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Major depressive disorder (MDD) is a debilitating disease characterized by depressed
mood, loss of interest or pleasure, suicidal ideation, and reduced motivation or
hopelessness. Despite considerable research, mechanisms underlying MDD remain
poorly understood, and current advances in treatment are far from satisfactory. The
antidepressant effect of ketamine is among the most important discoveries in psychiatric
research over the last half-century. Neurobiological insights into the ketamine’s effects
have shed light on the mechanisms underlying antidepressant efficacy. However,
mechanisms underlying the rapid and sustained antidepressant effects of ketamine
remain controversial. Elucidating such mechanisms is key to identifying new therapeutic
targets and developing therapeutic strategies. Accumulating evidence demonstrates the
contribution of the glutamatergic pathway, the major excitatory neurotransmitter system
in the central nervous system, in MDD pathophysiology and antidepressant effects. The
hypothesis of a connection among the calcium signaling cascade stimulated by the
glutamatergic system, neural plasticity, and epigenetic regulation of gene transcription
is further supported by its associations with ketamine’s antidepressant effects. This
review briefly summarizes the potential mechanisms of ketamine’s effects with a specific
focus on glutamatergic signaling from a multiscale perspective, including behavioral,
cellular, molecular, and epigenetic aspects, to provide a valuable overview of ketamine’s
antidepressant effects.

Keywords: ketamine, antidepressant action, neuroplasticity, epigenetics, gene expression, stress, glutamate
receptor, calcium signaling

INTRODUCTION

Major depressive disorder (MDD) is the leading cause of disability worldwide. Despite
considerable research, biological mechanisms underlying MDD pathophysiology remain unclear,
with significant unmet needs for treatment. Typical antidepressants, including selective serotonin
reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors, increase
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monoamine concentration in the synaptic cleft, resulting in
antidepressant effects (Berton and Nestler, 2006). However,
although increased monoamine concentration in the synapse
occurs relatively quickly as an acute pharmacological action,
recovery from depression takes several weeks to months in
clinical practice (Krishnan and Nestler, 2008). Electroconvulsive
therapy (ECT) is also an effective treatment for drug-resistant
depression, although achieving clinically meaningful or sustained
remission with ECT required at least 1 month (Yamasaki et al.,
2020). Such substantial time lags are a major concern since
patients with depression are at high risk for suicide. Thus, there
is an urgent need to develop antidepressants with rapid onset and
sustained effectiveness.

Ketamine, a non-competitive glutamate N-methyl-D-
aspartate receptor (NMDAR) antagonist, has gained considerable
interest in the neuropsychiatric field. A single administration
of ketamine elicits rapid and sustained antidepressant effects
for 1–2 weeks in both humans and animals (Berman et al.,
2000; Zarate et al., 2006; Li et al., 2010; Autry et al., 2011).
This discovery offered new insight into the investigation of a
whole new class of agents beyond the monoamine system to
treat depression (Chaki, 2017). Esketamine, an enantiomer of
(R,S)-ketamine, has been approved by the U.S. Food and Drug
Administration (USFDA) for treating patients with treatment-
resistant depression. Thus, research on pathophysiology and drug
discovery for MDD has transitioned from the monoaminergic
to the glutamatergic system. Recently, the importance of
multiscale neuroscience to study cross-scale interactions at
genetic, molecular, cellular, and macroscale levels of brain
circuitry, connectivity, and behavior has been emphasized to
establish a comprehensive understanding of neuropsychiatric
disease (Van Den Heuvel et al., 2019). This mini-review aims to
update the current knowledge regarding ketamine effect on the
brain, focusing on the glutamatergic signaling pathway from a
multiscale perspective at the behavioral, cellular, molecular, and
epigenetic levels.

THE GLUTAMATERGIC SYSTEM IN
NEUROPLASTICITY, INTRACELLULAR
SIGNALING, AND GENE EXPRESSION

Glutamate is the major excitatory neurotransmitter in the
brain, and increasing evidence indicates that dysfunction in
glutamatergic signaling contributes to MDD pathophysiology
(Popoli et al., 2011; Duman and Aghajanian, 2012; Thompson
et al., 2015; Duman et al., 2019; Xia et al., 2021). The
glutamatergic system is modulated by both ionotropic
[NMDARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (AMPARs), and kainate receptors] and
metabotropic glutamate receptors (mGluRs). NMDARs are
found throughout the central nervous system and contribute to
synaptic calcium (Ca2+) influx, which is required for activity-
dependent synaptic plasticity (Koester and Sakmann, 1998;
Reid et al., 2001; Ngo-Anh et al., 2005; Bloodgood and Sabatini,
2007; Carter et al., 2007). NMDAR function is tightly linked
to AMPAR, which gates sodium and mediates fast excitatory

transmission. Increased AMPAR density in the postsynaptic
membrane causes NMDAR-dependent long-term potentiation
(LTP) (Huganir and Nicoll, 2013). AMPARs can also have
several direct effects on synaptic transmission (i.e., LTP) and
intracellular signals without the proper functioning of NMDARs.
This NMDAR-independent and AMPAR-dependent intracellular
signaling pathway is also hypothesized to underlie ketamine’s
antidepressant actions (Zanos et al., 2016; Duman et al., 2019;
Wei et al., 2021).

Ca2+ influx into the postsynaptic neuron stimulates a
signaling-cascade, such as calcium/calmodulin-dependent
kinases [CAMKs; e.g., calcium/calmodulin-dependent kinase
II (CaMKIIs), eukaryotic elongation factor 2 (eEF2) kinase].
Brain-derived neurotrophic factor (BDNF) and its receptor,
neurotrophic receptor tyrosine kinase 2 (TrkB), also plays
a key role in synaptic plasticity (Minichiello, 2009). TrkB
activation stimulates phospholipase Cγ1 (PLCγ1), which results
in CaMK activation (Minichiello, 2009). Calcium-signaling
activation further sends its signal toward downstream epigenetic
and transcription modulators, such as MEF2, MeCP2, and
HDAC5. These pathways modulate gene expression that
affects dendritic growth, synaptic development, and neuronal
plasticity (Greer and Greenberg, 2008; Graff and Tsai, 2013;
Takemoto-Kimura et al., 2017; Uchida and Shumyatsky, 2018a,b;
Figure 1). Taken together, calcium-signaling stimulation through
NMDARs and/or AMPARs activates multiple downstream
nucleocytoplasmic pathways; it induces activity-dependent
epigenetic genetic expression, contributing to depression and
antidepressant action.

Chronic stress initiates and exacerbates several psychiatric
illnesses. Indeed, adverse stressful environments are associated
with the pathophysiology of major psychiatric disorders,
including mood and anxiety disorders (Mcewen, 2007; Krishnan
and Nestler, 2008; Duman and Aghajanian, 2012). There are
several evidences demonstrating alterations in the expression
and/or function of glutamatergic signaling and its downstream
molecules (e.g., NMDARs, AMPARs, CaMKIIs, MEF2, MeCP2,
and HDAC5), which is associated with plasticity and behaviors
induced by chronic stress, traditional antidepressant drugs,
and/or ketamine (Table 1). Moreover, molecular dysregulation
associated with glutamatergic system is visible in postmortem
brain tissues of patients with MDD (Table 1). Thus, such
clinical and preclinical evidences suggest that calcium-signaling
is a downstream target of the glutamatergic system in MDD
pathophysiology and antidepressant effects.

MECHANISMS OF KETAMINE’S
ANTIDEPRESSANT EFFECTS:
A MULTISCALE VIEW

Less than one-third of patients with MDD achieve remission
using traditional antidepressant pharmacotherapy (Trivedi et al.,
2006). Treatment resistance occurs in up to 30% of patients
with MDD (Fava, 2003). However, a single subanesthetic dose
of ketamine produces a therapeutic response within a few
hours that lasts for several days in patients with depression
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FIGURE 1 | Proposed mechanisms of ketamine’s antidepressant action. The
binding of ketamine to N-methyl-D-aspartate receptors (NMDARs) on
GABAergic interneurons disinhibits glutamatergic neurons, which results in
increased synaptic glutamate release. AMPAR activation by glutamate
increases brain-derived neurotrophic factor (BDNF) levels. Although the exact
source of BDNF is yet to be determined, local release of BDNF is thought to
stimulate TrkB receptors. This activation activates intracellular signaling, such
as the Ca2+ pathway. Another mechanism is the direct inhibition of NMDAR
by ketamine. Inhibiting postsynaptic NMDARs reduces eEF2 via the
inactivation of CaMK (eEF2 kinase), which leads to enhanced local protein
synthesis of BDNF. Increased intracellular Ca2+ stimulates CaMKs and their
downstream targets, including MeCP2, MEF2, and HDAC5. MeCP2, a
transcriptional regulator, binds to methylated CpG sites on the genomic region
and interacts with other transcription repressors, including HDACs. CaMKII
phosphorylates MeCP2, promotes its nuclear export, and increases
activity-dependent transcription. MEF2 recruits HDAC5 and removes
activating acetyl groups from histones, which results in a silenced or
repressed state of transcription. CaMKII phosphorylates HDAC5, which
promotes nuclear export and increases activity-dependent transcription.
Ketamine is known to increase the phosphorylation of CaMKII, MeCP2, and
HDAC5 (see detail in the main text). Thus, ketamine-mediated enhancement
of intracellular Ca2+ signaling is linked to epigenetic regulation of transcription,
which leads to long-term synaptic plasticity and, consequently, prolonged
antidepressant-like effects.

(Berman et al., 2000; Zarate et al., 2006). Intravenous infusion of
ketamine results in clinical response and remission in 70 and 30%
of treatment-resistant patients with MDD, respectively (Zarate
et al., 2006). Additionally, Ketamine reduces suicidal ideation
(Krystal et al., 2013). In 2020, esketamine was approved by the
USFDA for treating depressive symptoms in adults with MDD
having acute suicidal ideation or behavior.

Ketamine elicits robust unwanted side effects, including
prepulse-inhibition deficits, cognitive deficits, and
schizophrenia-like psychotic symptoms in humans (Lahti
et al., 1995; Chan et al., 2013; Giorgetti et al., 2015). Recent
preclinical data indicate that ketamine’s enantiomer (R)-
ketamine (Hashimoto, 2019; Wei et al., 2021) and its metabolites
(2R, 6R)-hydroxynorketamine (HNK) (Zanos et al., 2016) exert

antidepressant effects with fewer adverse effects than do ketamine
or (S)-ketamine. Since potential mechanisms underlying the
rapid antidepressant actions of ketamine and its metabolites have
been reviewed elsewhere (Fukumoto et al., 2017; Yang C. et al.,
2018; Duman et al., 2019; Krystal et al., 2019; Sial et al., 2020;
Highland et al., 2021; Shinohara et al., 2021; Wei et al., 2021;
Xia et al., 2021), we review the recent progress in deciphering
mechanisms underlying ketamine’s sustained antidepressant
effects, with a particular focus on the role of calcium signaling
from a multiscale perspective.

Behavioral Effects of Ketamine
Several animal studies have demonstrated antidepressant-like
responses to ketamine. A single intraperitoneal injection of
ketamine or its metabolites produces rapid (30 min–1 h) and
long-lasting (24 h–7 days) antidepressant effects (Autry et al.,
2011; Koike et al., 2011; Zhou et al., 2014; Sun et al., 2016; Zanos
et al., 2016; Yang C. et al., 2018; Kim et al., 2021). Moreover,
such ketamine antidepressant effects have been observed in not
only naïve, non-stressed animals but also in animals subjected
to adverse stressful life events. Animals exposed to chronic
stress show despair-like behavior, anhedonia, anxiety, and/or
social avoidance, whereas a single injection of ketamine or its
metabolites rapidly reverses these deleterious effects and exerts
long-term effects (Li et al., 2011; Zanos et al., 2016; Duman et al.,
2019; Wei et al., 2021).

Neurobiological Effects of Ketamine
Neuroimaging studies have shown structural and functional
alterations in the hippocampus and dorsomedial prefrontal
cortex (dmPFC) of patients with MDD (Price and Drevets,
2010; Macqueen and Frodl, 2011). Human functional magnetic
resonance imaging (MRI) studies have demonstrated that a
single dose of ketamine ameliorates reductions in functional
connectivity in the prefrontal cortex (PFC), which is associated
with the alleviation of depressive symptoms (Abdallah et al.,
2017). Interestingly, a recent MRI study in animals demonstrated
short- and long-term effects of ketamine on distinct brain
circuitry. Gass et al. (2019) found in an animal model of
depression that ketamine causes a rapid response in the
amygdala, anterodorsal hippocampus, and ventral pallidum,
which are related to cognitive, sensory, emotional, and reward
functions. However, 48 h after administration, ketamine showed
a long-term normalization of the habenula, midline thalamus,
and hippocampal connectivity. They mediate cognitive flexibility
for processing contextual information, distinguish contextual
cues in safe versus threatening situations, and modulate fear
and emotional responses in non-threatening environments
(Gass et al., 2019).

There is increasing evidence suggesting altered neuronal and
structural plasticity in animal models of depression as well as
in patients with MDD (Duman and Aghajanian, 2012; Kang
et al., 2012; Abe-Higuchi et al., 2016; Higuchi et al., 2016; Nie
et al., 2018; Uchida et al., 2018; Sakai et al., 2021). Ketamine
rapidly increases the number and function of spine synapses.
Furthermore, Li et al. found that ketamine increases the number
and function of spine synapses in the medial PFC (mPFC)
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TABLE 1 | Example evidence indicates alterations in behavior, glutamatergic signaling, and its downstream pathways regarding depression, chronic stress, and
antidepressants: translational and multiscale views.

Behaviors

Findings References

Ketamine’s effects on a
stress-induced animal
model of depression

CUMS-induced increase of immobility in TST were reversed 0.5 and 72 h after ketamine treatment in rats Sun et al., 2016

CUS-induced reduction in sucrose preference in SPT was reversed by ketamine 24 h after injection in rats Li et al., 2011

CSDS-induced reduction of social interaction was reversed 24 h after (2R, 6R)-HNK treatment in mice Zanos et al., 2016
CSDS-induced depression-like behaviors were reversed 24 h after (R)-ketamine treatment in mice Yang C. et al., 2018

Ketamine’s effects on
pharmacological model
of depression

Chronic CORT effects on immobility in TST, open-arm exploration in an elevated plus maze and sucrose
preference were reversed 24h after ketamine treatment in mice

Moda-Sava et al., 2019

Chronic CORT-induced anhedonia in a sucrose preference test was recovered by (2S, 6S)-HNK treatment Zanos et al., 2016

LPS-induced increase of immobility in FST was reversed by (R)- Ketamine, but not (R)- HNK, in mice Yamaguchi et al., 2018

Chronic CORT-induced anhedonia and increased immobility time in FST were improved by (2S, 6S)-HNK,
but not (2R, 6R)-HNK

Yokoyama et al., 2020

Neuroplasticity

Findings References

MDD patients Postmortem brain of MDD patients showed a lower number of synapses in dlPFC Kang et al., 2012

Meta-analysis of structural imaging studies demonstrated that MDD patients have smaller hippocampus
volumes

Macqueen and Frodl, 2011

Meta-analysis of imaging showed the structural and functional decline in dmPFC of MDD patients Price and Drevets, 2010

Stress-induced animal
model of depression

CUS decreases the number and function of spine synapses in the mPFC Li et al., 2011

Reduced spine density in the hippocampus and mPFC of mice susceptible to CUMS and CSDS Abe-Higuchi et al., 2016;
Higuchi et al., 2016; Nie et al.,
2018; Sakai et al., 2021

Repeated stress impairs glutamatergic transmission in PFC pyramidal neurons Yuen et al., 2012

Ketamine’s effect (S)-ketamine normalized habenula, midline thalamus, and hippocampal connectivity at 48 h in fMRI imaging
of stressed rats

Gass et al., 2019

Ketamine blocks NMDAR spontaneous activity Autry et al., 2011

Ketamine treatment restores lost spines by chronic CORT exposure and promote generating functional
synapses in mice

Moda-Sava et al., 2019

Ketamine treatment increases the number and function of spine synapse in rat mPFC Li et al., 2010

(2R,6R)-HNK increased fEPSC slope in SC-CA1 of rats Zanos et al., 2016

(2S,6S)-HNK caused no changes in sEPSC frequency or amplitudes in rat CA1 interneurons (but has
antidepressant effect)

Chen et al., 2012

Molecular pathway/Intracellular signaling

Molecules Findings References

NMDARs MDD and stress model

A postmortem prefrontal cortex showed increased levels of NR1 in MDD Rodriguez-Munoz et al., 2017

Reduced GluN2A in prefrontal cortex of MDD Beneyto and Meador-Woodruff,
2008

MK801, a NMDAR antagonist, injection reduced immobility in FST Autry et al., 2011

CUS-induced reduction in sucrose preference in SPT was reversed by a selective NR2B antagonist, Ro
25-6981, 24 h after injection in rats

Li et al., 2011

Ketamine

Ketamine treatment increases NR1 expression levels in mouse PFC Liu et al., 2011

Ketamine and a high dose of (2R, 6R)-HNK influences NMDAR-mediated eEF2 phosphorylation Autry et al., 2011; Suzuki et al.,
2017

(2R, 6R)-HNK do not block NMDAR function Lumsden et al., 2019

AMPARs MDD and stress model

Postmortem cortical tissue from MDD patients showed decreased GluA1 levels Beneyto et al., 2007

Reduced GluA1 level in the hippocampus of stress-susceptible mice
AMPAR potentiator drives stress resilience, whereas GluA1 inhibition leads to stress susceptibility

Sakai et al., 2021

Ketamine

Ketamine increased the level of GluA1 subunit in the mouse hippocampus Beurel et al., 2016

(2R, 6R)-HNK increased synaptic GluA1 and GluA2 protein expression in the mouse hippocampus Zanos et al., 2016

BDNF/TrkB MDD and stress model

Postmortem brain tissues from the hippocampus and prefrontal cortex in suicide subjects showed reduced
expression of BDNF and TrkB

Dwivedi et al., 2003

BDNF levels were lower in the anterior cingulate of postmortem brains of subjects with early life adversity
and/or died by suicide

Youssef et al., 2018

(Continued)
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TABLE 1 | (Continued)

Behaviors

Ketamine

CUMS-induced reduction of the expression of BDNF was reversed 0.5 and 72 h after ketamine
treatment in rats

Sun et al., 2016

The deletion of BDNF or TrkB in broad forebrain regions of mice blocks ketamine’s antidepressant
effects

Nosyreva et al., 2013, 2014

Neutralizing a BDNF antibody into the mPFC blocks the behavioral effects of ketamine in FST Lepack et al., 2014

(2R,6R)-HNK increased BDNF protein levels 24 h after injection in mouse hippocampus Zanos et al., 2016

(2S,6S)-HNK increased extracellular BDNF levels in the mouse prefrontal cortex Anderzhanova et al., 2020

CaMKIIs MDD and stress model

A postmortem study showed decreased levels of CAMK2B in the anterior cingulate cortex of MDD Seney et al., 2018

A postmortem prefrontal cortex study showed decreased levels of CAMK2A in MDD Fuchsova et al., 2015

A postmortem prefrontal cortex study showed increased levels of CAMK2A in MDD Tochigi et al., 2008

CaMKIIβ levels in the ventral HPC were lower in mice following CUMS. CaMKIIβ activation reversed
depression-like behaviors

Sakai et al., 2021

Ketamine

CaMKIIβ activity is increased at 3 days after ketamine injection Kim et al., 2021

MeCP2 MDD and stress model

p-MeCP2 levels decreased in the hippocampus and prefrontal cortex of suicide victims Misztak et al., 2020

MeCP2 complexes determine stress susceptibility and resilience in mice Uchida et al., 2011

Ketamine

p-MeCP2 is required for ketamine-induced metaplasticity and antidepressant effects Kim et al., 2021

MEF2C MDD and stress model

MEF2C is one of the candidate risk genes for MDD Hyde et al., 2016

Ketamine

Ketamine enhances the transcriptional activity of MEF2 in mice hippocampus Choi et al., 2015

HDAC5 MDD and stress model

Increased HDAC5 level in MDD Iga et al., 2007; Hobara et al.,
2010

HDAC5 overexpression in the hippocampus disrupts antidepressant-like effect of traditional
antidepressant

Tsankova et al., 2006

HDAC 4/5 inhibitor induces antidepressant-like behavioral effects in mice Higuchi et al., 2016

Ketamine

Ketamine induces the phosphorylation of HDAC5 at 30 min and 24 h after administration in mice
hippocampus

Choi et al., 2015

CUMS, chronic unpredictable mild stress; CUS, chronic unpredictable stress; CSDS, chronic social defeat stress; CORT, corticosterone; LPS, lipopolysaccharide; HNK,
hydroxynorketamine; MDD, major depressive disorder; SSRI, selective serotonin reuptake inhibitor; FST, forced-swimmed test; SPT, sucrose preference test; TST, tail
suspension Test; sEPSC, spontaneous excitatory postsynaptic current; fEPSC, field excitatory postsynaptic current; dlPFC, dorsolateral prefrontal cortex; mPFC, medial
prefrontal cortex; dmPFC, dorsomedial prefrontal cortex.

and rapidly reverses synaptic abnormalities caused by chronic
stress exposure (Li et al., 2010). Although this evidence suggests
an association between ketamine-induced spinogenesis and
antidepressant-like behavior, the causal relationship is unclear.
However, a recent report by Moda-Sava et al. has addressed this
issue. They used a photoactivable proof to selectively reverse
ketamine effects on spine formation in the PFC. They found that
newly formed spines are necessary for and play a specific role in
the sustained antidepressant-like behavior induced by ketamine
treatment (Moda-Sava et al., 2019).

Ketamine-Induced Synaptic Plasticity
Brain-derived neurotrophic factor and its receptor TrkB play
key roles in synaptic plasticity, stress, and depression (Duman
and Monteggia, 2006; Minichiello, 2009; Castren and Monteggia,
2021). A recent report discovered that several antidepressants,

including fluoxetine, imipramine, and ketamine, directly bind to
TrkB, facilitating BDNF action and plasticity (Casarotto et al.,
2021). In addition, increased BDNF-TrkB signaling in rodent
frontocortical/hippocampal circuits has been observed following
acute treatment with ketamine (Li et al., 2010; Autry et al., 2011).

Clinical evidence suggests that repeated ketamine
administration allows cumulative and sustained antidepressant
effects and that it is more effective than a single injection
in patients with MDD (Aan Het Rot et al., 2010; Murrough
et al., 2013; Phillips et al., 2019). The threshold and sensitivity
of the persistent increase and decrease of synaptic strength
are subject to activity-dependent regulation. This type of
plasticity, called “metaplasticity,” is important for stabilizing
synaptic strength and preventing LTP saturation and long-term
depression, leading to homeostatic alternations of synaptic
activation (Bienenstock et al., 1982; Turrigiano et al., 1998;
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Kavalali and Monteggia, 2020). Notably, a preclinical study
suggested that ketamine administration elicits metaplastic effects
on LTP modulation and potentially other processes for long term.
Kim et al. (2021) reported that, by using slice recordings of the
Schaffer collateral-CA1 pathway in the hippocampus, ketamine
induces AMPAR-mediated synaptic potentiation. Interestingly,
this effect was more than two-fold higher in brain slices of
mice that had received ketamine 7 days earlier, suggesting a
priming effect of ketamine treatment such that subsequent
ketamine augments synaptic potentiation. Further experiments
to understand the mechanisms of this metaplasticity will provide
critical insight into mechanisms underlying ketamine’s potent
and prolonged antidepressant effects.

Ketamine-Induced Ca2+ Signaling
Cascades
N-methyl-D-aspartate receptors activate eEF2 via CaMKs
(eEF2 kinases) and depress BDNF levels (Scheetz et al.,
2000). Ketamine-induced suppression of postsynaptic
NMDARs deactivates eEF2 kinase, leading to reduced eEF2
phosphorylation and increased translation of BDNF in the
hippocampus (Autry et al., 2011; Suzuki and Monteggia, 2020).
This signaling pathway then potentiates synaptic AMPAR
responses through the insertion of GluA1/2 subunits (Autry
et al., 2011). In contrast, ketamine’s metabolite (2R, 6R)-HNK has
NMDAR inhibition-independent antidepressant actions (Zanos
et al., 2016; Lumsden et al., 2019), whereas other reports have
shown that NMDAR inhibition at a high dose of (2R, 6R)-HNK
triggers intracellular signaling via eEF2 (Suzuki et al., 2017).

A transient burst of glutamate via NMDAR blockade on
GABAergic interneurons by ketamine activates postsynaptic
AMPARs in excitatory neurons. This activation induces
depolarization and activation of NMDARs that trigger Ca2+

influx, releasing BDNF (Krystal et al., 2019). Local release
of BDNF is thought to activate TrkB on the postsynaptic
membrane, stimulating the ERK and PI3K-Akt signaling
pathways and mammalian target of rapamycin complex 1
(mTORC1) phosphorylation to promote synapse formation
by stimulating synaptic proteins, such as GluA1 and PSD-95,
which are required for synaptic plasticity (Cavalleri et al.,
2018). Recently, mTORC1 effectors 4E-BP2 and 4-EB2 in
excitatory or inhibitory neurons underlie behavioral and
neurobiological responses to ketamine (Aguilar-Valles et al.,
2021). Ketamine-induced activation of TrkB increases GSK-3β

phosphorylation via the ERK signaling pathway, decreasing
PSD-95 phosphorylation and internalizing the AMPA GluA1
subunit, which upregulates signaling through the GluA1 to
promote synapse formation (Liu et al., 2013; Beurel et al.,
2016). Ketamine-dependent changes in dendritic arborization
and soma size are abolished by AMPAR antagonists or mTOR
complex/signaling inhibitors (Cavalleri et al., 2018). Intracellular
molecular signaling cascades stimulated by the glutamatergic
pathway may be associated with ketamine-induced structural
and synaptic plasticity and its antidepressant effects.

As mentioned earlier, CaMKIIs are major downstream target
for the glutamatergic pathway and might be involved in

stress and depression. TrkB activation stimulates phospholipase
Cγ1 (PLCγ1) and also results in the activation of CaMKs
(Minichiello, 2009). Activated CaMKIIs further stimulate MeCP2
phosphorylation (Zhou et al., 2006), allowing the transcription
of downstream target genes. A recent study showed that
MeCP2 phosphorylation at S421 (p-MeCP2) is essential for
the expression of metaplasticity and the sustained, but not
acute, antidepressant effects of ketamine (Kim et al., 2021).
Hippocampal BDNF protein levels were shown to increase
rapidly 30 min after ketamine administration but returned
to baseline 3 days after injection. In contrast, hippocampal
p-MeCP2 levels increased 3 and 7 days, but not 30 min,
after ketamine injection. CaMKIIβ were elevated at 3 days
after ketamine injection but returned to baseline at 7 days.
These findings indicate that CaMKIIβ plays a role in the
intermediary process between BDNF activation and MeCP2
phosphorylation required for the sustained antidepressant effects
of ketamine. This hypothesis is also supported, at least in
part, by a recent finding that hippocampal CaMKIIβ is
downregulated in chronic stress-susceptible mice and that short-
term (within 4 days) CaMKIIβ activation ameliorates depression-
like behaviors (Sakai et al., 2021).

Epigenetic Regulation of Gene
Transcription by Ketamine
The interplay between genetic and environmental factors
underlies depression pathophysiology, and epigenetic
mechanisms might contribute to these interactions
(Nestler et al., 2016; Uchida et al., 2018; Kawatake-Kuno
et al., 2021). Although accumulating evidence demonstrated
altered epigenetic functioning in animal models of depression
and postpartum MDD-patient brains, few studies have used
ketamine-induced transcriptome and epigenome analyses to
characterize ketamine’s antidepressant effects. Genome-wide
transcriptome and epigenome mapping offer a template for
several strategies to identify novel drug targets in unbiased
ways to develop more effective treatments for MDD (Bagot
et al., 2017). Here we summarize how ketamine-induced
activation of Ca2+ signal influences epigenetic regulation of
gene transcription.

MeCP2, MEF2, and HDAC5 functions are regulated by
Ca2+ signaling and are associated with stress and depression
(Table 1). As mentioned above, p-MeCP2 is necessary for
sustained antidepressant response to ketamine (Kim et al.,
2021). MeCP2 is a methylated cytosine reader that impacts
chromatin organization with any change in DNA methylation.
A previous report showed that chronic stress differentially
modulates MeCP2 activity in stress-resilient and -susceptible
mice and subsequent epigenetic gene transcription (Uchida
et al., 2011). Thus, ketamine-induced enhancement of p-MeCP2
may be associated with the formation of chromatin-remodeling
complexes on target genes and, thus, transcription regulation.
HDAC5 is a histone deacetylase, and its phosphorylation by
CaMKs is associated with transcription repression (Mckinsey
et al., 2000). Hippocampal HDAC5 is associated with behavioral
response to chronic stress and traditional antidepressants
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(e.g., imipramine and SSRIs) (Tsankova et al., 2006; Higuchi
et al., 2016). A recent study suggested that ketamine rapidly
induces HDAC5 phosphorylation and nuclear export through
CaMKII-dependent pathways, which leads to enhanced MEF2
transcription that regulates neuronal structural and functional
plasticity (Choi et al., 2015). Correspondingly, HDAC5
knockdown occludes the actions of ketamine. Moreover,
MeCP2 is considered as a master regulator of metaplasticity
(Chen et al., 2012). Ca2+-signal-mediated modulation of
MeCP2, HDAC5, and MEF2 functions may be involved in
the sustained antidepressant response of ketamine through
epigenetic transcription.

CONCLUSION

This mini-review highlights that the glutamatergic pathway
is associated with behavioral, neuroplastic, neurobiological,
molecular, and epigenetic effects of ketamine, focusing on Ca2+

signaling wherein its dysfunction is involved in depression
pathophysiology according to both clinical and animal studies.
Such (reverse) translational implications for bridging the
research gap between human depression and animal models will
provide a better understanding of how ketamine affects and
modulates depression pathophysiology and ultimately contribute
to the clinical application of ketamine or the development of
related compounds for wide range of psychiatric disorders.
Glutamatergic transmission and monoaminergic systems induce
rapid biological changes that induce fast antidepressant effects.
In contrast, ketamine’s sustained antidepressant actions are likely
mediated by intracellular Ca2+ signaling cascades that affect
neurobiological processes, including dendritic spine formation,
epigenetic modifications, and long-term synaptic plasticity, and
consequently, maintain physiological functioning.

In this mini-review, we particularly focused on the
hippocampus and prefrontal cortex, key brain regions associated
with MDD pathophysiology and ketamine’s antidepressant
effect. However, other brain regions were suggested to also
be involved in these processes, such as the lateral habenula.
Emerging evidence from preclinical and clinical studies identified
an important role of the lateral habenula in depression and
ketamine’s antidepressant effect through a glutamatergic pathway

(Li et al., 2013; Cui et al., 2018a,b, 2019; Yang et al., 2018;
Hu, 2019, Hu et al., 2020). In addition, dynamic molecular
changes were observed in the nucleus accumbens of animal
models of depression and ketamine-treated animals (Bagot
et al., 2017). Thus, future studies are warranted to clarify
how ketamine impacts neuronal circuit activity and identify
underlying molecular and epigenetic mechanisms.

In summary, ketamine has great potential in the development
of groundbreaking neuropsychiatric therapies. Our current
understanding of depression pathophysiology and ketamine’s
action suggests that diverse drug actions converge around
Ca2+-signaling-mediated neural plasticity. However, ketamine
plays diverse roles in the glutamatergic pathway and other
neurotransmitter systems, neurogenesis, inflammation, and
even body–brain crosstalk. Furthermore, several studies have
suggested the distinct roles of ketamine enantiomers ([S]-
ketamine and [R]-ketamine) and their metabolites ([2R,6R]-
HNK and [2S,6S]-HNK) in plasticity and behavior (Zanos
et al., 2016; Yamaguchi et al., 2018; Hashimoto, 2019; Lumsden
et al., 2019; Yokoyama et al., 2020; Highland et al., 2021;
Wei et al., 2021). Thus, mechanisms underlying ketamine’s
actions remain controversial. Moreover, ketamine effects at
the mesoscale of neural architecture and macroscale of neural
connectivity, cognition, and behavior are poorly understood.
Further investigations at both the multiscale and multisystem
levels are necessary to comprehensively understand mechanisms
underlying ketamine’s antidepressant effects and develop novel
drugs for treating MDD.
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