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Physiological signals (e.g., heart rate, skin conductance) that were traditionally studied in
neuroscientific laboratory research are currently being used in numerous real-life studies
using wearable technology. Physiological signals obtained with wearables seem to offer
great potential for continuous monitoring and providing biofeedback in clinical practice
and healthcare research. The physiological data obtained from these signals has utility
for both clinicians and researchers. Clinicians are typically interested in the day-to-
day and moment-to-moment physiological reactivity of patients to real-life stressors,
events, and situations or interested in the physiological reactivity to stimuli in therapy.
Researchers typically apply signal analysis methods to the data by pre-processing
the physiological signals, detecting artifacts, and extracting features, which can be a
challenge considering the amount of data that needs to be processed. This paper
describes the creation of a “Wearables” R package and a Shiny “E4 dashboard”
application for an often-studied wearable, the Empatica E4. The package and Shiny
application can be used to visualize the relationship between physiological signals
and real-life stressors or stimuli, but can also be used to pre-process physiological
data, detect artifacts, and extract relevant features for further analysis. In addition, the
application has a batch process option to analyze large amounts of physiological data
into ready-to-use data files. The software accommodates users with a downloadable
report that provides opportunities for a careful investigation of physiological reactions
in daily life. The application is freely available, thought to be easy to use, and thought
to be easily extendible to other wearable devices. Future research should focus on the
usability of the application and the validation of the algorithms.

Keywords: wearables, heart rate, electrodermal activity, R Shiny application, neuroscience, treatment,
physiological reactivity
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INTRODUCTION

Physiological signals, such as heart rate (HR) and skin
conductance [i.e., electrodermal activity (EDA)], are increasingly
being used in clinical practice and healthcare research (Regalia
et al., 2019; Johnson and Picard, 2020). They provide innovative
ways to bring neuroscience from the lab to real-life settings
(Johnson and Picard, 2020). Researchers study associations
between physiological signals and a plethora of emotional,
cognitive, and physical diseases, such as epilepsy (Regalia
et al., 2019), depression (Pedrelli et al., 2020), burnout (de
Looff P. C. et al., 2019), suicide, aggressive behavior (de Looff P.
et al., 2019; Goodwin et al., 2019; de Looff et al., 2022),
or mood (Sano et al., 2018; Umematsu et al., 2019). These
wearable devices can also be used by clinicians and researchers
to study psychological-physiological associations in day-to-day
and moment-to-moment situations, which is known as digital
phenotyping (Onnela and Rauch, 2016).

Traditionally, the physiological signals were validly measured
in the lab, but wearable technology provides increased utility for
real-life (Johnson and Picard, 2020), and that is where it matters
most. Wearable devices have the potential to bring the lab to the
daily life of many users and are increasingly creating an impact
on the management of many problems and diseases (Johnson
and Picard, 2020). Physiological data from wearables can for
instance be used to monitor disease (Regalia et al., 2019), predict
risk for disease (Pedrelli et al., 2020), or provide continuous
feedback on bodily signals to stimulate emotional awareness and,
subsequently, behavioral change (Derks et al., 2019).

Clear guidelines exist on processing signals such as HR
and EDA and are performed with the utmost rigor in
laboratory settings (Task Force Electrophysiology, 1996; Society
for Psychophysiological Research Ad Hoc Committee on
Electrodermal Measures, 2012). Signal processing in real-life
situations is somewhat more challenging (see Figure 1), especially
for wrist-worn devices (Cosoli et al., 2020).

Although data collection with the wearables is typically
straightforward, signal processing (i.e., pre-processing, artifact
detection, and feature extraction) of the physiological data is
often without formal guidelines (Coffman et al., 2020). The
absence of guidelines makes it challenging to use wearables,
especially for researchers and clinicians who did not receive
formal training in signal processing and analysis. An additional
challenge is that signals obtained with wearables, such as
HR, EDA, temperature, and movement, can suffer from large
amounts of artifacts (i.e., noise) due to electrode placement, loose
electrodes, sensor failure, movement, or skin tone, among other
factors (van Lier et al., 2019; Schuurmans et al., 2020). Most
physiological signals should, therefore, preferably be cleaned,
filtered, and modeled using various techniques depending on the
physiological signal. For instance, EDA is often pre-processed by
up- or downsampling, signal smoothing, and artifact detection
using various (rule-based) algorithms (Bach, 2014; Taylor et al.,
2015; Coffman et al., 2020). Subsequently, various features are
extracted from the EDA signal that can, for instance, include
the tonic skin conductance level, or phasic changes in skin
conductance (called peaks). Phasic changes can be determined by

calculating the amplitude, width, rise time, or decay time of the
peak, as shown in Figure 2 (but for an excellent overview of EDA
features see Boucsein, 2012).

The wearables data also provides clinicians with several
opportunities in treatment settings (Johnson and Picard, 2020).
Clinicians might want to use the information obtained with
the wearables to discuss and understand the physiological
reactions to real-life stressors, events, and situations with
their patients or explore the physiological reactions to stimuli
in therapy sessions (Derks et al., 2019; Looff et al., 2021).
Clinicians might also want to conduct their research to
investigate if therapy affects physiological reactivity. However,
mapping and synchronizing physiology and psychological events
and situations are troublesome and clinicians often have no
formal training in signal processing, which makes it difficult
to assess the validity and reliability of physiological signals
and underlying algorithms for artifact detection and feature
extraction (Menghini et al., 2019; van Lier et al., 2019; Milstein
and Gordon, 2020; Schuurmans et al., 2020).

In the current paper, we describe the creation of a Shiny
application (Shiny is a tool for data visualization) with an
accompanying R package (called “wearables”) that might prove
useful for clinicians and researchers who work with the Empatica
E4, although the Shiny application and R-package can easily be
extended to signal analysis with other devices. The Empatica E4
was chosen as the data is easily accessible and provides raw data
on most physiological signals (Poh et al., 2010). R was chosen
as it can be used to create beautiful visuals in an open-source
framework, which ensures that it is available to a large population
of users (R Core Team, 2014; R Studio, 2021).

In contrast to the Empatica E4, commercial devices from
technology companies often provide dashboards with a multitude
of data insights for reasonable prices, while data is only provided
in the interpreted form, without openness on the underlying
algorithms or definitions (e.g., “body battery,” “stress coping
score,” and “steps”). Also, concerns arise about privacy, and
judicial implications as data are transferred non-anonymized to
company servers, which is especially troublesome when working
in healthcare (van den Braak et al., 2021). We, therefore, set out
to analyze the data locally on a computer and create an interface
that would allow researchers to batch process large amounts
of data. It also provides clinicians with tools to visualize the
physiological data and synchronize the physiological data with
real-life events using a calendar. Clinicians would preferably also
have the opportunity to extract useful features over periods that
they want to analyze.

The scripts that are used in the current study were originally
utilized for studies into the relationship between physiological
predictors of aggressive behavior of forensic patients with mild
to borderline intellectual functioning (de Looff P. et al., 2019)
and the relationship between physiological predictors of burnout
in health professionals who work with these patients daily
(de Looff P. C. et al., 2019). The data from those studies
consisted of ∼5 days of physiological data from ∼100 patients
and ∼100 professionals. Signal analysis in the form of pre-
processing, artifact detection, and feature extraction were carried
out both visually and automatically with a combination of R

Frontiers in Behavioral Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 856544

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-856544 June 23, 2022 Time: 10:48 # 3

de Looff et al. Wearables in Practice

FIGURE 1 | An example of a session that contains physiological data on EDA, HR, temperature, and movement, but also provides information from HR, movement,
and EDA on the number of artifacts.

(R Core Team, 2014) and Python code (Rossum and Team,
2018), as the algorithms were written in both R and Python and
available in various packages. The bridge between R and Python
code was somewhat troublesome and considerable knowledge of
programming and coding was required to handle the data. To
increase the unity and ease of use for non-technical users, but
also to stimulate open-source science and reuse of the code for
these complex physiological data, we set out to create a Shiny
application with an R package that can be used by both clinicians
and researchers. During the studies on aggressive behavior in
patients and burnout in professionals, it became apparent that
not only researchers wanted to work with the data from the
wearables, but health professionals as well. Health professionals

recognized several opportunities for using the data in the daily
life of patients and during treatment to study physiological
reactions over the day, during situations and events, or in
therapy. Therefore, we set out to create an application that can
be used to visualize the signals, synchronize calendar data with
physiological data using annotations, detect noise and artifacts,
extract features, and automatically batch process large amounts
of data. In the studies that were conducted over the past years
(de Looff P. et al., 2019; Looff et al., 2021) and a study that
is currently in preparation, the participating staff members and
patients provided feedback on the use of the Empatica E4, the
accompanying software, provided comparisons with other hard-
and software and gave us feedback on earlier versions of the
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FIGURE 2 | Features that can be extracted from an EDA signal. Printed with
permission from Taylor et al. (2015).

E4 dashboard following a user-centered design approach. Note
however that no formal study on the usability of the current
version of the application has been conducted.

In sum, we set out to create a Shiny “E4 dashboard”
application with an accompanying “Wearables” R package to
visualize and report on the physiological data including a
calendar. The software is targeted at clinicians who work with
physiological data and have limited knowledge of signal analysis.
In addition, for researchers, a batch processing application is
available to pre-process, detect artifacts, and extract features. To
our knowledge, this is the first open-source R package with a
Shiny application that simultaneously processes the physiological
signals, offers flexible pre-processing, artifact detection, and
feature extraction, and has several visualization tools for expert
and non-expert users.

The current paper first discusses the Empatica E4 device,
the physiological signals that can be obtained with the E4, and
the implementation in the method section. The results section
provides an overview of the functionality of the Shiny application
and wearables package. Lastly, in the discussion we provide an
overview of the advantages, limitations, directions for future
research, and clinical implications of working with the Empatica
E4, Shiny “E4 dashboard,” and “Wearables” R package.

METHOD

Empatica E4
The wearable Empatica E4 can be used to record physiological
signals over the day and offers two modes of recording: (1)
real-time via an app, or (2) the user can store the data locally
on the device. In (1) real-time, Empatica offers an application
in which the physiological data is displayed on Android or
IOS devices. After finishing the real-time recording, the data
is transferred to Empatica Connect (i.e., the cloud solution
from Empatica) via a mobile or Wi-Fi internet connection.

The recording can also be stored on the (2) local memory of
the Empatica E4. When the recording is finished, the data is
transferred via USB with an application called E4 manager that
downloads the data from the Empatica E4 and uploads it to
Empatica Connect. The Empatica E4 data can be visualized,
deleted, or downloaded on Empatica Connect.

Empatica offers physiological signals in raw data format (e.g.,
EDA, blood volume pulse, temperature, and movement) or
processed format (e.g., HR and interbeat interval), and offers a
visualization feature. However, Empatica offers no tools for signal
analysis or visualization mapping of psychological-physiological
associations other than timestamp data. Timestamps can be
made with a button that is on the E4 case and is stored as the
time on which the button is pressed. On Empatica Connect,
the timestamps are visualized as red lines in the graphs. The
physiological data can then be downloaded as a zip file and
contains the physiological signals in .csv files. The zip files can
be stored on your local computer or network for further analysis.

Electrodermal Activity
The EDA from the Empatica E4 is measured with dry electrodes
that detect changes in the electrical conductivity of the skin (Poh
et al., 2010; Garbarino et al., 2014). The EDA signal is known to
be influenced by skin temperature and motion (Coffman et al.,
2020) and should be taken into account when modeling the
data, which is possible as the Empatica E4 records these as well.
EDA is sampled at a frequency of 4 Hz and is measured in
uSiemens (Garbarino et al., 2014; Milstein and Gordon, 2020).
The EDA signal is stored in a CSV file (EDA.csv) that contains
the start of the recording in the first row in Unix time (i.e., in
Universal Time Coordinated (UTC). Unix time is the number
of seconds elapsed since January 1, 1970). The second row
contains the sampling frequency (e.g., 4 Hz for the EDA signal).
Subsequently, the EDA signal (from row three onward) is stored
in the remainder of the column, in which each row represents
250 ms of data (i.e., four rows, thus, represent one second of data).
The resolution of one digit is approximately 900 pSiemens and
the signal ranges from 0.01 uSiemens up to 100 uSiemens. EDA
is thought to primarily be the result of sympathetic innervation
(Boucsein, 2012) and the EDA signal is preferably pre-processed,
checked for artifacts that can be discarded for analysis, and
features, containing characteristics of the signal, can be calculated
(Boucsein, 2012), following the guidelines of skin conductance
processing (Society for Psychophysiological Research Ad Hoc
Committee on Electrodermal Measures, 2012).

The signal is typically decomposed into tonic and phasic
components (Coffman et al., 2020). Tonic components change
slowly while phasic components change more rapidly as a result
of demands, such as psychosocial or biogenic stressors (Boucsein,
2012; Everly and Lating, 2019). Features (see Figure 2) are,
for instance, the tonic skin conductance level (SCL), or phasic
changes in skin conductance that have the appearance of “peaks”
(SCR) in the signal. From the EDA signal, peaks are detected,
and several peak features are calculated: EDA at the start of
the peak, rise time, maximum derivative, amplitude of the peak,
decay time, SCR width, and area under the curve (AUC) (for
an overview of the features and abbreviations see Boucsein,
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2012, p.2). The detected peaks (non-specific skin conductance
responses) are further used to calculate peaks per minute. We
utilize a script to analyze the skin conductance signal that was
created by two of the co-authors of the current study (Taylor
et al., 2015), which was written in version 2.7 of the Python
language (Rossum and Team, 2018). In short, the EDA signal is
first upsampled to 8 Hz; then, a Finite Impulse Response low pass
filter is applied. A support vector machine algorithm that was
trained using expert data is used to classify the data into artifact
and artifact-free periods. Values approaching 0 are discarded in
the software, following quality assessment procedures defined
by Kleckner et al. (2018). Finally, peak detection is applied to
the signal, and several peak features are calculated (see Taylor
et al., 2015 for an overview) with a threshold of 0.005 uSiemens
following the study by de Looff P. et al. (2019).

Heart Rate
The HR is recorded with a photoplethysmography (PPG) sensor
that emits green (i.e., light absorption is higher in oxygenated
blood) and red light (i.e., to detect motion artifacts) and samples
at a frequency of 64 Hz, with which a blood volume pulse (BVP)
signal is obtained (Corino et al., 2017; Hayano et al., 2020). The
resolution of the sensor output is 0.9 nW per digit. PPG sensors
are used to measure volume changes in the blood. The PPG
sensor provides a signal that can be used to calculate HR but
can also be used to calculate other vital signs such as breathing
rate and blood pressure (Orphanidou, 2018). Empatica utilizes
two algorithms on the BVP signal to construct an inter-beat-
interval, with which HR (and HR variability) can be calculated.
The two algorithms are optimized to detect heartbeats and to
discard beats that contain artifacts, but only the first algorithm
is disclosed by Empatica (Schuurmans et al., 2020; Empatica
support, 2021). The BVP signal (available from BVP.csv), thus,
results in two additional CSV files that contain the inter-beat-
interval (IBI.csv) and the HR data (HR.csv). Both the HR files
and IBI files are used in the current application. Several HR
variability (HRV) parameters can be calculated from the IBI,
such as time-domain measures, frequency domain measures, and
non-linear analysis (Kamath et al., 2016). Note that, although
we refer to HR and HRV, studies also use pulse rate (variability)
to refer to data that is obtained with a PPG sensor as opposed
to heart rate variability to refer to data that is obtained with an
electrocardiogram (Schäfer and Vagedes, 2013).

The BVP file consists of one column with Unix time in the
first row, and frequency in the second row (64 Hz), followed by
the BVP data. The IBI file consists of two columns with the Unix
time in row 1. The first column contains the number of seconds
that have elapsed since the start of the file, and of which the
algorithm is certain that it detected a beat. The second column is
the duration in seconds between consecutive beats (the IBI). The
HR file contains one column with the Unix time in the first row,
the frequency (1 Hz) in the second row, followed by the average
HR per second, based on the BVP signal.

Several methods exist to detect artifacts that defy natural
cardiac functioning. For instance, average HR typically does not
exceed values between 40 and 180 beats per minute (although
higher values might be feasible with exercise), which corresponds

to a maximum R-R interval of 1.5 s (with 40 beats per minute).
A common HR range would thus be 0.67 Hz (40 beats per
minute) to 3 Hz (180 beats per minute) with 5 Hz (300 beats
per minute) during exercise (Orphanidou, 2018). Lastly, the ratio
of maximum R-R interval to the minimum interval is expected
not to exceed 1.1 over a 10-s segment, as HR typically does not
change by more than 10% under normal circumstances. Allowing
a single missed beat would mean that the R-R interval can have a
maximum value of 3 s and the ratio of maximum to minimum
R-R interval would be 2.2 (Orphanidou, 2018). For incorporation
in the Shiny application, the batch tool, and the R package we
used an existing R package [RHRV; (Rodríguez-Liñares et al.,
2011; Martínez et al., 2017)] to analyze HRV based on the
IBI. RHRV removes ectopic beats, uses adaptive thresholding to
remove questionable beats, and discards unlikely physiological
values (see Martínez et al., 2017, p.21–22). HRV analysis is
traditionally performed on the R-R interval (Orphanidou, 2018).
However, measurements of BVP on the wrist are artifact-prone
and often result in IBI files that present as “gaps” in the RR
signal, as the Empatica algorithm discards beat that contain
artifacts. Several methods exist to assess the quality of the signal
and apply correction methods to beats (Orphanidou, 2018). The
E4 dashboard implements several algorithms based on EDA,
HR, and movement that provide the user with information on
the amount of noise in the recording, but currently does not
provide beat correction methods. This is in part due to the
unavailability of the first part of the beat detection algorithm,
and the absence of a wide array of pulse peak detectors (see
Orphanidou, 2018). Thus, we would strongly urge users to only
use HRV analysis on resting-state and non-movement conditions
(Schuurmans et al., 2020).

Movement
Movement with the Empatica E4 is sampled at a frequency of
32 Hz (and has a resolution of 8 bits) with a sensor that measures
acceleration in space over time on an x, y, and z-axis (Milstein and
Gordon, 2020; Schuurmans et al., 2020). The first row of the CSV
file (ACC.csv) contains the starting time of the recording, the
second row contains the frequency (32 Hz), and the subsequent
rows consist of three columns that contain the raw acceleration
on the x, y, and z-axis. The accelerometer measures acceleration
in the range between −2g and 2g. For the current study, we
calculate the mean magnitude of acceleration over the three axes
(de Looff P. et al., 2019), which is given by:√

x2
i + y2

i + z2
i

64

Note that division by 64 results in the mean magnitude of
acceleration expressed in gravity force (Rowlands et al., 2015).

Temperature
The Empatica E4 also contains an optical infrared skin
temperature sensor that samples at a frequency of 32 Hz and
a resolution of 0.02◦C. The CSV file (TEMP.csv) contains the
Unix starting time in the first row of the file, followed by the
frequency of the recording in the second row. Subsequently the
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raw temperature data is available in Celsius degrees (Garbarino
et al., 2014). If participants used the event marker of the Empatica
E4, then, a tags’ file is also available with the Unix times of the
events that were marked.

Implementation
For the above described studies (de Looff P. et al., 2019;
Schuurmans et al., 2020), we used the Empatica E4 (Poh
et al., 2010; Garbarino et al., 2014; Picard et al., 2015; Taylor
et al., 2015). To determine possible designs of the interface for
clinicians, a mixed methods study was carried out to target
features that were considered important for clinicians to include
in an interface and that would increase the usability and
acceptance of wearable biosensors in forensic psychiatry (Looff
et al., 2021, and an article in preparation).

RESULTS

Overview of Dashboard
Overview of Functions
The Empatica E4 dashboard contains six tabs for data analysis of a
selected Empatica file (Data Tab, Calendar Tab, Visualization Tab,
and Analysis Tab), one Tab for cutting files (Data Cutter Tab), and
one Tab for batch processing multiple files (Batch analysis Tab).

To start, the Data Tab (Figure 3) is used to browse local folders
to select the downloaded Empatica zip file that the user wishes to
analyze. The data is uploaded to the local R session and read in
as a list with prepended time columns. The user has the option to
use two datasets with example data consisting of a large dataset
that contains approximately 8 h of data and a smaller dataset
with approximately 1 h of data. Note that the user also has the
option to select multiple zip files recorded on the same day. This
option was added as participants sometimes accidently turn off
the device, which results in multiple files per day.

After successfully reading the E4 data, the user can move to
the Calendar Tab (Figure 4) and upload a Text or Excel file
that contains calendar information. The five columns need to be
formatted into: a (1) Date (a day-month-year variable, note that
R Shiny displays the date variable in year-month-day format),
a (2) Start (an hour:minute:seconds variable), (3) an End (an
hour:minute:seconds variable), the (4) Text (the text that needs to
be displayed in the graph), and a (5) Color. The color names to be
used for shading the graph are available under the “Help” button.
The calendar is uploaded in the R session and can be viewed as a
data table in the Shiny application.

Subsequently, the Visualization Tab (Figure 5) can be selected.
The Visualization Tab has a separate Settings Tab and a Plot
Tab. In the Settings tab, the user can add a title to the plot,
and checkmark if the annotations should be displayed. The user
has the option to plot the raw data if the entire session lasted
less than 2 h. If the session exceeds 2 h of data, then a 1-min
aggregation is used to display the plot, for speed of use. Recall
that the user was also able to create tags with the Empatica E4 to
create event marks. If tags were created, the user has the option
to display the tags. Lastly, the user has the option to change
the default ranges of the graphs and can add a line to mark

the mean or a custom value. Physiological parameters differ per
person, per season, and even per day (Boucsein, 2012; Kamath
et al., 2016; Orphanidou, 2018), and this offers the possibility to
visualize the personal physiological parameters. If the app is used
for a longer period, the user will get a good impression of what
the typical resting EDA or HR is. A default means acceleration
for movement is set at 1.07 to display periods with over 7%
of mean acceleration, as movement can be a source of artifacts
(Schuurmans et al., 2020).

Subsequently, the user can view the Plot tab (Figure 6) for
the plots of the physiological signals in combination with the
calendar events. If desired, the user can switch back to the Settings
Tab to adjust the settings and replot.

Next, the user can select the Analysis Tab (Figure 7) to run
the signal analysis scripts on the entire period or the user can
select smaller periods that need to be analyzed. When the script
finished its analysis, the user can download a Hyper Text Markup
Language (HTML) report that contains the visualization, the
calendar, and the analysis in a standardized format.

The HTML report in Figure 8 contains the graph, which
can be interactively panned. It also includes information on
the fraction of artifacts that are present in the data from
both the IBI algorithm and the EDA artifact detection and
provides the calendar that was uploaded. We have made a
summary Table that contains the main parameters for EDA, HR,
temperature, movement, and the percentage of artifacts that was
present in the data.

Data Cutter Tab
To analyze the physiological data, researchers often use statistical
techniques, such as multilevel modeling or machine learning,
for which they need 1-min or 5-min interval bins (or any
other interval) that can be used for analyses (de Looff P.
et al., 2019; Goodwin et al., 2019; Pedrelli et al., 2020) to,
for instance, study epilepsy (Regalia et al., 2019), depression
(Pedrelli et al., 2020) or emotion regulation (Derks et al.,
2019). The data cutter can be used to select a timeframe
that needs to be cut and the interval bins, in which this
is needed. For instance, recall that the study conducted by
de Looff P. et al. (2019) used multilevel analyses over a 30-
min timeframe in 5-min interval bins preceding aggressive
incidents. The physiological data were, thus, divided into 6-
time frames with 5-min interval bins to study the physiological
trend preceding aggressive behavior. The output of the data
cutter is a ZIP file that is similar to the Empatica E4 ZIP
files, and can be loaded into the Shiny application or used in
the batch analysis.

Batch Processing Option
If a clinician or researcher wants to batch process larger amounts
of data, the batch processing option is available. The user can
select an input folder where all ZIP files are stored and can select
an output folder, where all the processed ZIP files must be saved.
The processed data inherits the name of the ZIP file to ensure
that the processed data can be traced back to the physiological
data. This results in an RDS file (a native R file) that contains the
parameters that were calculated. The summarized parameters in
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FIGURE 3 | The data tab user interface, in which data can be read in from Empatica zip files.

FIGURE 4 | The calendar tab that can be used to add text to the visualization and color shade activities.

the HTML file are quite limited and intended for non-experts.
The parameters in the RDS file are quite extensive and intended
for more experienced users. The RDS file contains the raw E4
data, the signal processing data frames, extracted features of
the physiological signals, and often used metrics, such as the
mean, min, max, and median of the physiological data over the
specified timeframe.

Signal Analysis (Pre-processing, Artifact Detection,
Feature Extraction)
Pre-processing
Both single file analysis and batch file analysis follow a similar
protocol for processing physiological signals. A ZIP file is
temporarily unzipped and read into a list containing the raw
physiological data. First, timestamp columns (in human-readable
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FIGURE 5 | The visualization tab has a Settings Tab that can be used to choose the settings to be displayed. Preset ranges for the physiological signal are: EDA
(0–20 micro Siemens), HR (40–160 beats), temperature (24–38◦C), and movement (0.98–1.25 mean acceleration).

FIGURE 6 | The Plot Tab can be used to visualize the physiological signals and synchronize them with the calendar events. A session is displayed for approximately
1 h, in which one of the authors undertakes eight activities, each lasting 7 min, to indicate the differences in physiological reactivity during various activities and
illustrates differences in physiological reactivity.

time) are prepended to the physiological datasets. Starting time
is determined based on the Unix time of the E4-files, and is
timestamped based on the system time of the user. This enables
the users to write down events in their time zone and synchronize
the calendar data with the physiological events. The EDA signal
is upsampled to 8 Hz, and one column is added to the ACC

(movement) data that contains the mean acceleration. The IBI
file is somewhat different from the other files in that it contains
the first column with the Unix start-time in the first row and the
number of seconds elapsed since the start time that a heartbeat
was detected. The second column contains the duration of the
inter-beat-interval.
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FIGURE 7 | The Analysis Tab can be used to select a timeframe, for which the signal analysis should be performed and download a report.

FIGURE 8 | Summary report of the analysis that can be read with your local browser.
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Artifact Detection
Following pre-processing, the EDA signal is checked for artifacts
following the algorithm developed by Taylor et al. (2015). In
short, several features are extracted from the EDA signal, which
is put into an algorithm that classifies for each segment of
5 s, whether this segment contains an artifact. The algorithm
is a support vector machine pre-trained on expert data and
implemented by Taylor et al. (2015). Calculations are performed
on the segment and one-second and half-a-second wavelet
decompositions of the measurements. The pre-training also
determined which of the features are used in the support vector
machine algorithm. The algorithm has two settings, binary
classification (artifact and no artifact) and ternary classification
(artifact, unclear, and no artifact).

In addition, besides artifact detection based on EDA, we also
provide information on artifacts for HR. We used an existing
R package for incorporation in the Shiny application and the
R package (RHRV; (Rodríguez-Liñares et al., 2011; Martínez
et al., 2017) to analyze HRV based on the IBI (but note that
Empatica also applies an undisclosed algorithm on their BVP
signal to detect heartbeats). The HR variability calculations
are based on the IBI signal that contains the number of
milliseconds since the start of the recording (Martínez et al.,
2017). The IBI data is first used to build a non-interpolated
heart rate series. Then, RHRV removes RR intervals that
were too short or where missed beats were detected, which
results in the number of accepted beats versus the number of
original beats that were detected. The heartrate series are then
interpolated to be used for time series analysis and frequency
analysis. Note that to obtain HR variability parameters, the latest
research indicated that these measures can only be interpreted
under resting conditions (Menghini et al., 2019; van Lier
et al., 2019; Schuurmans et al., 2020). The artifact detection
algorithms from EDA, HR, but also movement, thus, provide
the user with several indications of the trustworthiness of the
physiological data.

Feature Extraction
Both the single file analysis and batch file analysis provide
aggregations of the physiological signals. The single-file analysis
is targeted at users that have no background in programming
and are typically clinicians or researchers. The HTML output
provides them with often used parameters of the physiological
signals, such as the mean EDA, peaks per minute, HR, RMSSD,
temperature, and movement. The batch file analysis is provided
for more experienced users, such as researchers with some
knowledge of programming and physiology. The native RDS
files can be used for further analysis by the user and provide
information on range values of EDA, HR, HRV, temperature,
and movement, as well as the artifact detection and feature
extraction data frames. Lastly, experienced users can also adjust
the functions of the wearables package and the E4 dashboard
to suit their needs or incorporate additional algorithms for pre-
processing, artifact detection, or feature extraction. The Shiny
application1 is available on Github, while the Wearables R

1https://github.com/PCdLf/e4dashboard

package is available on CRAN2 and the latest version is also
available on Github.3

Software Development
We have created several functions in the Wearables package that
are used in the E4 dashboard. The functions are designed to
handle specific objects from the Empatica E4, such as the CSV
files that contain the physiological data, the sampling frequencies,
and datetimes that accompany these files. The Wearables package
also provides functions to further process the data frames of
the physiological signals and apply several artifact detection and
feature extraction algorithms to the objects. The E4 dashboard
has a modular set-up, in which each Tab in the application
has a separate module. For the development of the Wearables
package and E4 dashboard, we have incorporated frequently used
and stable packages and frameworks to ensure that there is a
low risk of incompatibility with future versions of R or Shiny
(Wickham, 2019).

DISCUSSION

With the current study, we have created an R package called
“Wearables” and an accompanying R Shiny application called
“E4 dashboard.” The software can be used by clinicians and
researchers to visualize and (batch) analyze physiological signals
that are obtained with the Empatica E4. To our knowledge, this is
the first R package with an accompanying Shiny application that
simultaneously processes physiological signal data, offers flexible
signal pre-processing, artifact detection, and feature extraction
(Orphanidou, 2018), and has a built-in visualization tool.

The main advantage of using the Shiny application to inspect
collected and annotated data is the ability to construct a very
detailed and personalized profile of the physiological responses
to stressors, events, and situations that are considered to be
of importance for a specific patient. This functionality allows
clinicians to map the physiological reactivity of a patient over
time, in specific day-to-day or moment-to-moment situations,
or to investigate if a treatment affects physiological reactivity.
The physiological values can be easily calculated as the signal
analysis options are built into the Shiny application and uses
preset parameters from frequently used packages (Taylor et al.,
2015; Martínez et al., 2017). The clinician can also inspect
graphs to determine whether there is increased movement or
an increased number of artifacts in the data. This provides
valuable information about the validity and reliability of the
measurements (Menghini et al., 2019; van Lier et al., 2019;
Milstein and Gordon, 2020; Schuurmans et al., 2020). The
downloadable reports that are generated can serve as a talking
board and as a basis to discuss physiological reactivity (both
hypo- and hyperreactivity) in real-life and treatment settings.
Clinicians (together with their patients) can investigate if
changes over time and/or in specific situations are evident,
serve as a method to quantify the physiological reactivity,
and consider the reliability of the measures. The software

2https://cran.r-project.org/web/packages/wearables/index.html
3https://github.com/PCdLf/wearables
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thus provides opportunities for an in-depth discussion and
careful investigation of physiological responses in daily life
(Johnson and Picard, 2020).

The Shiny application provides users with a flexible method
to visualize single files or batch process multiple files. This
effectively means that the wearable can be used by clinicians and
health researchers with little knowledge of signal processing. In
addition, the software also allows for sufficient flexibility in the
Wearables package for advanced analysis, as the code can simply
be modified and adjusted by researchers, who need additional
signal processing functionality in a popular and easy-to-use R
Shiny framework (R Studio, 2021).

Another advantage of the current Wearables package and
Shiny application is that the data of a popular wearable device
can be processed locally without dependence on cloud-based
solutions, which has important privacy advantages to handle
physiological data (van den Braak et al., 2021), but can also
easily be integrated into a local server or cloud-based solution if
organizations would like to scale up to processing large amounts
of data (Price and Cohen, 2019). It should however be noted
that the anonymized physiological data from the Empatica is
uploaded to the cloud and can only then be downloaded to
a local machine.

Limitations
The current Shiny application was created with a specific use
case in mind in which clinicians work together with adult
patients and want to visualize and analyze complex physiological
data (Looff et al., 2021), as an additional tool for psychosocial
information. Although clinicians indicated that the tool seems
to provide an additional source of information in treatment,
it needs to be further investigated whether the application has
added value for their treatment, and what the added value is in
other fields where wearables are used (Johnson and Picard, 2020).
A second limitation is related to the usability of the Wearables
package. Although the Shiny application has preset parameters
from frequently used packages (Taylor et al., 2015; Martínez
et al., 2017) and is thought to be easily utilized by non-experts,
users should have some knowledge of programming in the R
language (R Core Team, 2014). Knowledge of programming is
necessary to change some of the settings from the Wearables
package and might thus limit its usefulness. Related to this is the
addition of new algorithms into the Shiny application. Interested
users might download the package and Shiny application from
Github and propose changes to the package. These could then
be deployed in an updated version of the E4 dashboard and
the Wearables package. However, if users want to incorporate
these algorithms themselves, they should have considerable
knowledge of functional and object-oriented programming,
which might be a hurdle for users with limited programming
experience. A solution to this problem might be to engage
in a collective team science and citizen science approach in
which patients, clinicians, science practitioners, and researchers
work together to improve the usability and interpretability
of the software.

Another limitation is that the Shiny application and R package
are currently only available for the Empatica E4 (Garbarino et al.,

2014). This limits the usability for other devices, although a
modular and flexible architecture was chosen, so that the scripts
could be easily extended to other wearables. In addition, although
average HR can be calculated based on photoplethysmography
(PPG) and also has predictive value in more complex heart
rhythm analyses (Cheung et al., 2018), the PPG sensor is
prone to artifacts and HRV measurements should, therefore,
currently only be interpreted under resting conditions where
motion is limited to an absolute minimum (van Lier et al., 2019;
Schuurmans et al., 2020). In addition, it is unclear what the EDA
signal specifically measures on the wrist as the validity of the EDA
signal has recently been brought into question in comparison
with more traditional finger measurements (Menghini et al.,
2019; Milstein and Gordon, 2020). Further research is warranted
to investigate the responsivity of EDA obtained from the wrist
to stress and emotions and test whether wrist EDA has similar
predictive and ecological validity as EDA obtained from the finger
(Menghini et al., 2019). Recent research has also shown that the
validity of the measures might also be dependent on the type
of wearable, and the specific user that is targeted (Cosoli et al.,
2020; Teixeira et al., 2021), so a careful investigation of these
limitations is needed.

Related to these limitations are the reliability and validity of
the algorithms to detect artifacts and extract features for HR and
EDA. Both the EDA signal and HR signal have been used in
previous validation studies comparing the physiological signals
(and the derived features) to ground-truth devices (Menghini
et al., 2019; van Lier et al., 2019; Milstein and Gordon, 2020;
Schuurmans et al., 2020). These studies show that the signals
can be used under specific conditions and for different levels of
signal, parameter, and event features, but further validation is
warranted. For instance, the study by Milstein and Gordon (2020)
reported that the reliability of the EDA data is questionable in
comparison with a ground truth device, while the study by van
Lier et al. (2019) suggested that EDA might be useful for strong
and sustained stressors. The HR (V) data seems to be useful under
resting and movement conditions (Menghini et al., 2019; van Lier
et al., 2019; Milstein and Gordon, 2020; Schuurmans et al., 2020).
Deviations have also been reported between algorithms used for
artifact detection and feature extraction (van Lier et al., 2019;
Coffman et al., 2020; Schuurmans et al., 2020). A careful analysis
of the reliability and validity of both the physiological signals
and underlying algorithms for artifact detection and feature
extraction is therefore direly needed.

Directions for Future Research
Several directions for future research seem warranted. In the
current Wearables package and Shiny application, only the
artifact and peak detection methods for EDA by Taylor et al.
(2015) are supported. The artifact detection method, developed
by Taylor et al. (2015), uses a support vector machine classifier
that was trained based on a physiological dataset that was labeled
by experts. A recent publication (Coffman et al., 2020) claimed
that the method by Taylor et al. (2015) might be considered too
conservative in that it possibly discards too much data as an
artifact. Future work could integrate the rule-based algorithm
developed by Coffman et al. (2020) in the current Wearables

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 June 2022 | Volume 16 | Article 856544

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-16-856544 June 23, 2022 Time: 10:48 # 12

de Looff et al. Wearables in Practice

package and Shiny application to compare both methods for EDA
signal processing, both in the laboratory and real-life settings.
Additionally, it would also be interesting to incorporate other
methods to analyze EDA and HR data (Benedek and Kaernbach,
2010; Bach, 2014; Tarvainen et al., 2014; Chaspari et al., 2016).

As for the R language, both R and Python are open source
languages and are frequently used by programmers, researchers,
and data scientists to study a wide array of topics (Taylor et al.,
2015; Depaoli et al., 2020; Qu et al., 2022). The current study
integrated an R package with an R Shiny application (R Core
Team, 2014; R Studio, 2021), but similar functionality is also
available in Python. Future research could also focus on the
integration of the current package into a Python library and web
application (Nokeri, 2022).

Another important area of research could focus on integrating
new algorithms for analyzing the blood volume pulse, on which
the HR and IBI are based. Empatica currently does not disclose
the second algorithm that is used to detect heartbeats from the
BVP signal (Empatica support, 2021). Research can focus on the
comparison of the results from both the Empatica method with
newly developed methods to further develop the algorithms to
detect heartbeats and calculate HR.

We mentioned utilizing a user-centered design approach for
the development of the Shiny application based on studies that
were conducted over the past years (de Looff P. et al., 2019; Looff
et al., 2021). However, the current version of the Shiny application
has had no formal validation on usability, acceptance, and
continuous use intention. Therefore, future research is needed to
assess the usability of the software.

Lastly, another interesting avenue for research is to compare
predictive models that use raw physiological data as input and
compare the results with processed and clean data. Researchers
have the option to model the raw data from the signal
directly (Goodwin et al., 2019) with different machine learning
approaches (Cheung et al., 2018; Goodwin et al., 2019), as
compared to research that analyses the cleaned and pre-processed
data (de Looff P. C. et al., 2019; de Looff P. et al., 2019).

Clinical Implications
Wearables seem to hold great potential for healthcare (Cheung
et al., 2018; Johnson and Picard, 2020; Pedrelli et al., 2020) in
disease monitoring (Regalia et al., 2019), including COVID-19
(Ates et al., 2021; Channa et al., 2021), predict risk for disease
(Pedrelli et al., 2020), predict risk for dangerous behavior (de
Looff P. et al., 2019; Goodwin et al., 2019; de Looff et al.,
2022), or provide continuous feedback to stimulate emotional
awareness and behavioral change (Derks et al., 2019). However,
wearables also hold promise as an additional tool in the clinician’s
current toolbox to provide opportunities for in-depth and careful
investigation of physiological responses in daily life (Johnson
and Picard, 2020). This might be especially useful if clinicians
do not see their patients on a regular daily basis, and as a
consequence, most of the patients’ physiological reactions in
various daily life activities are obscured from the clinician. It
needs to be carefully investigated if these applications could be
used to increase valuable insights that might benefit the patients’
health and is effective for treatment.

The Shiny application and Wearables package are designed
for clinicians and practitioners to discuss physiological reactivity
in real-life and treatment settings with their patients. The Shiny
application can also have value during therapy sessions to assess
physiological reactions to a plethora of stimuli, as well as to
assess whether patients show progressive physiological reactivity
to trauma triggering emotions or to stimuli. Clinicians can now
directly use the interface to select specific periods of interest
and easily calculate all necessary physiological parameters to
investigate the physiological reactions and changes over time
(Crockett et al., 2017).

Clinical Use Cases
The benefit of discussing physiological reactivity in real-life
offers additional tools to clinicians in understanding patients’
emotions and behavior in different real-life situations and
might have extended value to the current clinical arsenal
of questionnaires, assessments, and evaluations. To give an
example from practice, following a weekend leave, patients
are typically asked to evaluate how their weekend was and if
they experienced unusual or stressful events. Clinicians, then,
typically administer a standardized questionnaire to evaluate
the psychological, social, emotional, or cognitive reactions
that a patient might have had during the weekend. In one
of our case studies, we observed that a patient showed
heightened arousal evident in elevated levels of EDA and
HR approximately 30 min preceding the patient’s return to
the psychiatric hospital. It was assumed that the heightened
arousal was due to the patient returning to the psychiatric
hospital. After discussing the outcomes with the patient, it
was later discovered that the patient was brought back to the
psychiatric hospital by a family member, who had an alcohol-
related problem, which resulted in the family member being
drunk early in the morning. This made the patient feel very
uncomfortable. Discussing the physiological reactions to a real-
life situation provided additional information on the emotional
state of the patient. In another example, a patient would
typically watch the evening news in his chair. In discussing
the physiological reactions with the patient, the practitioners
noticed unusual patterns in physiological reactivity during the
time that the patient was watching the news. The patient
told the practitioner that the evening news was important to
watch, but the patient was unsure what the events described
in the news would mean for his current situation and the
future. This provided insights into the emotional well-being
of the patients and allowed the clinician to instigate an
intervention. These examples illustrate use cases in which the
physiological reactivity might provide a complementary source
of information over and above the current arsenal of assessment
options and, in which the downloadable report can be used as
a talking board.

In sum, therefore, the current rise in the use of wearables
(Cheung et al., 2018) offers new and insightful ways to bring
neuroscientific research from the laboratory to practice and is
expected to grow exponentially in the coming years (Johnson and
Picard, 2020; de Looff et al., 2022). Careful consideration should
be given to the accuracy, reliability, and validity of the (future)
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devices and physiological signals. The current Wearables package
and Shiny application are first step in devising meaningful
and valuable tools on an open-source platform to explore
opportunities for a careful investigation of physiological reactions
in daily life, while addressing common pitfalls in signal analysis
(Taylor et al., 2015; Orphanidou, 2018; Menghini et al., 2019; van
Lier et al., 2019; Coffman et al., 2020; Milstein and Gordon, 2020;
Schuurmans et al., 2020).
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