions of
the TS-task previously employed (e.g., Deserno et al., 2015; Doll
et al., 2016; Kroemer et al., 2019).

First, we assessed the influence of hormonal state and genetic
variance on the stay frequencies at the first stage choice of
the drift phase. The stay frequencies thereby represent the
probability that the same stage 1 choice would be made on the
next trial. We identified a significant main effect of “previous
reward” [F(1,39) = 39.63, p < 0.001, partial eta2 = 0.5] and
a significant interaction of “previous reward” by “previous
transition” [F(1,39) = 9.80, p = 0.003, partial eta2 = 0.2],
indicating that participants used both model-free and model-
based learning while performing the task (Daw et al., 2011).
We also found a significant two-way interaction between “cycle-
phase” and “previous reward” [F(1,39) = 6.56, p = 0.014, partial
eta2 = 0.14]. This was reflected by enhanced avoidance of non-
reward per se in the late as opposed to the early follicular phase
[non-reward: stay frequencyearly ± SEM = 73.2 ± 2.3%; stay
frequencylate ± SEM = 69.1 ± 2.1%; t(40) = 2.23, p = 0.031,
d = 0.33]. In addition to that, a four-way interaction between
“cycle-phase,” “previous reward,” “previous transition,” and
“COMT genotype” was found [F(1,39) = 4.48, p = 0.041, partial
eta2 = 0.1] (see also Table 3 for the complete ANOVA results).
Accordingly, the Val-carriers became better at avoiding the
commonly non-rewarded option in the late follicular phase (stay
frequencylate ± SEM = 65.4 ± 3.0%) compared to the early
follicular phase [stay frequencyearly ± SEM = 71.2 ± 2.6%;
t(28) = 2.18, p = 0.038, d = 0.44]. Since the Val-carriers represented
the majority of the test group, this change probably drove
the above described two-way interaction between “cycle-phase”
and “previous reward.” Apart from that, we also observed
that the stay frequencies of the Met-homozygotes in relation
to rare reward showed a trend-wise increase in the late
follicular phase [stay frequencyearly ± SEM = 74.3 ± 5.0%;
stay frequencylate ± SEM = 83.5 ± 3.8%; t(11) = −2.04,
p = 0.065, d = 0.53]. This increase was also significantly
different from the delta observed in Val-carriers [Delta stay
frequencylatevs.early ± SEM: Met/Met = 9.2 ± 4.5%; Val
carriers = −3.1 ± 2.8%; t(39) = 2.35, p = 0.025, Hedge’s
g = −0.81], suggesting that Met-homozygotes became impaired
in their ability to adequately integrate the complex task structure
in their choices when being in the high estradiol state (see
Figures 1A,B).

In a second step, we calculated the model-free and the model-
based scores based on the stay frequencies (Sebold et al., 2014).
We found a significant increase in the model-free score from
the early to the late follicular phase in the complete group of
subjects [Drift phase: model-freeearly ± SEM = 15.51 ± 2.18;

model-freelate ± SEM = 19.81 ± 2.65; t(40) = −2.44, p = 0.019,
d = −0.44] (see Figure 2A). Notably, the relative increase
in model-free learning from the early to the late follicular
phase (Deltamodel−free) was related to more suboptimal decision
making, reflected by a reduced task success in terms of the total
number of acquired coins during the drift phase (r = −0.417,
p = 0.007, n = 41) (see Figure 2C).

When the sample was dichotomized by genotype we
found that the increase in the model-free score from the
early to the late follicular phase was only significant in
the Met-homozygotes [model-freeearly ± SEM = 7.2 ± 5.4;
model-freelate ± SEM = 19.7 ± 5.8; t(11) = −2.71,
p = 0.020, d = −0.65], but not in Val-carriers [model-
freeearly ± SEM = 16.1 ± 2.9; model-freelate ± SEM = 22.4 ± 3.8;
t(28) = −1.47, p = 0.15]. In addition, Met-homozygotes
also showed a concurrent decline of the model-based score
during the drift phase [model-basedearly ± SEM = 13.6 ± 6.0;
model-basedlate ± SEM = 0.9 ± 3.2; t(11) = 2.62, p = 0.024,
d = 0.67], which was again absent in Val-carriers [model-
basedearly ± SEM = 4.9± 3.2; model-basedlate ± SEM = 8.5± 3.2;
t(28) = −0.80, p = 0.431]. The magnitude of cycle phase related
changes in both the model-free and model-based learning scores,
i.e., the Delta value of the score from the late minus the early
follicular phase, was also significantly different from zero in the
Met-homozygotes (see Figure 3A; see also Table 4).

Analysis of Stay Frequencies and
Learning Scores of the Stable Phase
Following the drift phase, unbeknownst to participants,
the reward probabilities at stage two stopped drifting and
remained fixed. In principle, this stable phase requires a
lower learning rate and the difficulty of learning is reduced,
since reward probabilities are reliable now. During the stable
part of the TS-task, we also found a significant main effect
of “previous reward” [F(1,39) = 45.22, p < 0.001, partial
eta2 = 0.54] and a significant interaction of “previous reward”
by “previous transition” [F(1,39) = 18.60, p < 0.001, partial
eta2 = 0.32]. However, in contrast to the drift phase, we observed
a significant three-way interaction between “cycle phase”,
“previous reward” and “COMT genotype” [F(1,39) = 8.30,
p = 0.006, partial eta2 = 0.18] (see also Table 5 for a
complete list of the ANOVA results). This was reflected by
a differential change in avoidance learning capacity between
cycle phases and genotypes. We found a reduced avoidance
capacity of non-reward (i.e., a higher stay frequency for
non-reward) in the late relative to the early follicular phase
in Met-homozygotes compared to the Val-carriers [Delta
stay frequencieslate−early ± SEM: Met/Met = 7.27 ± 3.35%;
Val-carriers = −3.8 ± 2.19%; t(39) = 2.74, p = 0.009,
Hedge’s g = 0.94]. Further conforming to this pattern, the
direct comparison of cycle phases within genotype groups
revealed two statistical trends, with the Met-homozygotes
showing a slight reduction in avoidance learning capacity
[stay frequencynon−reward ± SEM: Early = 69.2 ± 4.2%;
Late = 76.5 ± 3.8%; t(11) = −2.17, p = 0.052, d = 0.60], while
the Val-carriers showed a trend-wise increase in this capability
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TABLE 3 | Drift phase – Effects of cycle-phase, TS-task manipulation and COMT-genotype on stay frequencies.

Main effect or interaction F-value df p-value partial eta2

Previous reward* 39.63 1, 39 <0.001 0.50

Previous transition 0.58 1, 39 0.450 0.02

Cycle phase 0.37 1, 39 0.546 0.01

COMT genotype 0.17 1, 39 0.680 <0.01

Previous reward × previous transition* 9.80 1, 39 0.003 0.20

Previous reward × cycle phase* 6.56 1, 39 0.014 0.14

Previous reward × COMT genotype 1.25 1, 39 0.270 0.03

Previous transition × cycle phase 0.29 1, 39 0.596 0.01

Previous transition × COMT genotype 0.08 1, 39 0.780 <0.01

Cycle phase × COMT-genotype 2.238 1, 39 0.143 0.05

Previous reward × previous transition × cycle phase 1.39 1, 39 0.245 0.03

Previous reward × previous transition × COMT genotype 0.02 1, 39 0.899 <0.01

Previous reward × cycle phase × COMT genotype 0.70 1, 39 0.408 0.02

Previous transition × cycle phase × COMT genotype 0.53 1, 39 0.469 0.01

Previous reward × previous transition × cycle phase × COMT genotype* 4.48 1, 39 0.041 0.10

*Significant effects (p < 0.05) are plotted in bold and are marked with an asterisk.

FIGURE 1 | Mean stay frequencies separated by task phase (drift versus stable phase), genotype group (Met-homozygotes versus Val-carriers) and cycle phase
(early versus late follicular phase). (A) Drift phase, Met-homozygotes. (B) Drift phase, Val-carriers. (C) Stable phase, Met-homozygotes. (D) Stable phase, Val-carriers.
The differences between cycle phases are indicated with the respective p-value. These also include statistical trends (p < 0.10), for which the actual delta-values of
stay frequencies (Delta stay frequencylatevs.earlyfollicularphase) were significantly different between the genotypes (delta values are not shown here, but are reported in
the text). These statistical trends are additionally marked with an asterisk, if the direct comparison between the genotypes yielded a significant difference (p < 0.05).

[non-reward stay frequency ± SEM: Early = 74.2 ± 3.0%;
Late = 70.4 ± 2.7%; t(28) = 1.73, p = 0.095, d = 0.31] (see
Figures 1C,D).

With regard to the learning scores, the stable phase yielded
partly different results than the drift phase. First, in the analysis
of the complete group the model-free score remained unaffected
by cycle phase [model-free score ± SEM: Early = 16.7 ± 2.6;

Late = 17.3 ± 2.8; t(40) = −0.21, p = 0.835], like the model-
based score [model-based score ± SEM: Early = 9.4 ± 2.7;
Late = 11.5 ± 2.9; t(40) = −0.57, p = 0.572] (see Figure 2B).
However, similar to the drift phase the increased model-free
control in the late follicular phase negatively correlated with the
delta of totally acquired coins in the 150 trials of the stable phase
(r =−0.328, p = 0.036, n = 41) (see Figure 2D).
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FIGURE 2 | Cycle-phase modulates model-free learning in the Two-Step task (n = 41). (A) During the drift phase, a significant increase in model-free learning from
the early to the late follicular was observed, while no change in model-based learning occurred. (B) During the stable phase, with fixed reward probabilities at stage
two, the learning scores remained unchanged between cycle phases. (C,D) The relative increase in model-free learning from the early to the late FP was associated
with a reduction in the relative amount of coins won, i.e., 1points (late minus early follicular phase), in both the drift (C) and the stable phase (D) (For display
purposes, the individual data points of the Met/Met homozygotes and the Val allele carriers are shown in different colors).

Secondly, when separately looking at the two genotypes
we found that model-free processing decreased in
Met-homozygotes in the high estradiol state [model-
freeearly ± SEM = 20.4 ± 4.6; model-freelate ± SEM = 8.4 ± 5.6;
t(11) = 2.93, p = 0.014, d = 0.67]. Additionally, this strong decline
in model-free processing capacity in the Met-homozygotes

(Deltalate−early = −12.1 ± 4.1) differed from the delta of the
Val-carriers [Deltalate−early = 5.9 ± 3.6; t(39) = −2.88, p = 0.006,
Hedge’s g = 0.99]. In contrast to that, the model-based component
remained unchanged in the Met-homozygotes [model-based
score ± SEM: Early = 7.1 ± 5.0; Late = 12.2 ± 7.0; t(11) = −0.76,
p = 0.462].
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FIGURE 3 | The recruitment of model-free and the model-based control varied between cycle phases when accounting for COMT-Val158Met genotype. (A) In the
drift phase, Met-homozygotes exhibited a significant decline in model-based control from the early to the late follicular phase, whereas Val-carriers remained
unaffected by cycle phase. Further, the 1(lateminusearlyfollicularphase) for both the model-based and the model-free score differed from zero in the Met/Met genotype
only, indicating that individuals with higher prefrontal dopamine were apparently more negatively affected by the rise in endogenous estradiol. (B) In the stable phase,
there was a relative decline in model-free control in Met-homozygotes only, that was also significantly different in the comparison of genotypes.

TABLE 4 | Comparison of model-free and model-based scores between genotype and cycle phases.

Early follicular phase (mean ± SEM) Late follicular phase (mean ± SEM) Independent t-test Paired t-test

Met/Met
(n = 12)

Val-carriers
(n = 29)

Met/Met
(n = 12)

Val-carriers
(n = 29)

Between genotypes,
within cycle phases

Between cycle phases,
within genotype

Drift phase

Model-free score 7.2 ± 5.4 16.1 ± 2.9 19.7 ± 5.8 22.4 ± 3.8 n.s. Met/Met: t = −2.71 p = 0.020

Model based score 13.6 ± 6.0 4.9 ± 3.2 0.9 ± 3.2 8.5 ± 3.2 n.s. Met/Met: t = 2.62 p = 0.024

Stable phase

Model-free score 20.4 ± 4.6 15.1 ± 3.1 8.4 ± 5.6 21.0 ± 3.0 Late: t = −2.16 p = 0.037 Met/Met: t = 2.93 p = 0.014

Model based score 7.1 ± 5.0 10.4 ± 3.3 12.2 ± 6.9 11.2 ± 2.9 n.s. n.s.

Finally, similar to the drift phase, the Val-carriers did not show
significant cycle-related changes in the learning scores during
the stable phase [model-free score ± SEM: Early = 15.1 ± 3.1;
Late = 21.0 ± 3.0; t(28) = −1.63, p = 0.114] [model-based
score ± SEM: Early = 10.4 ± 3.3; Late = 11.2 ± 2.9; t(28) = 0.176,
p = 0.861] (see Figure 3B).

DISCUSSION

Variations in estradiol may influence dopaminergic transmission
and basic (model-free) aspects of reinforcement learning as
well as higher-order cognition (Jacobs and D’Esposito, 2011;
Becker, 2016; Diekhof and Ratnayake, 2016). Here, we examined
whether changes in estradiol modulate both model-free and
model-based reinforcement learning across the menstrual cycle,
also depending on the COMT-Val158Met genotype. The results
showed that women relied more heavily on model-free learning
in the high compared to the low estradiol state, yet only
when reward associations were volatile. This suggests that

the increased estradiol level may have led to a disruption of
frontostriatal interactions during reinforcement learning. This
seems plausible, since estradiol inhibits both striatal DRD2
expression and prefrontal COMT activity, which should interfere
with the prospective updating of value representations in the
striatum and should reduce the prefrontal signal-to-noise ratio
during the maintenance of behavioral goals. At the same time,
estradiol enhances dorsolateral striatal dopamine transmission
through DRD1, which would also favor habitual model-free
control (Lévesque et al., 1989; Xie et al., 1999; Schendzielorz
et al., 2011; Krentzel and Meitzen, 2018; see also Becker,
2016; Yoest et al., 2018 for review). When further accounting
for individual differences in the prefrontal dopaminergic
baseline capacity, we observed that Met-homozygotes with
high prefrontal dopamine also experienced a decline in model-
based control in the context of volatile reward probabilities.
In contrast, the model-based score of Val-carriers remained
unaffected by menstrual cycle phase. Altogether, these initial
findings lead us to infer that the endogenous change in estradiol
does not only affect model-free control, but also modulates
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TABLE 5 | Stable phase – Effects of cycle-phase, TS-task manipulation and COMT-genotype on stay frequencies.

Main effect or interaction F-value df p-value partial eta2

Previous reward* 45.22 1, 39 <0.001 0.54

Previous transition 0.19 1, 39 0.663 0.01

Cycle phase 0.26 1, 39 0.611 0.01

COMT genotype 0.01 1, 39 0.939 <0.01

Previous reward × previous transition* 18.60 1, 39 <0.001 0.32

Previous reward × cycle phase 0.97 1, 39 0.330 0.02

Previous reward × COMT genotype 0.58 1, 39 0.452 0.02

Previous transition × cycle phase 0.52 1, 39 0.474 0.01

Previous transition × COMT genotype 0.56 1, 39 0.460 0.01

Cycle phase × COMT-genotype 3.01 1, 39 0.091 0.07

Previous reward × previous transition × cycle phase 0.55 1, 39 0.461 0.01

Previous reward × previous transition × COMT genotype 0.06 1, 39 0.812 <0.01

Previous reward × cycle phase × COMT genotype* 8.30 1, 39 0.006 0.18

Previous transition × cycle phase × COMT genotype 1.04 1, 39 0.315 0.03

Previous reward × previous transition × cycle phase × COMT genotype 0.31 1, 39 0.583 0.01

*Significant effects (p < 0.05) are plotted in bold and are marked with an asterisk.

prospective model-based learning depending on prefrontal
baseline capacity.

We observed an increase in the propensity to use model-
free control in the high estradiol state in the complete group of
our subjects, yet only when reward-outcome was volatile. The
increase in model-free control was thereby related to reduced
task performance (reduced task success in terms of the total
number of acquired coins), suggesting that the predominant use
of model-free control was suboptimal for reward maximization
in the TS-task. It has been suggested that model-free learning
may be primarily mediated by striatal processing, whereas
model-based control may recruit both striatal and prefrontal
resources (Deserno et al., 2015; Doll et al., 2016). Interestingly,
the effect appeared to be specifically driven by the Met-
homozygotes, who showed an increase in model-free control as
well as a concurrent reduction in the capacity for model-based
learning during the drift phase, while the Val-carriers showed no
significant change in learning capacity. In that way, the present
observations may conform with the notion that higher estradiol
could have biased striatal processing toward the model-free, less
flexible learning component, and might even have concurrently
disrupted frontostriatal interactions necessary for model-based
control, at least in the Met-homozygotes. In the striatum of
female rodents, estradiol increases stimulated dopamine release,
particularly so in the dorsolateral striatum (Becker, 2016). In our
study, estradiol may thus have disrupted the balance between
model-based and model-free control by favoring model-free
processing and the incentive salience of immediate reward
during the drift phase. This becomes particularly likely when
also considering the environmental volatility of the drift phase.
In their theoretical paper on partial reinforcement, Anselme
(2015) proposed that incentive motivation may outweigh the
effect of actual learning on behavioral choice when a reward
outcome is uncertain. In humans, reward uncertainty increases
tonic dopamine in the midbrain and promotes reward-related
ventral striatal activation (Dreher et al., 2006). One may

therefore assume that the combined effect of reward volatility
and high estradiol could have biased behavioral choice toward
model-free control. In fact, Met-homozygotes also showed an
increased stay frequency following rare reward, which could have
reflected such a maladaptive increase in the incentive salience of
immediate reward.

Our observation of the estradiol-driven increase in model-
free control during the drift phase does neither fit with the
previously reported result of a disruption of model-free control
by the dopamine agonist L-DOPA (Kroemer et al., 2019), nor
with another observation of no influence of L-DOPA on model-
free learning, yet a positive effect on model-based control
(Wunderlich et al., 2012). However, these studies differ in
some important aspects from our own: First, any differences
to our young female sample (n = 41 women) could have been
related to the male predominance in the other two samples
[Wunderlich et al. (2012) tested 18 young male undergraduates
(mean age = 23 years), and Kroemer et al. (2019) examined
a representative adult sample (mean age = 37 years) of 49
men and 16 women], and might therefore reflect biological
sex differences in the mechanisms underlying reinforcement
learning (see Becker, 2016; Diekhof, 2018). Second, estradiol
and L-DOPA modulate different dopaminergic mechanisms.
Whereas, L-DOPA increases dopaminergic tone (Harun et al.,
2016) and thus reduces local dopamine changes after unexpected
reward, estradiol facilitates stimulated dopamine release (Becker,
1990, 1999; Xiao and Becker, 1998; Hu et al., 2006). More
specifically, in the prefrontal cortex, estradiol reduces tonic
dopamine, yet augments transient dopamine release following
stimulation, whereas in the striatum it increases both tonic and
phasic dopamine (Almey et al., 2015). Therefore, estradiol would
probably increase dopaminergic transmission after unexpected
reward, which would in turn increase model-free control, as
presently observed.

Only Met-homozygotes exhibited a compromised model-
based learning capacity during the drift phase when being in
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the late follicular phase. This was expressed by an increase
difficulty in the differentiation between common and rare reward,
with higher maladaptive stay frequencies after rare rewards.
These observations fit with the assumption that, on the one
hand, being homozygote for the Met allele is beneficial for
the stabilization of prefrontal information processing and may
protect goal-directed information from interference, since it may
keep the optimal range of dopamine for cognitive processing
(Durstewitz and Seamans, 2008; Slifstein et al., 2008; Schacht,
2016). On the other, the estradiol-promoted increase of prefrontal
dopamine should then have destabilized information processing,
also by disrupting the overall frontostriatal balance (Durstewitz
and Seamans, 2008). Even though our sample included only 12
Met-homozygotes, the observed decline in model-based learning
during the state of increased reward uncertainty may in fact
correspond to this pattern. Jacobs and D’Esposito (2011) found
a similar interaction between estradiol and COMT genotype in
a working memory task. In their study the 8 Met-homozygotes
showed a performance decline and a reduction of prefrontal
activation while processing the cognitively demanding lure trials
of an N-back task in the late follicular phase. Conversely,
in their study the 13 women homozygote for the Val-allele
apparently benefited from the higher estradiol and showed
enhanced cognitive performance, while prefrontal activation
was concurrently increased. In the present study, we did
not find a state-related change in the model-based learning
component of the 29 Val-carriers. We can only speculate that
the predominance of heterozygotes in this group (only 4 Val-
homozygotes) may explain this finding. Heterozygosity may
place an individual somewhere near or even within the optimal
range of prefrontal dopamine (Schacht, 2016) and it could be
expected that perturbations of dopamine through an endogenous
agonist such as estradiol may not at any case move an individual
beyond this range.

Further notably, the decline in model-based learning in
the Met-homozygotes was restricted to the state of increased
environmental volatility. We assume that this might have been
the result of the combined influences of (1) increased task
familiarity, and (2) the concurrent reduction of task difficulty.
Task familiarity, which can be achieved through extensive
training, may automatize model-based learning in the TS-task.
Economides et al. (2015) showed that repeated performance of
the TS-task on two consecutive days preserved model-based
control even in a dual-task condition. We assume that the
reduced task difficulty and increased task familiarity rendered
model-based learning less vulnerable to the influence of estradiol
during the stable phase, even in Met-homozygotes. Further,
previous evidence points toward a crucial involvement of striatal
DRD2 in the updating of goal-relevant representations, especially
in situations of increased task difficulty (Cools and D’Esposito,
2011). High estradiol can suppress DRD2-action and increases
stimulated dopamine release (Krentzel and Meitzen, 2018; see
also Becker, 1999; Yoest et al., 2018). Therefore, estradiol may
particularly interfere with the ability to update changing value
representations, which was crucially important for mastering
the drift phase. If we further presume that cognitive load
was increased by the volatile reward structure, we should also

expect an additional load-dependent increase in dopamine (see
also Mattay et al., 2003, who reported a similar interaction of
increased cognitive load and the dopamine agonist amphetamine
on working memory). This would also explain why the Met-
homozygotes showed a decline in model-based control during the
difficult drift, but not during the relatively easy stable phase.

In the stable part of the TS-task, we found that, in contrast
to the drift phase, model-free control decreased from the early
to late follicular phase in the Met/Met genotype, i.e., enhanced
stay frequencies in relation to non-reward, yet regardless of
transition type. Interestingly, this latter finding contrasted that
of the Val-carriers, who in the high estradiol state became
better at avoiding non-reward. Two previous studies found an
interaction between estradiol and avoidance learning capacity.
Diekhof and Ratnayake (2016) observed reduced activation of the
dorsal anterior cingulate cortex to negative feedback and reduced
avoidance learning performance in the late follicular phase.
Jakob et al. (2018) reported a similar effect, yet only in subjects
with a low striatal dopaminergic baseline. These observations
fit with the stable phase result of the Met-homozygotes,
but antagonize the observation in Val-carriers. Alternatively,
the differences between genotypes may be explained by the
interaction between dopamine and the prefrontal signal-to-noise
ratio. Firstly, in humans the Val allele has been associated
with a reduced prefrontal signal-to-noise ratio (Gallinat et al.,
2003; Winterer et al., 2006a,b). Secondly, in rodents dopamine
has been observed to increase the signal-to-noise ratio and
promote the encoding of aversive stimuli in the medial prefrontal
cortex (Weele et al., 2019). Thirdly, according to the inverted
U-shape hypothesis the prefrontal deficit of Val-homozygosity
can be transiently remedied, while the Met-homozygotes may
be thrown out of balance by dopamine agonists (Cools and
D’Esposito, 2011; Schacht, 2016). Since estradiol may down-
regulate COMT activity (Xie et al., 1999; Schendzielorz et al.,
2011), it should in turn increase prefrontal dopaminergic tone.
Thus, in the dopamine-deficient Val-carriers higher estradiol
might have increased the signal-to-noise ratio leading to a
better avoidance of (common) non-reward in both phases
(Cools and D’Esposito, 2011).

Nevertheless, this does not explain why Met-homozygotes
showed such marked differences in model-free control between
phases. We can only speculate that the marked differences
in reward volatility might have involved dissimilar cognitive
operations and thus taxed different physiological mechanisms to
solve the task at hand. On the one hand, the drift phase was
characterized by the need to learn stimulus values incrementally,
making prospective learning less effective. This emphasized
model-free learning from immediate outcome, particularly so in
the high estradiol state, and because of the supposedly increased
cognitive load, augmenting dopaminergic transmission (Becker,
1999, 2016; Mattay et al., 2003). On the other hand, stable reward
contingencies and decreased task difficulty enabled the more
effective use of model-based control in the second half of the TS-
task. Although the ability to integrate non-reward into behavioral
choice declined in the Met-homozygotes it did not impair overall
gain in the stable phase. This indicates that the more effective
use of model-based control outweighed the need to rely on
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model-free control of behavior here. In fact, the model-based
system has been shown to cooperate with the model-free system
and can “train” the latter by replaying and simulating experience
offline. This may in turn allow for choice that appears model-
based (see Gershman et al., 2014). Finally, it is possible that the
behavioral adaptations to randomly drifting reward probabilities
in combination with the increased effort the participants put into
responding during the drift phase could have to some extent
disguised an estradiol-related deficit in avoidance learning in the
state of heightened estradiol.

CONCLUSION

We found that cycle-related differences in reinforcement learning
capacity were most pronounced during the state of increased
environmental volatility (drift phase) and in Met-homozygotes,
whose ability to use model-based learning was significantly
reduced in the high estradiol state. Further, model-free learning
appeared to be enhanced in the same state and this effect was
already evident on the group level, but most pronounced in
the Met/Met genotype. In contrast, Val-carriers remained widely
unaffected by changes in endogenous estradiol. The present
data suggest a disruption of frontostriatal interactions during
reinforcement learning in a state of naturally enhanced estradiol.
This seems plausible as estradiol may have an inhibitory influence
on both striatal DRD2 expression and on prefrontal COMT
activity, which should interfere with prospective updating of
value representations in the striatum and reduce the prefrontal
signal-to-noise ratio during the maintenance of behavioral
goals. At the same time, estradiol may enhance dorsolateral
striatal dopamine transmission through DRD1, which could
decouple behavioral decisions from goal-directed, model-based
choice and might favor model-free control. Consequently,
the present observations may be important for the better
understanding of mechanisms that lead to addiction and
substance abuse or promote craving and relapse during
abstinence in naturally cycling women.
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