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Navigating animals combine multiple perceptual faculties, learn during exploration,

retrieve multi-facetted memory contents, and exhibit goal-directedness as an expression

of their current needs and motivations. Navigation in insects has been linked to a

variety of underlying strategies such as path integration, view familiarity, visual beaconing,

and goal-directed orientation with respect to previously learned ground structures.

Most works, however, study navigation either from a field perspective, analyzing purely

behavioral observations, or combine computational models with neurophysiological

evidence obtained from lab experiments. The honey bee (Apis mellifera) has long been

a popular model in the search for neural correlates of complex behaviors and exhibits

extraordinary navigational capabilities. However, the neural basis for bee navigation has

not yet been explored under natural conditions. Here, we propose a novel methodology

to record from the brain of a copter-mounted honey bee. This way, the animal experiences

natural multimodal sensory inputs in a natural environment that is familiar to her. We

have developed a miniaturized electrophysiology recording system which is able to

record spikes in the presence of time-varying electric noise from the copter’s motors

and rotors, and devised an experimental procedure to record from mushroom body

extrinsic neurons (MBENs). We analyze the resulting electrophysiological data combined

with a reconstruction of the animal’s visual perception and find that the neural activity

of MBENs is linked to sharp turns, possibly related to the relative motion of visual

features. This method is a significant technological step toward recording brain activity

of navigating honey bees under natural conditions. By providing all system specifications

in an online repository, we hope to close a methodological gap and stimulate further

research informing future computational models of insect navigation.

Keywords: honeybee (Apis mellifera L.), neuroethology, navigation, mushroom body, naturalistic condition, quad
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1. INTRODUCTION

Honey bees are remarkable navigators. Foragers learn to orient
in complex environments and perform accurate goal-directed
flights in areas several square kilometers in size (Collett, 1996;
Menzel and Greggers, 2015). A range of experimental evidence
and computational models regarding which strategies bees may
employ have been put forward (Srinivasan et al., 1996). Path
integration, visual guidance using view memories or structured
landmark memories may play a role. However, it is still unknown
whether and how those components are combined and at which
level of computation they may be available to a navigating bee
(Collett, 2019; Webb, 2019). In most animal models, the search
for the neural correlates of navigation has made considerable
progress through experiments in which the recorded animal was
able to move freely in close-to-natural environments (O’Keefe
and Nadel, 1979; Bingman and Able, 2002; Hafting et al., 2005;
Rubin et al., 2014; Eliav et al., 2021).

In insects, we can identify two main approaches: animals
may either move freely in small confined arenas, such that their
brain is accessible with wire electrodes or imaging techniques
(Jin et al., 2014, 2020; Kim et al., 2017), or they are tethered in
virtual reality setups moving stationarily (Harrison et al., 2011;
Zwaka et al., 2019). Early evidence showed that bees accept
virtual stimuli (Abramson et al., 1996), and virtual reality arenas
in which bees can explore artificial environments “afoot” have
been established (Schultheiss et al., 2017; Buatois et al., 2018).
However, while other insects have been shown to readily fly
in virtual environments (Kaushik et al., 2020), so far only one
virtual reality arena for bees reported flights just over one minute
long (Luu et al., 2011). No neurophysiological data has yet been
obtained from bees flying in virtual reality. Recording from
neurons using a backpack of miniaturized hardware as proposed
in dragonflies (Harrison et al., 2011) is still infeasible due to size
and weight constraints in bees. As a result of this technological
gap, little is known about the neural correlates of flight navigation
in bees.

Substantial previous research in various insect species
has identified potential candidate neuropils that may play
a role in navigation. Recent work, however, suggests that
even minor differences between the connection patterns of
different insect species may yield a significantly different
functionality of these circuits (Pisokas et al., 2020), underlining
the necessity of neurophysiological access to navigating honey
bees in flight.

Where should we look for neuronal correlates of navigation?
The central complex was found to house neurons essential
for sun compass related navigation (Homberg et al., 2011).
Body direction cells were found in the cockroach’s central
complex under conditions that allowed testing of immediate
memory effects as they appear under dynamic spatial object-
body relations. They thus may play a role in guiding walking
trajectories under natural conditions (Varga and Ritzmann,
2016). Ring neurons in the Drosophila central complex were
found to code body direction in relation to simulated visual
objects (Kim et al., 2017), and these neurons are thought to play
a role in the directional component of path integration (Seelig

and Jayaraman, 2015). However, the central complex is difficult
to access in honey bees. It lies below the mushroom bodies
(MBs), another important neuropil that integrates multi-modal
sensory input and is involved in memory formation (Menzel,
2014). Particularly in the context of navigation, the MB has
been previously hypothesized to store view memories that the
navigating insect could match with its current observations
(Menzel, 2012; Webb and Wystrach, 2016; Müller et al., 2018;
Webb, 2019) and would then continue moving into directions
of highest familiarity. Previous work confirmed detrimental
effects on higher-order forms of learning (Komischke et al., 2005;
Devaud et al., 2007) when interfering with the mushroom body’s
functioning (Buehlmann et al., 2020; Heinze, 2020; Kamhi et al.,
2020). Mushroom body extrinsic neurons (MBENs), neurons
at the output of the mushroom body, are likely involved in
memory formation and retrieval (Menzel, 2014) and have been
successfully recorded in freely walking honey bees (Duer et al.,
2015; Paffhausen et al., 2020). Moreover, a subset of MBENs
can be targeted precisely under visual control after exposing
only a fraction of the brain (Menzel, 2013). This increases the
animal’s survival rate over extended recording durations, and
hence, we here decided to target MBENs. The MBs multimodal
and learning-related properties make it a much more suitable
target in the context of real-world vs. virtual reality. It seems
more likely to trick the central complex with a VR stimulation to
process meaningful information related to navigation. The MB,
however, has the potential to be more sensitive to the integration
of multimodal stimulation. The synchrony, resolution, and
comprehensiveness of the real world may be particularly
helpful when investigating the involvement of the MB
during navigation.

We propose a novel methodology to record neuronal
activity from MBENs of honey bees on a quadcopter. The
animal can be flown automatically along predefined routes
presenting natural stimuli in all sensory modalities. We
performed behavioral experiments to verify that bees show
flight behavior when tethered on the copter and can integrate
visual information perceived on the copter in subsequent
episodes of autonomous navigation. Supported by these
results, we developed a miniaturized recording system that
is capable of amplifying and digitizing neural activity while
reducing motor and rotor noise to acceptable levels. In
this paper, we specify all system components and show the
results of our behavioral experiments. We provide a detailed
account of experiments in which we successfully recorded
neurophysiological data in flight and present an analysis that
confirms that the recorded activity is linked to the sequence
of stimuli perceived along the flown routes. This is the first
work that proves that this alternative to virtual environments
is indeed feasible. By opening all system specifications, code
and data, we hope to encourage the community to continue
these efforts to identify the neural correlates of navigation in
honey bees1.

1Code and schematics: www.github.com/BioroboticsLab/

neuronal_correlates_honeybee_navigation.
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FIGURE 1 | Map of the field site for the behavioral experiments. For the

homing experiment, honey bees from the hive (Red) where trained to forage at

the indicated feeder location (Orange). Individuals caught at this site were

attached to the quadcopter and transported to the release site (Yellow).

2. METHODS

2.1. Behavioral Experiments
Behavioral experiments were conducted in a grassland east of
Großseelheim, Germany. A two-frame observation hive was set
up at the western border of the field (50◦ 48’ 51.1452" N, 8◦ 52’
20.9928" E). The field site was rich in visual landmarks, both
on the ground (irrigation channels, footpaths, hedges, etc.) and
the horizon (see the map in Figure 1 and panoramic images in
Supplementary Material).

2.1.1. Do Tethered Bees Show Flight Behavior on a

Drone?
Honey bee (Apis mellifera) workers from three groups
(hovering—H, forward flying—F, and control—C) were
attached to a quadcopter (Matrice 100, DJI, Shenzhen, China)
via an extension arm (50 cm in length, see Figure 2). A number
tag with a small metal pin was glued to the animal’s thorax, and
the pin was clipped to the extension arm. The arm positioned the
bee such that it had an almost unoccluded view. The copter was
placed in the field, and the animal was allowed to grab a light
foam ball (∼8 mm in diameter) attached to the ground via a
string. A camera behind the animal recorded video at 25 Hz to an
SD card. At the start of the experiment, the copter lifted off from
the ground (groupsH and F), pulling the bee from the foam ball.
For the control group C, the ball was pulled manually, without
any motor activity of the copter. Due to the tarsis reflex, the
bees started beating their wings instantaneously. Bees in group
H were lifted upwards to ∼2 m altitude (natural altitude during
short foraging trips with a distance of 30 m), with negligible
rotatory or horizontal movement. Bees in group F were flown
forwards, continuously gaining altitude (up to 2 m) and distance
to the lift-off point. The copter was controlled manually and
brought back after no wing beating was observed anymore or a
maximum of oneminute of flight time had passed. Flight forward
velocity was 10 m/s (natural flight speed observed during radar
experiments, Riley et al., 2005). Videos were analyzed after the
fact, and the duration of continued wing beating was extracted.
Each of the 47 bees was tested with all treatments in randomized
order with resting intervals of 1 min.

2.1.2. Homing After Copter Flight
We investigated if bees extract information relevant for homing
when being transported on the copter. Bees were trained to a
sugar dish 400m east of their hive (50◦ 48’ 56.25" N, 8◦ 52’ 38.766"
E, see Figure 1) and caught after drinking ad libitum. A small
plastic marker with a metal pin was glued to the number tag they
already had affixed to their thorax. The animal was then either
clipped to the copter’s extension arm (treatment group T, N =
54) or put in an opaque box on the top face of the copter (control
group C, N = 18) such that it could not perceive the flight path
visually. The animal was tethered with a small clamp in the box,
similar to the mechanism depicted in Figure 2. The procedure
took ∼1 min. The copter was then started manually, ascending
vertically to 15 m altitude, and was then set to reach the target
location automatically (400mnorth of the feeder location: 50◦ 49’
6.4632" N, 8◦ 52’ 30.5616" E). Both lift-off and landing procedures
were performed manually because automatic lift-off and landing
were implemented with a slow rate. Flight velocity was 10 m/s.
Upon arrival at the target location, the bee was untethered and
released. The time and ID of the bee were noted upon release
and arrival at the hive. Some bees landed in the grass shortly after
taking off. For these bees, we noted the time they resumed their
return flight.

2.2. Neuronal Correlates of Navigation
2.2.1. Miniaturized Recording System
To record neural activity from the bee’s brain, we developed a
lightweight, battery-driven amplifier, and a data acquisition and
storage system. The custom solution consisted of a two-channel
extracellular amplifier, two analog-digital converters (ADC), and
a microcontroller board with an SD card for data storage. The
amplifier (see Figure 3) was based on a suitable one-channel
amplifier (Budai, 2004). The circuit board (PCB) contained two
of those amplifiers, a shared power supply, and two electrically
isolated ADCs that were read out simultaneously by a dedicated
microcontroller. The head stages were laid out on a separate PCB,
located close to the bee. This way, the weak neural signals had to
travel only a few centimeters. The electrode bundle (Duer et al.,
2015) consisted of two enameled copper wires and a bare silver
wire as reference. The reference wire was bent 90◦ relative to
the copper wires, 80 µm above the electrodes’ tip, to indicate the
desired depth of electrode placement in the brain. The two input
channels were measured and amplified in reference to the shared
ground electrode. The resulting signals were later subtracted
from each other in the digital domain to form a differential pair.
The impedance of each electrode was highly dependent on the
final recording site, i.e., the surrounding tissue and their electric
properties. An offline impedance matching allowed for the most
accurate noise cancelation (see section 2.3).

Electric noise reduction was of particular importance due
to the disproportionately small voltage and current of the
brain signals and the noise emanating from the copter. In-
flight, the copter generates strong electric and electromagnetic
fields. The plastic rotors generate electric fields by statically
charging due to the air friction, and the four motors driving
the rotors generate strong electromagnetic fields. Each motor
is connected to a motor controller that generates strong
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FIGURE 2 | Behavioral field experiments. (A) Honey bee attached to a quadcopter via an extension arm. (B) Still image of a video recording showing flight behavior

defined as continuous wing beating, with raised abdomen and hind legs.

FIGURE 3 | Extracellular amplifier and data flow. (A) Photograph of the custom two-channel extracellular amplifier. The design contains two head stages to convert

the impedance. They are located close to the bee’s head. Each analog signal is then processed separately by amplifiers (amplification factor: 1,000x) and active filters

(bandpass: 300 Hz–10 kHz). The resulting analog signals were then digitized by two synchronized delta-sigma analog to digital converters (16 bit, 20 kHz sampling

frequency). Two galvanic isolators isolated the digital signals to not pick up any noise from the data storing microcontroller (STM32F4). (B) Schematics of the system

with a STM32F4 as on-board computer. Diagram of all electrical components of the neurocopter system and the used buses additionally to the components which

are parts of the DJI Matrice 100 quadcopter. The blue arrows represent data transfer. The direction of an arrow symbolizes the direction of the information flow. The

red arrows show power supplies and their respective voltages. To make the code hardware independent, the STM32 cube hardware abstraction layer was used for

hardware access.

switching noises, interferes with the copter’s battery voltage,
and generates electric field changes. All those influences were
considered when the amplifier’s power supply was designed and
isolators were chosen. The cables transmitting analog signals
were particularly susceptible to noise. Copper tape was used to
shield all cables from electric field interference. The recorded
signals were amplified such that the biological signals were
detailed enough for sufficient spike sorting, but the large voltage
changes would not saturate the input range of the amplifier
(see Figure 8). The amplified and filtered (100–20,000 Hz)
signals were digitized and read out by a microcontroller board
(see Figure 3). This component acquires timestamps from a
connected GPS module and stores the data on an SD card.
The neural data, therefore, was synchronized to the copter
telemetry data.

2.2.2. Quadcopter
A quadcopter (Matrice 100, DJI, Shenzhen, China) was equipped
with the miniaturized recording system and an extension arm to
attach the animal and recording equipment. A camera observed
the tip of the arm from below and provided a view of the
environment (Yi 4k, YI Technologies, Singapore, see Figure 4).
The battery case was retracted slightly to balance the weight of
the extension arm for best flight stability. A custommetal cage on
top of the copter contained the amplifier board. It was shielded
with copper tape that was connected to the copter battery’s
negative terminal. The microcontroller board was located on
top of the cage. The extension arm also separated the bee from
the motors as far as possible without interfering with the flight
properties and the center of mass of the copter. The potential
pickup of electromagnetic fields emerging from the motors and
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FIGURE 4 | Environment of the navigation experiments. (A) View of the onboard video camera. The frame shows the experimental environment while the copter is en

route to the feeder (see marked location in B). (B) Trajectory of the trefoil flight pattern. Flights started at the south-west corner of the field, ∼180 m from the hive.

FIGURE 5 | Preparation setup and recording site. (A) Preparations for electrophysiological experiments were performed in a controlled environment with the honey

bee already attached to the quadcopter. (B) A small rectangular incision into the head capsule revealed the bee brain’s alpha lobe after the trachea and glands were

pushed aside. The electrode bundle visible in the microscope was attached to a micromanipulator with dental wax. Once the electrode bundle was implanted, it was

connected to the head stage on the copter via a custom connector jack. Finally, the electrodes and incision were sealed with silicone. Before the animal was moved to

the field, the electrode holder was detached to allow for a free anterior view.

propellers is decreased this way. The bee stage was connected to
the extension arm by rubber dampeners to reduce vibrations.

2.2.3. Field Site and Photogrammetry
A hive was set up at Free University Berlin (52◦ 27’ 25.3116" N,
13◦ 17’ 45.7584" E), and bees were trained to collect sucrose from
a feeder on a field (∼50,000 m2) at Julius-Kühn-Institute Berlin,
Germany (52◦ 27’ 39.7008" N, 13◦ 17’ 48.3288" E). All inflight
neurophysiological recordings were conducted at this site.

In the post-experimental data analysis, we studied the
link between neural activity and the animal’s visual input,
reconstructed from the copter’s position and a realistic 3-
dimensional map of the field site. Prior to the experiments, the
field was mapped using photogrammetry from aerial imagery
(using a DJI Inspire, Pix4D), resulting in a surface depth
map. Due to regulations, we were not allowed to fly over the
surrounding areas. We extracted freely available image data
(Google Earth) in virtual flyovers for the surrounding field
(in total 220 km2) and reconstructed the depth map in high-
resolution (12 cm/pixel) for a close neighborhood around the
field and in low resolution (∼4 m/pixel) for a larger surrounding

area. The three maps were combined in Blender (Blender
Online Community, 2018). This way, the high-res map of the
field (resolution: ∼13 cm/pixel) provided detailed and up-to-
date ground structures, while the two other models provided
horizon information.

2.2.4. Experimental Procedure
Honey bees were trained to a feeder on the experiment site, 420
m north of the hive. The feeder (0.5 M sucrose solution) was
positioned in the middle of the field (see Figure 4, standing on a
bright yellow box (80 cm wide, 35 cm long, and 40 cm high). All
bees visiting the site were marked. The marking color changed
every day to distinguish how many days a bee was foraging at the
site.

In preparation for an experiment, one of the marked honey
bees with at least three days of visiting the feeder was caught at
the hive. The bee was transferred into a glass vial and anesthetized
on ice. The bee, once immobilized, was carefully harnessed in
a bee holder with fabric tape and mounted to the recording
stage on the copter (see Figure 5). Under stereomicroscopic
vision, the head was opened, and the glands and trachea were
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pushed aside until the alpha lobe was visible (see Figure 5). Two
electrodes were implanted into the region of interest. The ground
electrode would then rest on the surface of the brain. Once
stable neuronal signals were occurring, the electrodes and head
aperture were sealed with silicone (Kwik-Sil, WPI, Sarasota, FL,
US). The bee and copter were then transported to the field site.
A preflight check assured that neural activity was present after
light stimulation (acoustic monitoring) and that the recording
system was running properly. After the preflight check, the bee
was flown automatically on a predefined path resembling a trefoil
(see Figure 4). The flight path was chosen such that it includes
feeder flyovers from different directions and a flight stretch into
the hive’s direction. This way, we would be able to explore several
hypotheses, e.g., that MBENs respond to familiar views. Bees
can see ∼300◦ horizontally on the body plane with low spatial
resolution for peripheral ommatidia (Seidl and Kaiser, 1981).
The bee holder may thus have blocked a small portion of the
posterior view (see Figure 5). Otherwise, the bee had an almost
unobstructed view of the environment.

Flights started in the southwest corner of the field,
approximately on the line connecting hive and feeder, into the
direction of the feeder. The copter lifted off manually to an
altitude of 15 m and was then switched to automatic waypoint
following. Flight velocity was set to 5.5 m/s. The speed and
altitude were chosen because of the legal requirement tomaintain
line of sight. The copter described a linear path to the feeder and
beyond and then executed a right turn ∼80 m behind the feeder.
The turn reoriented the copter back to the feeder, now facing
it from a different bearing. The sequence (feeder overflight and
turn) was repeated twice, and the copter then flew back to the
start location to repeat this flight pattern until the battery of the
copter was too low to continue (3–5 repetitions depending on
wind conditions, e.g., head- or tailwinds). The copter was then
landed manually at the start site for battery replacement, with
consistent rest times between trials. Each time, we downloaded
the data to a laptop and then performed the preflight check again.
The process was repeated until either the animal died or no spikes
could be registered anymore.

2.3. Data Analysis
2.3.1. Behavioral Experiments
Statistical hypothesis testing was performed to analyze the
behavioral data. For the wing duration experiment (section 2.1.1),
a one-sided Mann-Whitney U-test was used to test the null
hypothesis that there are no significant differences in observed
flight behavior duration between the three groups (hovering—H,
forward flying—F, and control—C).

For the homing experiment (section 2.1.2), a one-sidedMann-
WhitneyU-test was used to test the null hypothesis that there are
no significant differences in the duration of homing flights after
the release from the copter between the two groups (treatment
group—T, control group—C).

2.3.2. Neuronal Correlates of Navigation

2.3.2.1. Spike Sorting
The recorded data consisted of two channels of neuronal signals
timestamped by GPS signals. The GPS signal was also used to

timestamp the telemetry of the copters flight path, which would
be used to synchronize the data with sub-millisecond accuracy.
The telemetry data was saved with 100 samples per second,
including the speed, height, GPS coordinates, acceleration, and
orientation of the copter. The data were then merged using the
GPS timestamps.

The electrophysiological recordings were analyzed using the
Python scientific software stack (Walt et al., 2011; Virtanen
et al., 2020). We developed a data processing and spike sorting
procedure similar to Quiroga et al. (2004) but adapted to
high levels of non-homogeneous noise in the data caused by
the motors and rotors of the copter. A robust normalization
was applied to both channels separately: xt = [xt −

median(X)]/mad(X), where xt is the amplitude of the signal at
time t andmad is themedian absolute deviation of the signal. The
differential of the two recordings was then computed to improve
the signal-to-noise ratio in the data. Furthermore, a local robust
normalization was applied with a sliding window size of one
second to reduce the effect of the time-varying signal-to-noise
ratio caused by the quadcopter’s motors and rotors on the quality
of the extracted signal.

Spikes were then extracted using thresholding. A robust
estimate of the standard deviation was calculated as n =

median(X) ·k (k = 1.4826). The threshold for spike detection was
set to Thr = 4 ·n (Quiroga et al., 2004). Spike positions were then
extracted using local minima detection on the thresholded data.

For each detected spike, a window around the peak of the
signal of length 1.44 ms was extracted for spike sorting. Haar
wavelet coefficients were calculated using PyWavelets (Lee et al.,
2019). The dimensionality of these features was reduced using
the PCA implementation of scikit-learn such that each remaining
feature explains at least one percent of the variance of the wavelet
coefficients (Pedregosa et al., 2011). Anomaly detection was
performed using the Local Outlier Factor (Breunig et al., 2000)
on the PCA features, and detected outliers were not used in
further analyses. Spikes were then clustered using the HDBSCAN
algorithm (McInnes et al., 2017) on the PCA features using a
minimum cluster size of 100.

To increase the method’s sensitivity in periods of high noise
(e.g., during acceleration of the quadcopter), for each detected
neuron, the median spike shape was determined, and the
sliding Pearson correlation of this shape with the normalized
input signal was computed. The spike detection steps were
then repeated on the correlation coefficient, i.e., a threshold
was computed, and local minima beyond this threshold were
detected. This pattern matching spike detection increased the
number of detected non-outlier spikes from 13,861 to 17,106 in a
recording of∼14 min.

Spike trains were binned in intervals of 100ms, and spike rates
were calculated as the sum of detected peaks during each interval.
For the visualization of the rates in Figure 8, a rolling mean with
a window size of 3 s was used to smoothen the trajectory.

2.3.2.2. Autocorrelation of Spike Rates
The trefoil path was repeated multiple times per flight, and it
seems possible that the neuronal signals reflect these repetitions,
irrespective of which sensory properties the units we record
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FIGURE 6 | Mapping of a honey bee’s vision at one position. (A) 3D rendering from the photogrammetric model of the experimental landscape. (B) The reconstructed

honey bee’s perception of the field. To draw this perspective onto a map, the location of each pixel in the photogrammetric model is calculated. (C) Only pixels that

show a part of the field are used for mapping, which are marked as green in image Red pixels show parts of the environment outside the field. They are not used for

mapping as well as blue pixels which lead to artifacts after mapping. (D) Ray casting is used to model the locations in the field perceived by the individual and placed

on a map of the field. Each mapped pixel is assigned the same color as in the bee image.

from encode. To verify that hypothesis, we calculated the
Pearson correlation coefficient of the spike rate time series that
corresponds to a single repetition of the trefoil trajectory in a
sliding window over the whole flight’s recording. If the bee’s brain
signals reflect the repetitive flight patterns, we expect to see peaks
denoting the beginning of every trefoil pattern.

2.3.2.3. Realistic Model of the Honey Bee Compound Eye
In the data analysis, the copter telemetry data (GPS and compass
readings) were used to reconstruct the flight path in the 3-D map
of the environment. We previously published a software package
to reconstruct bees’ visual perception (Polster et al., 2019). These
bee viewsmimicked the field of view of the compound eye and the
distribution and sampling properties of individual ommatidia.
For each 3D position and orientation in the virtual environment,
the software casts rays for individual ommatidia and provides a
sample of the texture color at the intersection with the 3D model
(see Figure 6). To explore whether specific ground or horizon
structures may have given rise to repeatable spike activity, we
used the software to project spike rates back to the virtual surface.

3. RESULTS

3.1. Forward Motion Induces Tethered
Flight
The forward flight group F showed significantly longer wing
beating compared to both control and hover groups (median
[min, max]; group F: 13 s [0 s, 64 s]; F vs. group C: 2 s [0 s, 16
s], U = 279.5, P < 0.001; F vs. group H: 3 s [0 s, 14 s]; U = 468, P
< 0.001). Groups C and H did not differ significantly (U = 2329,
P = 0.089). See Figure 7 for boxplots of the data.

3.2. Copter Transfer Allows Faster Homing
Bees in the treatment group T returned home after a significantly
shorter amount of time (median [min, max]; group T: 149.5 s [75
s, 1,070 s]; T vs. group C: 200 s [105 s, 875 s]; U = 326, P = 0.019).
See Figure 7 for boxplots of the data.

FIGURE 7 | Individuals show more natural flight behavior while being attached

to a flying drone and can navigate faster when they can perceive their

environment while being transported to a new location. (A) The total time of

wing beating on the ground, in stationary flight, and during forward movement

of the drone. Wing beat behavior occurs for longer durations during a forward

movement of the drone (N = 47). (B) Individuals were caught at a feeding site

and replaced to a new location using the drone before being released (N = 54).

Bees in the control group (N = 18) were contained in an opaque container and

could not visually perceive their environment during flight. Return times to the

hive were measured, and control bees were found to take significantly longer

to return.

3.3. Recording Neural Activity Is Feasible
on a Flying Copter
Before using the new recording system on the copter, we
tested its functionality with artificial signals and signals from
a honey bee brain under laboratory conditions. Activity
from the same source was recorded with both the copter’s
amplifier system and a commercial system (amplifier: EXT,
npi, Tamm, Germany; digitization: 1401micro, Cambridge
Electronics Design, Cambridge, UK). We found no significant
differences in the data obtained by these two systems when
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FIGURE 8 | Spike train evaluations for bee A. (A) The neuronal activity recorded during a flight from two channels exhibited high noise levels, most of which was

eliminated by subtracting the two channels in the digital domain. (B) The differential raw trace shows spikes above residual noise. (C) Recording from (B) zoomed in

on two individual spikes (exceeding the horizontal threshold potential). The recording was spike sorted to extract single-unit activity. (D) Spike shape template of units

shown in (C). (E) Inter-spike interval (ISI) distribution showing a single mode at 21 ms and very few instances below 5 ms. (F) Spike rate over time per flight (see

Figure 4). Each graph represents a repetition of a continuous flight path from start to finish for the same trefoil trajectory. The repetitions share similar features

synchronized to the time (and therefore place) of the flown path.

FIGURE 9 | Spike rates are strongly autocorrelated for multiple repetitions of the same flight trajectory. Sliding-window autocorrelations were computed for all rounds

of six (a–f) flights. For all flights, particularly for flights a, b, and d, strong correlations of spike activity were observed for several rounds of the same flight trajectory.

Gaps between rounds and the starting and landing periods were removed, and the sliding Pearson correlations were computed. Gray lines indicate the start of

a round.

comparing spikes from bee brains as well as sweeping through
frequencies generated artificially.

In-flight, we successfully recorded uninterrupted single-unit
activity from MBENs for multiple repetitions of the flight
trajectory. The electrodes picked up significant amounts of EM
noise produced by motor controllers, motors, and propellers. We
observed that the noise levels differed between channels, probably
due to differences in impedance. However, the differential

recording allowed removing much of it when carefully adjusting
the respective digital gain factor for one of the channels. For
each experiment, the factor was set manually after the fact. Once
this tuning was complete, spike shapes emerged. The amplitude
of the monopolar input channels was around 100 times larger
than the resulting spikes from the differentiated channel. These
recordings were then sorted. We calculated interspike intervals
and confirmed that the refractory period of 4 ms was rarely
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FIGURE 10 | (A) Spike rate of mushroom body output neurons of an individual bee and angular velocity during flight. (B) A strong time-lagged correlation between

spike rate and rotational speed (yaw) was found with a lag of 0.7 s (Pearson’s r 0.27, p ≪ 0.001).

undercut, indicating the successful sorting of single spike sources.
For more details, see Figure 8.

3.4. Neuronal Activity During Flight Is
Repeatable
Experiments with neuronal recordings on the copter took place
during the fall of 2018 and summer of 2019. Starting with
around 200 animals, we successfully implanted electrodes into
∼50 animals, all producing neural activity upon light stimulation.
However, only 10 animals continued to provide spike data after
transport to the field, and only three of these recordings passed
the post-experiment quality control check. Half of the recordings
showed too much noise over the entire flight list with doubtful
spike sorting results, and two recordings were excluded due to
variable signal-to-noise ratios throughout the experiment.

The neural recordings are consistent for repeated
environmental stimuli. We find strong autocorrelation of
the spike rates for single trefoil flight patterns in individual bees
(see Figure 9). This indicates a relationship between the phase of
the trajectory and the spike rate.

We found that episodes with high spike rates coincide with
turning maneuvers (see Figure 10), though high spike rates do
not exclusively appear in turns, and some turns do not show
higher spike activity. These findings are consistent for repetitions
of the same trajectory in one animal but also between individuals.
We found a strong correlation of the spike rates with the copter’s
turning velocity at a latency of 0.7 s. In some recordings, straight
flight paths showed spike rate variations as well, yet we did not
find any explanation for this behavior (see Figure 11).

Visual inspection of the spike rates revealed no apparent
correlation to the bee’s spatial relation toward the feeder or the
hive. We used a model of the bee compound eye to map the spike
rate back to the map of the area for each position along the flight
path (see Figure 12). While blobs of activity are visible on the
resulting maps, they are likely due to single bursts and not due to
distributed activity summing up over repeated overflights.

The mapping of spike rate activity to the field of view of the
individuals in general revealed regions associated with high spike

rates that were varying over multiple repetitions of the same
trajectory, even within one individual. Interestingly, even when
excluding the turns in this mapping, the regions near the turning
maneuvers tended to show the strongest activity (see Figure 11).
We found no clear evidence of consistent associations of spike
rate with specific landmarks in the data analyzed here.

4. DISCUSSION

We propose a novel methodology in the search for the neural
correlates of navigation in bees. In contrast to reproducing
realistic conditions in virtual environments, we propose moving
the lab to the field. While this approach comes with its own
challenges, we show that recording neural activity from MBENs
in honey bees is feasible on a quadcopter in flight.

We miniaturized the recording hardware, and substantially
reduced motor noise picked up by the electrodes with
various strategies, from grounding and shielding to differential
recordings and respective hardware design decisions.

Those bees that survived the implant and were transported
to the field survived multiple repetitions of the flight trajectory.
The bees that entered analysis showed no baseline shifts
indicating electrode movement nor subsequent loss of units. The
electrophysiological data are of high quality, and the spikes and
their properties are close to those recorded under lab conditions
(Zwaka et al., 2019).

While continuous wing-beating behavior was observed for
only a fraction of natural navigational flight durations, forward
flight induces longer wing beating compared to the control
groups. It is possible that tethered bees, even those that do not
fly, perceive their environment as indicated by their significantly
shorter homing flights as compared to compromised vision.

Data from three successful neurophysiological experiments
may not be conclusive evidence that bees fully retrieve
their navigational experience when tethered on a copter, the
reproducible neural activities during their trefoil paths, however,
suggest that MBENs encode visual features possibly related to
the environment. The most prominent correlation we found
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FIGURE 11 | Flight trajectories and spike rate. Each plot shows the spike rate as false color on top of the coordinates of the flown trajectory. The plots are in

consecutive order for the first three flights of each bee [(A) Bee A, (B) Bee B]. The following flights are depicted in the supplementary. At the center of the flower

formation, the trained feeder is located. The spike rate in Bee B is more heterogeneous and higher at the corners. The flown corners in the experiments of bee B are

sharper than for bee A.

FIGURE 12 | Mapping of the spike rates on the field of view of the individuals during flights. At each position, all pixels in the field of view of the bee on the map are

assigned the corresponding spike rate value at that time. The mean is calculated of pixels with multiple assigned spike rate values during mapping. Turns were

excluded to highlight spike activity during parts of the rounds without high angular velocity. See the Supplementary Material for the mapped spikes rates

including turns.

confirms earlier findings of body turning encoded in MBENs of
the cockroach (Mizunami et al., 1998). A similar relationship was
found during flight turns in cockroaches (Guo and Ritzmann,
2013). The spike rate correlation could also be related to non-
visual stimuli like antennal deflection or changes in inertia.

Before continuing these recording experiments, a few
additional key challenges have to be overcome. We need to
increase the success rate (currently only 5%) and survival time
of the animal. The success rate under laboratory conditions
varies between 30% in bees mounted to a tube (Filla and
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Menzel, 2015) and 10% in bees moving stationary in a virtual
environment (Zwaka et al., 2019). The recording electrodes
require improvement, particularly the ground electrode that
appears to transfer too much mechanical stress onto the brain.
One failure case may be attributed to the silicon we used to
seal the head access window. In some animals, the signal quality
decreased over the time the silicon was set to dry, and we suspect
the electrode position to have changed due to shrinkage of the
silicone seal. A strong seal that limits electrode movement also
throughout the copter flights appears as a crucial element in
increasing recording quality.

To reduce post-experiment rejection rates (so far at 70%),
we need to further improve the signal-to-noise ratio. On the
one hand, this could be accomplished with better shielding and
adaptive impedance matching for the channel subtraction. On
the other, the assessment procedure that determined whether
spike magnitudes are sufficient would benefit from a realistic
simulation of anticipated copter noise in the lab.

The main problem for interpreting the results is that spike
rates can only be meaningfully compared within the same animal
due to potential differences in the neuronal connectivity and
electrode implant locations between individuals. Unfortunately,
only a finite amount of data can be recorded from one
individual, making the interpretation of the results difficult.
It may be possible to assess the exact recording location via
imaging techniques. To improve the repeatability of the implant
and reduce variability in the resulting signals, the electrode
production, insertion, and sealing process could be automated in
future studies.

An important question to be addressed more accurately in
future work will be to relate the localization of the recording
electrodes to subsets of MBEN or brain structures such as
the central complex. Extracellular recording techniques come
with the unavoidable limitation of spatial location. Therefore,
the preparatory steps during the selection of the recorded
neurons become extremely important. Technical improvements
that allow extending the recording time substantially will help
characterize the selected neurons physiologically by probing
batteries of more complex stimulus conditions before the
preparation is fixed to the copter. So far, we selected for stable
responses to simple movement stimuli before the bee was fixed
to the copter. Thus, it is not surprising that the MBENs analyzed
here correlate with turning motions.

Our data analysis includes the reproduction of the bee’s
visual perception using a three-dimensional map created before
the experiments. In contrast to recording synchronized video
approximating the field of view of honey bees directly on the
copter, our approach drastically reduces the amount of data
recorded in each experimental run. However, our model of
the honey bee vision using a photogrammetric model of the
environment can not simulate the dynamic nature of vegetation,
celestial cues, and weather conditions.

Bees have shown flight behavior in a virtual reality setup
(Luu et al., 2011), on average even longer than on our copter,
despite lacking realism and completeness of the stimulation.
While the experimental protocols are not comparable between
this and our study, a question still remains for both the drone

and the VR approach in general: do bees require a closed feedback
channel, i.e., some control over their sensory input, for prolonged
flight? Closed-loop bee flight in virtual arenas has not been
accomplished yet, possibly due to a lack of realistic multimodal
stimulation. Still, while the drone approach offers exactly that, it
comes with the challenge of sensing the bee’s desired change in
body pose under muchmore noisy conditions—likely a challenge
the lab approachmay overcomemore readily.Why then continue
developing the copter system? A likely use-case in the future may
be the verification of specific results concerning navigation and
neuronal correlates that emerged from VR setups or other lab
based experimentations. Functionally relevant claims from such
experiments could be put to the test by ourmethod. A verification
of results from VR experiments should be valid even with low
numbers of bees if the results are consistent. On the other hand,
open-loop VR experiments can now investigate whether similar
repeatable neuronal activity as shown here can be found in virtual
trefoil flights of harnessed bees as well. We will gladly share
all relevant data for this comparison (3D map, flight paths and
neural recordings).

Our system complements the toolkit for studying the
neural correlates of natural navigation in bees. While future
developments of lab-based setups may need to focus on a
realistic, multimodal reproduction of the environment, drone-
based setups are confronted with more complex control tasks.
Since, to our knowledge, there is not yet a virtual reality
system capable of recording brain activity in flying bees,
our system can serve as an alternative starting point. To
encourage the continuation of this effort, we are sharing
this proof of concept, as presented here, in its entirety with
the community.
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