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In order to endow robots with human-like abilities to characterize and identify objects, they
must be provided with tactile sensors and intelligent algorithms to select, control, and
interpret data from useful exploratory movements. Humans make informed decisions on
the sequence of exploratory movements that would yield the most information for the
task, depending on what the object may be and prior knowledge of what to expect from
possible exploratory movements. This study is focused on texture discrimination, a sub-
set of a much larger group of exploratory movements and percepts that humans use to
discriminate, characterize, and identify objects. Using a testbed equipped with a biologi-
cally inspired tactile sensor (the BioTac), we produced sliding movements similar to those
that humans make when exploring textures. Measurement of tactile vibrations and reac-
tion forces when exploring textures were used to extract measures of textural properties
inspired from psychophysical literature (traction, roughness, and fineness). Different com-
binations of normal force and velocity were identified to be useful for each of these three
properties. A total of 117 textures were explored with these three movements to create a
database of prior experience to use for identifying these same textures in future encoun-
ters. When exploring a texture, the discrimination algorithm adaptively selects the optimal
movement to make and property to measure based on previous experience to differenti-
ate the texture from a set of plausible candidates, a process we call Bayesian exploration.
Performance of 99.6% in correctly discriminating pairs of similar textures was found to
exceed human capabilities. Absolute classification from the entire set of 117 textures gen-
erally required a small number of well-chosen exploratory movements (median = 5) and
yielded a 95.4% success rate. The method of Bayesian exploration developed and tested
in this paper may generalize well to other cognitive problems.

Keywords: texture discrimination, tactile sensor, vibration, fingerprints, exploratory movements, roughness,
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INTRODUCTION
The tactual properties of our surroundings do not chatter at us
like their colors; they remain mute until we make them speak. . .
Eye movements do not create color the way finger movements
create touch. Katz (1925)

Touch, by necessity, is an interactive sense, unique from the senses
of vision and hearing. While we are able to observe the sights
and sounds of our environment without any physical interac-
tion, the tactual properties of an object can only be sensed by
physical contact. When interacting with an object, humans not
only need to interpret the tactile information they sense, they also
need to decide which types of movements to make in order to
produce these tactual percepts. Artificial systems will require sim-
ilar strategies (Loeb et al., 2011). Experimental psychologists have
identified six general types of exploratory movements that humans
make when tactually exploring objects to determine their proper-
ties: enclosure to determine global shape and volume, hefting to
determine weight, pressure to determine hardness, static contact
to determine thermal properties, contour following to determine

exact shape, and lateral sliding movements to determine surface
texture (Lederman and Klatzky, 1987). Performing all of these
movements and their many variants when identifying objects by
touch may not be practical or useful. Instead, prior knowledge can
be used to intelligently guide the selection of which exploratory
movements to make. In this work we present a novel method-
ology for selecting these optimal exploratory movements called
Bayesian exploration. The process works by using prior experience
to determine which of the many possible exploratory movements
is expected to produce the greatest distinction between the most
plausible candidate objects. To simplify the analysis, we reduced
the scope of the discrimination task to only texture discrimina-
tion, a modality for which human strategies and capabilities have
been well-described in the literature.

Early work from David Katz provided some of the first insights
into the psychophysics of texture discrimination. In his studies he
observed that while coarse textures could be discriminated based
on their static contours by simply pressing down on an object, fine
textures instead required sliding motion in order to generate vibra-
tions for their discrimination (Katz, 1925). More recent studies
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have supported that lateral movements and vibrations do, in fact,
play a critical role in the perception of fine textures (Hollins and
Risner, 2000), for which discrimination is impaired after vibro-
tactile adaptation (Hollins et al., 2001). The human hand has a
wealth of sensory receptors responding to mechanical and ther-
mal stimuli (Jones and Lederman, 2006). Pacinian corpuscles with
frequency responses of 60–700 Hz (Mountcastle et al., 1972) are
capable of sensing vibrations associated with slip and texture that
can be less than a micrometer in amplitude at their characteristic
frequency of 200 Hz (Johansson et al., 1982; Brisben et al., 1999),
suggesting that highly sensitive transducers will be required if this
capability is to be reproduced artificially.

A great body of research has focused on the physical stimuli
and perceptual properties that permit the identification and dis-
crimination of textures. The perception of roughness has been
one of the most studied of these properties. Early psychophysi-
cal experiments attributed this to the friction coefficient between
the skin and object for fine textures (Katz, 1925). Other stud-
ies using coarser textures (spatial periods greater than 0.5 mm)
have proposed that spatial period and contact force, and not fric-
tion, are correlated with perceived roughness (Lederman et al.,
1982). Smith et al. (2002a) contested these findings, providing
additional support for the role of friction and shear force in
the perception of these coarse textures. Further studies involv-
ing fine textures have indicated that the power of vibrations as
sensed by the Pacinian corpuscles could play an integral role in
the perception of roughness (Bensmaïa and Hollins, 2005). Early
studies into the perceptive dimensionality of surfaces have sug-
gested that sticky/slippery, hard/soft, and rough/smooth represent
three independent dimensions of a surface (Hollins et al., 1993).
However, these studies only used 17 surfaces and the relevance
of these results have been contested by Bergmann Tiest and Kap-
pers (2006) who have explored dimensionality with a total of 125
surfaces. Findings from this expanded database have suggested
that there are at least four perceptual dimensions of surfaces (and
likely more), although not all could be correlated specifically with
named properties. We propose that some of this dimensionality
could be attributed to non-textural properties such as compliance
and thermal properties that might be obtained without the need
for sliding movements. With specific regards to texture and slid-
ing movements, the dimensions of sticky/slippery, rough/smooth,
and coarse/fine seem to be the most salient descriptions of prop-
erties that make textures distinct, based on both the descriptive
words that people use to describe textures and their utility as
demonstrated by the experimental literature.

In Katz’s (1925) original work he proposed a duplex theory
for texture perception, hypothesizing that coarse textures can
be discriminated spatially while fine textures are discriminated
dynamically through sensed vibrations. This was prescient, as the
structure and function of cutaneous mechanoreceptors was then
unknown. We now know that vibrations and static pressure are
sensed by separate populations of cutaneous mechanoreceptors
(Knibestöl and Vallbo, 1970; Jones and Lederman, 2006). Artificial
tactile sensors have developed along similar lines, offering either
high spatial resolution or high temporal bandwidth. Reviews of
the various tactile sensing technologies over the last 30 years can
be found in (Nicholls and Lee, 1989; Howe, 1994; Lee and Nicholls,

1999; Dahiya et al., 2010). For dynamic tactile sensing and texture
discrimination, a number of technologies have been introduced
implementing accelerometers (Howe and Cutkosky, 1989, 1993),
piezoelectric film (Tada et al., 2003) microphones (Edwards et al.,
2008), and tri-axial MEMS force sensors (de Boissieu et al., 2009).
More recently, many tactile sensors have introduced fingerprint-
like ridges (Mukaibo et al., 2005; Oddo et al., 2009; Scheibert et al.,
2009), which have been proposed to enhance the correlation of
spatial frequency of explored textures with temporal patterns in
the sensed vibrations.

The use of tactile sensors for artificial texture discrimina-
tion has received a great deal of attention in recent years. Tada
et al. (2004) were able to demonstrate that signal variance of two
differentpolyvinylidenedifluoride (PVDF) films embedded at dif-
ferent depths in a complaint sensor could be used to distinguish
among five different textures. Further development by this group
expanded this analysis to an additional sensory dimension using
an embedded strain gage (Hosoda et al., 2006). Mukaibo et al.
(2005) developed a tactile sensor with fingerprints and embed-
ded strain gages to discriminate surfaces based on roughness
and friction. A force sensor with an elastic covering developed
by de Boissieu et al. (2009) was used with sliding movements to
identify 10 different kinds of paper using two different analytical
approaches: the first utilized differences in Fourier coefficients in
the recorded vibrations while the second used more direct signal
features such as the mean, variance, and kurtosis of the signals
as well as spectral properties in a neural network classifier. A
similar approach was taken by Giguere and Dudek (2011) using
accelerometers on a rigid tactile probe to classify driving surfaces
based on their means, variance, and higher-order moments in a
neural network. Oddo et al. (2011) used a robotic finger pro-
ducing a stereotyped sliding movement to discriminate between
three fine textured gratings ranging from 400 to 480 μm based
on their spectral properties. Jamali and Sammut (2011) analyzed
Fourier components of vibrations measured from eight different
textures using a novel method of majority voting to classify these
textures with a high accuracy of 95%. This study took advantage
of multiple exploratory movements, starting with three move-
ments initially and adding movements until 80% or more of these
movements indicated a particular texture. With exception to the
last study that explored three different sliding velocities, all of
these cases considered only a single exploratory movement. It has
been demonstrated that multiple exploratory movements as well
as multiple features can boost the performance of such a classifier
for texture discrimination (Sinapov and Stoytchev, 2010). In a sub-
sequent study by the same group 20 textures were explored with
a fingernail-like tactile sensor measuring accelerations at five dif-
ferent exploratory movements. The frequency components from
these different movements were used to obtain a classification per-
formance increase from 65% using the best single exploratory
movement to 80% for all five exploratory movements (Sinapov
et al., 2011).

In all of these cases, the discrimination of textures with these
artificial systems is for the most part a “passive” exploratory pro-
cedure. Force and speed are preset to some standard values and
a fixed movement (or sequence of movements) is executed. Fur-
thermore, the selection of signal processing measures is seemingly
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arbitrary in many of these studies. Various methods are attempted
and those that appear to yield the best performance are used as clas-
sifier input. Instead, we propose that findings from psychophysical
literature can guide the development of more intuitive and useful
signal measures.

As reviewed above, multiple signals, multiple exploratory
movements, as well as repeated trials can boost classification per-
formance. However, as the complexity of discrimination tasks
increase beyond simply texture discrimination and more move-
ments and signals are added to the repertoire, the feasibility
of doing everything (especially for multiple trials) can become
highly impractical if not completely infeasible. Instead, the task
of discrimination can take advantage of a hypothesis-testing
approach that we have proposed humans likely use when exploring
objects (Loeb et al., 2011). Each successive exploratory move-
ment can be used to reduce the set of possible candidates;
this information can be used to determine the optimal next
exploratory movement that would yield the best discrimina-
tion among these most likely candidates rather than the entire
population. Such an approach would have advantages in reduc-
ing the number of exploratory movements needed to classify
a texture or in the general case, any object. Here we intro-
duce a novel algorithm where the selection of the exploratory
movement becomes a critical process of the identification task.
Using a database of prior experience, optimal exploratory move-
ments are selected and executed to aid in the discrimination
task.

MATERIALS AND METHODS
An overview of Bayesian exploration is presented first (see Clas-
sification Theory and Strategy) in the context of a texture dis-
crimination task, followed by a description of the BioTac mul-
timodal tactile sensor (see Biomimetic Tactile Sensor) and the
experimental apparatus used to control sliding movements when
exploring textures (see Experimental Apparatus). The descrip-
tive words humans use when discriminating textures are used
to define quantifiable properties of textures (see Analytical Mea-
sures of Descriptive Texture Properties), followed by a method for
determining the most useful exploratory movements to estimate
those properties (see Selection of Set of Exploratory Movements).
The final three Sections describe the classifier training over this
refined set of movements (see Classifier Training and Data Collec-
tion), the methods employed for comparing performance of this
classifier to human performance in discriminating pairs of sim-
ilar textures (see Texture Discrimination and Comparison with
Human Performance) and methods for absolute texture discrim-
ination from a broad set of 117 textures (see Absolute Texture
Identification).

CLASSIFICATION THEORY AND STRATEGY
Classification is a topic of wide interest in artificial intelligence and
is a subset of the larger fields of pattern recognition and machine
learning. The goal of a classification task is to identify which class
or classes best explains a set of observations. Many tools exist
involving both supervised and unsupervised training (Jain et al.,
2000). In the majority of classification problems, inputs are given
and the class with the maximal posterior likelihood determines

the classification1. This introduces a fundamental deficiency in
the typical approach to classification problems: the decision must
be made with the currently available information. To compensate
for this deficiency, it is common to collect as much information
as possible before the classification is made. The time and effort
required to produce each exploratory movement to collect tac-
tile data suggests that this would be highly inefficient. Decisions
are first required to determine which exploratory movements to
make before any tactile information can be obtained. The selec-
tion of these movements would benefit greatly from iterative
decision making, in which the observations of previous move-
ments are used to identify the most likely candidates to select the
next movement that is most likely to disambiguate them. Here we
introduce a novel method of texture discrimination implement-
ing these strategies. This method of Bayesian exploration should be
generalizable to any identification task requiring such intelligence.

Bayesian inference for discrimination of textures
Bayesian inference is a widely implemented statistical classification
method used to estimate the likely causes of an observation after
it has occurred. Considering a set of textures (T ) and the observ-
able measurements that they generate (X) when performing an
exploratory movement (M ), we can estimate the likelihood that a
given texture had caused these observations with Bayes’ rule:

P (Ti |X , Mm) = P (X |Ti , Mm) P (Ti)

P (X , Mm)
(1)

Where Ti belongs to a set of textures T, X is a set of observable
properties (which are introduced in the later sections), Mm is a
particular exploratory movement that gives rise to these sensed
properties, and P(Ti) represents the prior probability of texture
Ti. P(X, Mm) is the probability of observation X occurring given
all known causes from the set T at exploratory movement Mm and
can be found by the law of total probability:

P (X , Mm) =
∑

j

P
(
X |Tj , Mm

)
P

(
Tj

)
(2)

Substituting (2) into (1) yields a common formulation of Bayes’
rule:

P (Ti |X , Mm) = P (X |Ti , Mm) P (Ti)∑
j

P
(
X , Tj , Mm

)
P

(
Tj

) (3)

The probability of a measurement occurring given a known texture
and exploratory movement can be estimated from its probability
density function. In the absence of other evidence, the central
limit theorem suggests that these values should fall within a nor-
mally distributed probability density function that can be defined
according to a mean (μ) and standard deviation (σ):

P (X |Ti , Mm) ∝ p (X |Ti , Mm) = 1√
2π σ2

i,m

e
− (x−μi,m)

2

2σ2
i,m (4)

1Other methods may use cost functions to reduce the occurrence of Type-I or
Type-II errors for particular classes where such errors are detrimental.
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It is important to note that the probability density function is not
a true probability, but rather a density, and can take on a value
greater than unity. However, this measure is proportional to the
actual probability; the unknown scaling can be ignored as it is can-
celed out by the denominator of (3), which has the same scaling
factor. The formulas (3) and (4) can be used to update the poste-
rior probability of a texture given observation X from a normally
distributed set of expected observations. In practice, as evidenced
by human performance, multiple observations, and exploratory
movements need to be made to refine this to an acceptable level of
confidence before determining the most likely texture.

Adaptive selection of optimal exploratory movements
We have proposed that humans use a careful selection of
exploratory movements to test hypotheses when exploring objects
by touch (Loeb et al., 2011). Consider a simple example of iden-
tifying a brick by touch. Absent prior information about the
object, a reasonable first exploratory movement might be an enclo-
sure movement, yielding information about the object’s size and
indicating that it is a large rectangular prism. Based on this infor-
mation, the examiner may then conclude that it is either a brick
or a block of wood. Useful subsequent movements to extract the
most information between these two objects would probably focus
on its mass, such as pushing or hefting the object.

The process of determining which exploratory movement is
optimal requires a prediction of the perceived benefit based on
prior experiences. A similar methodology has been presented by
Rebguns et al. (2011), where movements and sensing actions are
selected to reduce Shannon entropy. In that study exploratory
movements cease when there is no perceived reduction of this
entropy, a feature the authors refer to as “burying its head in the
sand” to avoid getting additional information that might increase
uncertainty. While the performance of this study was quite impres-
sive, the concept of additional information being undesirable is
peculiar. By contrast, our approach is not to infer the reduction
of entropy; instead we simply select the movement that would
best discriminate between likely objects. The decision to make this
next movement or not depends on whether the information and
a higher level of confidence is worth the time and energy required
to make the exploratory movement.

To estimate which movement would best discriminate among
likely objects, we can use prior experience to infer the expected
similarity between signals from pairs of objects at each of these
movements. Movements that produce the greatest difference in
measured signals from different objects would be optimal for the
discrimination task, while the movements that produce similar
signals would not be useful. One suitable measure of this degree
of confusion is the amount of overlap between two probabil-
ity density functions. An estimation of this is provided by the
Bhattacharyya coefficient, defined as:

BC =
∫ √

p1 (x) p2 (x) dx (5)

The Bhattacharyya coefficient varies between 0 and 1 depending
on the overlapping region of the two probability density functions.
For a given movement, observation, and pair of textures, a low

value would indicate no confusion (so this would be a very useful
movement to make in order to disambiguate these objects), while a
high value would indicate an undesirable movement because sub-
stantial ambiguity would remain. For all possible pairs of textures
(i and j) we can define an expected confusion probability matrix
for each possible exploratory movement (m) as:

Cij ,m =
∫ √

p (x|Ti , Mm) p
(
x|Tj , Mm

)
dx (6)

For normally distributed populations this reduces to:

Cij ,m =
√

2σi,mσj ,m

σ2
i,m + σ2

j ,m

e
−

(
μi,m−μj ,m

)2

4
(
σ2

i,m+σ2
j ,m

)
(7)

We can estimate the expected uncertainty for a particular tex-
ture and movement (ui, m) that would remain after making an
exploratory movement from this confusion probability matrix:

ui,m =

∑
j ,j �=i

Cij ,mP
(
Tj

)
∑

j
Cij ,mP

(
Tj

) (8)

Equation 8 measures the degree of confusion between a specific
texture and all other likely textures, weighted by their priors,
divided by the total amount of weighted confusion including
between that texture and itself. If no other textures produce over-
lapping probability distribution curves with this texture, the value
then becomes zero, as there would be no expected uncertainty for
this texture and movement combination.

The total expected uncertainty for all textures for a given
exploratory movement (Um) can be estimated as:

Um =
∑

i

ui,mP (Ti) (9)

Substituting (8) into (9) yields:

Um =
∑

i

⎛
⎜⎝

∑
j ,j �=i

Cij ,mP
(
Tj

)
∑

j
Cij ,mP

(
Tj

) P (Ti)

⎞
⎟⎠ (10)

which, given the coefficient Cij,m is equal to 1 when i is equal to j,
can be shown to reduce to:

Um = 1 −
∑

i

⎛
⎜⎝ (P (Ti))

2∑
j

Cij ,mP
(
Tj

)
⎞
⎟⎠ (11)

The value from (11) can be used to determine which movement
would produce the lowest expected uncertainty. We define the
perceived benefit of making an exploratory movement as:

Bm = 1 − U α
m (12)
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Which depends on parameter α, which we define as inversely pro-
portional to the number of times an exploratory movement has
been made previously (n) for the current discrimination task:

α = 1

n
(13)

To promote diversity in exploratory movements and collect a
richer database of information, we need to reduce the benefit of
repeated movements that did not yield satisfactory discrimination
performance in prior explorations. Because the uncertainty is a
value that ranges from 0 to 1, a larger value of n reduces the benefit
of a repeated movement. By calculating this benefit for all possible
exploratory movements, the movement that produces the maxi-
mal benefit can be identified. The iterative selection and execution
of these optimal exploratory movements when investigating an
object is the process that we call Bayesian exploration.

BIOMIMETIC TACTILE SENSOR
The BioTac® (SynTouch, Los Angeles, CA, USA; Figure 1) was
designed to provide both robustness and sensitivity for multi-
modal tactile sensing. It consists of a rigid core that contains all
sensory transducers, covered by an elastomeric skin. The space
between the skin and the core is inflated with an incompressible
liquid to give it a compliance that mimics human fingerpads. No
transducers or electrical components are contained in the skin,
making the design robust to grit, moisture, or other damage that
typically plagues tactile sensors. The BioTac consists of three com-
plimentary sensory modalities (force, vibration, and temperature)
that have been integrated into a single package. Contact forces
distort the elastic skin and underlying conductive liquid, chang-
ing impedances of electrodes distributed over the surface of the
rigid core (Wettels et al., 2008; Wettels and Loeb, 2011). Vibra-
tions in the skin propagate through the fluid and are detected
by the pressure sensor (Fishel et al., 2008). These vibrations can
be amplified and filtered to obtain a dynamic (AC) pressure sig-
nal with even greater sensitivity than the human fingertip (Fishel
and Loeb, 2012). Temperature and heat flow are transduced by a
thermistor near the surface of the rigid core (Lin et al., 2009).

The BioTac exhibits high sensitivity to induced vibrations
when sliding over textured surfaces (Fishel et al., 2008). More
recent quantitative tests with controlled small impacts and applied
vibrations demonstrated higher sensitivity than human fingertips
(Fishel and Loeb, 2012). In this study it was demonstrated that the
BioTac is capable of detecting small vibrations only a few nanome-
ters in amplitude around its peak frequency sensitivity of 330 Hz,
nearly two orders of magnitude better than human subjects. To
achieve this sensitivity, the BioTac takes advantage of carefully
designed signal processing electronics that allow a sensitivity near
the theoretical noise floor of the pressure sensor. First the output
from the piezoresistive pressure transducer (24PC15SMT, Hon-
eywell) is amplified by a gain of 10 with a low-pass anti-aliasing
filter (1040 Hz) obtain a measurement of fluid (DC) pressure (sen-
sitivity: 21.8 mV/kPa). This is then passed through a band-pass
filter (10–1040 Hz) and amplified with an additional gain of 99.1
to obtain a sensitivity of 2.16 mV/Pa for dynamic (AC) pressure.
The background noise at this stage was found to be only 1.2 mV

FIGURE 1 |The BioTac. (A) Cross-sectional schematic of the BioTac, the
multimodal tactile sensor used for these studies. Vibrations of the skin are
induced when sliding over textured surfaces and propagate efficiently
through the liquid-filled sensor where they can be sensed by the pressure
sensor. (B) Photograph of an assembled BioTac and fingerprint-like ridges
(inset). These fingerprint-like ridges that have a biomimetic size (0.4 mm
spacing) and have been observed to greatly enhance the vibrations that are
detected with the BioTac (Loeb and Fishel, 2009).

(0.52 Pa of dynamic pressure). Dynamic (AC) pressure as well as
static (DC) pressure were sampled at 2200 Hz and digitized with
a resolution of 12 bits in the range of 0–3.3 V (AC Pressure is
biased to 1.65 V) through onboard electronics inside the BioTac.
Sampling and data transmission are controlled through a serial
peripheral interface (SPI) protocol provided with the BioTac.

The compliance, shape and material properties of the liquid-
inflated elastomeric skin (Silastic S, Dow Corning) give rise to a
natural resonant frequency around 200–350 Hz, which happens to
be similar to the peak sensitivity of the Pacinian corpuscles. The
surface of the BioTac has a fingerprint-like pattern (cylindrical
shaped ridges with a height of 0.2 mm and spacing of 0.4 mm)
that has been observed to enhance the amplitude of these vibra-
tions in the BioTac (Loeb and Fishel, 2009). Given its similarities to
the mechanical properties and sensitivity of the human fingertip,
the BioTac provides an opportunity to test theories of human tex-
ture discrimination (Loeb et al., 2011) and to explore if they can be
used by artificial systems seeking to achieve similar performance
in tactile object identification.

EXPERIMENTAL APPARATUS
We hypothesize that humans utilize a variety of lateral sliding
movements when exploring textures. The magnitude of contact
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force and velocity of the sliding movement are the two most obvi-
ous parameters that define these movements. Compelling artificial
texture percepts can be recreated based on only these two para-
meters of an exploratory movement (Romano and Kuchenbecker,
2011). The apparatus developed for these experiments is capable
of precision control of contact force and sliding velocity while col-
lecting sensory data from the BioTac as it explores a texture. The
apparatus makes use of a stepper motor to set contact force and a
precision linear stage to control the sliding velocity relative to the
textured surface (Figure 2).

Force Control with Stepper Motor
Normal force of the BioTac onto the explored texture is adjusted
with a stepper motor (L4118 and SMCI33, Nanotec) that posi-
tions a lever with a BioTac on the end (Figure 2). Observations
indicated that the change in fluid pressure of the BioTac was lin-
early correlated with contact force (slope 11.5 mN/bit, R2 = 0.995)
at forces less than 2 N (Figure 3). This was verified by pressing
down on a force plate (Nano17, ATI) positioned to be at the
same height as the textures. At forces greater than 2 N the skin
of the BioTac comes into contact with the core and the relation-
ship between contact force and fluid pressure is no longer linear.
This relationship in the linear range was used to control the step-
per motor in order to achieve the desired contact force prior to an
exploratory movement. The BioTac was lowered slowly onto a tex-
ture (0.5 mm/s) while monitoring the actual DC pressure. When
this value reached the target change in DC pressure, the stepper
motor was stopped. The sliding movements and associated shear
forces tended to produce modest changes in the DC pressure, but
no adjustments were made to the stepper motor position while
sliding and collecting vibration data to avoid introducing spurious
vibrations.

FIGURE 2 |Texture exploration apparatus with the BioTac and texture.

A stepper motor (left) is attached to a lever (blue) that can raise or lower the
BioTac on textures. Adjusting the vertical position of the stepper motor
provides control of contact force. To produce lateral motion, a special
vibration-free linear stage is used to slide textures past the BioTac. Textures
are adhered to flat, square magnets that can be mounted and dismounted
rapidly on a steel plate attached to the linear stage.

Velocity control with linear stage
Sliding velocity of the textures under the BioTac was controlled
with a precision, low-vibration linear stage (ANT130, Aerotech).
The high-quality cross-roller bearings of the motor produced
extremely smooth sliding motions and no mechanical vibrations
could be detected even with human touch while the stage was
moving. A motion controller (Soloist, Aerotech) controlled sliding
velocity and distance based on preset commands. Motor current
and sliding velocity were sampled by the motion controller, which
could be queried in LabVIEW using built-in software libraries
provided by the manufacturer.

Textures
A total of 117 textures were used in these experiments (Table 1).
These were selected from a large library of everyday materials
found in art supply, fabric, and hardware stores. Using a variety
of commonly occurring textures provides a more realistic data-
base of surfaces than have been previously used in other studies
of psychophysical and artificial texture discrimination, which tend
to use surfaces made from the same material varying along a sin-
gle parameter such as spatial period. These textures were cut into
75 mm × 75 mm squares and attached to square magnets of the
same size with adhesive backing. The magnetically backed tex-
tures could be rapidly mounted and dismounted to a steel plate
attached to the linear stage.

Software
The sampling of the BioTac, control of stepper motor and lin-
ear stage were done using LabVIEW (National Instruments).
Sampling of the BioTacs was achieved using a USB/SPI adapter
(Cheetah SPI, Total Phase) and software libraries developed by
and available from SynTouch (Los Angeles, CA, USA). Both DC
and AC pressure were sampled at 2200 Hz each. Data was sampled
continuously and transmitted back to the computer in batches
every 100 ms. The digital controls for the stepper motor were
also updated every 100 ms through a DAQ card (NI USB-6218,
National Instruments). Control of the linear stage was maintained
continuously by the motion controller; the motor current and

FIGURE 3 | Relationship between normal force and change in DC

pressure. A single trial is shown in both loading and unloading (blue) as
normal force increases and decreases on the tip of the BioTac. The best
fitting line is shown in green and a correlation value of R2 = 0.995 is
observed.
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Table 1 | List of 117 textures used in this study.

# Texture # Texture # Texture # Texture

1 Computer paper 31 Very soft foam 61 Lacquered vinyl 91 Corduroy

2 Linen paper 32 Marble 62 Smooth vinyl 92 Silk velvet

3 Smooth cardstock 33 Smooth tile 63 Canvas vinyl 93 Short-hair fur

4 Marble cardstock 34 Rough tile 64 Madrid vinyl 94 Velboa

5 Canvas cardstock 35 Natural stone laminate 65 Corinthian vinyl 95 Terry cloth

6 Double mulberry paper 36 Oak wood 66 PVC snakeskin 96 Velour

7 Vellum 37 Polished hickory 67 Coarse leather 97 Velvet

8 Cardboard 38 Balsa wood 68 Medium-coarse leather 98 Viscose challis

9 Foam board 39 Nylon plastic 69 Smooth leather 99 Cotton sateen

10 Velcro hooks 40 PVC plastic 70 Coarse suede 100 Burlap

11 Velcro eyes 41 Acrylic 71 Smooth suede 101 Hand-woven cotton

12 Acrylic felt 42 Graphite 72 Very soft suede 102 Cotton duck

13 Polyester felt 43 Alumina graphite 73 Crepe de chine 103 Bull denim

14 Stiffened felt 44 Milled aluminum 74 Silk satin 104 Jean denim

15 Velvet paper 45 Ground aluminum 75 Pimatex cotton 105 Denim twill

16 Canvas 46 Polished aluminum 76 Cotton jersey 106 Flannel

17 Foam sheet 47 Polyurethane rubber 77 Cotton crush 107 Pineapple fiber weave

18 Plastic paper 48 Neoprene rubber 78 Cotton interlock 108 Scenery canvas

19 Template plastic 49 Nitrile rubber 79 Cotton lycra 109 Silk noil

20 Plastic mesh (5 mm) 50 Buna-N rubber 80 Cotton velveteen 110 Scenery muslin

21 Tarp 51 Santoprene rubber 81 Coarse cotton 111 Linen cloth

22 Corkboard 52 Viton rubber 82 Soft cotton 112 Cotton gauze

23 Carpet 53 Haplon rubber 83 Upholstry vinyl 113 Bamboo rayon

24 Frosted glass 54 Silicone rubber 84 Charmeuse satin 114 Nylon fabric

25 Flemish glass 55 Plastic sheet 85 Cotton/silk blend 115 Hemp silk

26 Satin glass 56 Car vinyl 86 Lens-cleaning fabric 116 Rabbit fur

27 Frosty vue glass 57 Textured vinyl #1 87 Rayon 117 Leopard shag

28 Textured glass 58 Textured vinyl #2 88 Crushed satin

29 Styrofoam 59 PVC vinyl 89 Raw silk

30 Soft foam 60 Snakeskin vinvl 90 Crushed velvet

Textures can be grouped into the following categories: 1–9: paper-like materials; 10–23: art supplies and miscellaneous materials; 24–28: types of glass; 29–31: types

of foam; 32–35: tiles and laminates; 36–38: types of wood; 39–46: engineering materials; 47–54: types of rubber; 55–66: types of vinyl; 67–72: leathers and suedes;

73–83: cottons and silks; 84–99: other fabrics and textiles; 100–115: coarse weaves; 116–117: furs.

stage position and velocity were queried every 100 ms through
software libraries developed by Aerotech. For each texture, the
exploratory process was automated to produce multiple trials at
each exploratory movement before proceeding to the next texture.
Data were analyzed offline in MATLAB.

ANALYTICAL MEASURES OF DESCRIPTIVE TEXTURE PROPERTIES
A system that uses orthogonal measurements as inputs is ideal
for a machine classifier problem. Several machine learning algo-
rithms exist to reduce unnecessary dimensionality of inputs, such
as principle component analysis and other multidimensional scal-
ing techniques (Jain et al., 2000). Moderate success discriminating
a small numbers of textures has been achieved using various statis-
tical measures and signal processing approaches as input to these
classifiers. We hypothesized that reasonably orthogonal measures
could be obtained by studying the language people use to describe
textures. The human brain is a very effective classifier and lan-
guage has evolved as a tool to describe the percepts associated
with texture discrimination. For this study, we selected simple and

intuitive measures of descriptive properties frequently used in psy-
chophysical literature exploring texture discrimination, bypassing
many of the artificial and convoluted statistical techniques com-
monly used in classifier methods. Three distinct properties have
been identified in literature: traction (sticky/slippery), roughness
(rough/smooth), and fineness (coarse/fine).

Traction of texture
Descriptive words such as slippery and sticky2 are commonly used
to describe the resistance to movement when sliding over a texture.
This dimension has been suggested to be relatively orthogonal to
the perceptual dimension of roughness (Hollins et al., 1993). To
measure this percept, we chose to use traction or resistance to
motion, although other literature has reported that this force is
correlated with the perception of roughness (Smith et al., 2002a).

2The descriptive word sticky is also used to describe adhesive properties. However,
even in this context it still refers to resistance to movement, albeit away from the
surface.
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In physics, the kinetic coefficient of friction between two objects is
typically used to quantify this property. It is important to note that
when measuring traction, we are measuring the force required to
slide the BioTac skin (Silastic S, Dow Corning) over the texture;
the measured traction is a property of these two surface interac-
tions. Amontons’ first and second laws, as well as Coulomb’s law
of friction, state that the coefficient of friction multiplied by the
normal force is equal to the maximal shear force that two objects
will exert on one another when sliding. While this is an idealization
that does not address some of the more complex properties of fric-
tion (i.e., viscosity), we propose that the measurement of average
frictional force between the skin of the BioTac and explored tex-
ture while sliding can provide a useful measure in discriminating
textures.

In our experimental testbed, the linear stage that produces slid-
ing movement scan be queried for instantaneous motor current.
This was found to vary linearly with shear force by placing the
stage at a 45˚ angle and attaching various weights to it. In dynamic
sliding it was observed that initially a high amount of current was
required to accelerate the stage from rest but only a low amount of
current was required to overcome the dynamic friction within the
stage in the unloaded state once the stage had reached its target
velocity. When the BioTac was pushed against a texture sample on
the stage, the motor current required to sustain constant veloc-
ity sliding increased linearly with the applied normal force. Given
the linearity of this response, the average motor current from the
stage while sliding was used to estimate the traction between the
BioTac and textures being explored. This was simpler and more
accurate than using the force-sensing modality of the BioTac itself,
which can extract tangential force from the distributed change in
impedance of its impedance sensing electrodes (Wettels and Loeb,
2011).

Traction ∝ Motor Current (14)

Examples of this signal and calculations are provided in Figure 4,
frame B.

Roughness of texture
When sliding over surfaces with different roughness properties
with the BioTac, we observed that the amplitude of vibration as
measured by the dynamic pressure sensor in the BioTac (PAC)
was correlated with the perceived roughness of the texture, sim-
ilar to the observations of (Bensmaïa and Hollins, 2005). In our
own findings, smooth surfaces were found to produce virtually no
vibrations, while rougher surfaces produced vibrations of much
greater amplitudes. To quantify this, we computed the logarithm
of signal power after subtracting the background noise with the
equation:

Power = 1

N

N∑
n=1

(filt (PAC (n)))2 (15)

Roughness ∝ log
(
Power − background noise

)
(16)

AC pressure was filtered with a 20–700 Hz digital band-pass filter
(66th order FIR filter) to simulate the frequency response of the

FIGURE 4 |Typical signals that occur during an exploratory movement.

In (A) the change in DC pressure (top) and sliding velocity (bottom) are
shown over the course of the trial. The loading of DC pressure by the
stepper motor occurs between t = −1.5 and −1 s, in this example it is equal
to roughly 17 bits or 0.2 N. Once the desired contact force is reached, the
position of the stepper motor is held for about 0.5 s before the linear stage
is actuated to the controlled sliding velocity (6.31 cm/s in this example). The
measurement region of signals indicated as vertical black lines occurs
shortly after the sliding and stops before the sliding is completed. In (B) the
time axis is zoomed with respect to (A) and motor current and filtered PAC

signals are displayed. In the top trace, the motor current of the linear stage
before the measurement of signals indicated by the vertical black lines is
initially high due to the acceleration of the linear stage. The horizontal
dashed line represents the average motor current over the measurement
region and is used to estimate the traction between the texture and the
BioTac while sliding. In the lower trace filtered PAC signals are presented.
The root mean squared (RMS) power is indicated by the dashed lines as
upper and lower bounds; the logarithm of the actual power is used as the
roughness signal. In (C) the fast Fourier Transform is presented of the
unfiltered PAC signal. The spectral centroid is calculated as the weighted
average of spectral power components and is presented as the vertical
dashed line. This measurement is used to estimate the fineness of the
texture.

Pacinian corpuscles that are thought to mediate texture perception
and eliminate low frequency oscillations from contributing to this
estimate. An example of the filtered signal is shown in Figure 4,
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frame B. It was also observed that even when locked in a fixed
position, the stepper motor produced some background noise that
was not consistent from trial to trial. By measuring this back-
ground noise power prior to sliding and subtracting it from the
power while sliding we were able to obtain more consistent mea-
surements of the signal power contributed from sliding alone. The
logarithm of this signal was found to better reflect a more evenly
distributed set of roughness properties with similar variances (as
presented later in Figure 5). A similar justification for using the
logarithm of surface amplitude in psychophysical discrimination
of textures has been proposed by Bergmann Tiest and Kappers
(2006).

Fineness of texture
The role of spatial periodicity in the perception of textures has
been explored in a number of studies. It has been observed that the

FIGURE 5 | Measures of descriptive texture properties at their optimal

exploratory movements. Texture IDs: T2 = Linen Paper, T10 =Velcro
Hooks, T30 = Foam, T43 = Graphite, T45 = Milled Aluminum, T46 = Polished
Aluminum, T47 = Rubber, T84 = Satin, T87 = Rayon, T100 = Burlap. Top
frame: Traction as measured from motor current to overcome sliding friction
between the skin of the BioTac and the texture. Middle frame: roughness
as measured from vibration power as recorded by the PAC signal from the
BioTac. Bottom frame: spectral centroid as measured by weighted spectral
power of PAC signal from the BioTac. Six trials are shown for each
movement to demonstrate clustering of each signal.

coarser textures produce lower-frequency vibrations when slid-
ing over an object, while finer textures produce higher-frequency
vibrations, suggesting the simple relationship:

f = v

λ
(17)

with λ equal to the spatial wavelength of the texture or finger-
prints and v equal to the velocity of lateral motion. This is the
operating principle of many algorithms for texture discrimina-
tion in artificial sensors (Mukaibo et al., 2005; Oddo et al., 2009,
2011; Scheibert et al., 2009). Our own findings have indicated
that this relationship breaks down for finer textures and higher
velocities (as presented later in Figure 6). Although not directly
reported, this can be observed in the results from Mukaibo et al. for
higher spatial frequencies and from Oddo et al. for higher veloci-
ties, in which the estimation of spatial wavelength becomes much
more prone to errors when approaching these limits. The experi-
ments of Scheibert et al. were conducted at very low exploratory
speeds (0.02 cm/s), two to three orders of magnitude slower than
common exploratory movements employed by humans (Dahiya
and Gori, 2010), which is clearly not fast enough to observe this
dynamic behavior. Furthermore, smoother surfaces have been
demonstrated to be free of spectral harmonics, instead gener-
ating signals that represent 1/f noise in the frequency domain
(Wiertlewski et al., 2011). Measured frequencies do not always
relate linearly to the spatial wavelength of the texture, particularly
for fine or smooth textures, but the estimation of this frequency
can still yield useful information about the relative fineness or
coarseness of the texture.

We propose a measure of spectral centroid to determine the
weighted frequency power of the vibrations recorded by the Bio-
Tac. The dynamic pressure is transformed into the frequency
domain using the single-sided fast Fourier transform and the
spectral centroid is calculated using the weighted average of the

FIGURE 6 | Spectral centroid as a function of sliding velocity at the

lightest contact force (0.2 N). Results indicate that only the spectral
centroid of coarser textures (T10 =Velcro Hooks, T30 = Foam, T87 = Rayon,
and T100 = Burlap) consistently increased as a function of velocity. Finer
textures produced idiosyncratic functions of velocity, while the spectral
centroid of graphite (T43) decreased as a function of velocity.
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frequency power from the following equation:

SC =
∑ (

fft (PAC )2 × f
)

∑
fft (PAC )2 (18)

To smooth the frequency domain response, a sliding window was
used to collect the Fourier transform at different sections of the
signal, which were averaged and used for the spectral centroid esti-
mation. Examples of this measurement are shown in Figure 4. A
logarithmic scale of this measure is used as an input to the texture
discrimination model. Note that this method does not attempt
to compensate for the rather complex frequency response of the
BioTac itself (Fishel and Loeb, 2012).

Fineness ∝ log (SC) (19)

Normality of Signals
The classifier discussed in Section “Classification Theory and
Strategy” makes the assumption that signals arise from a nor-
mally distributed population. Due to the large number of textures
explored, only a small number of trials could be collected for each
of the exploratory movements. Therefore, a thorough analysis of
the exact probability density function for these signals could not
be conducted. We make the assumption that signals are normally
distributed for the purposes of this study, however as more samples
are collected a clearer understanding of the true probability density
function would serve to improve the performance of this classifier.
This will be even more important when classifying surfaces that
have some heterogeneity in their textures.

The curse of dimensionality
Additional input dimensions will typically improve performance
of a classifier if they are well defined. In practice, however, it has
been observed that additional dimensions will actually degrade
performance of a classifier for a constant sample size, a property
that has become known as the curse of dimensionality (Jain et al.,
2000). To overcome this, an exponential increase in training data
is required for each new dimension. To avoid the need for such a
vast amount of training data, our model considers only univariate

distributions of a single property at each exploratory movement.
Indeed, we have found that our classifier performance was severely
degraded when considering all three properties at once for each
exploratory movement using multidimensional probability den-
sity functions. The result was an algorithm that quickly converged
in one or two exploratory movements but frequently to the wrong
texture. As additional training is obtained, such a multidimen-
sional approach would be optimal, but this is infeasible for the
large number of textures used in this study. To avoid this short-
coming we only considered a single signal during an exploration
movement. While this may not appear to take full advantage
of all available information, it is actually preferable for a classi-
fier with such limited experience, allowing it to focus solely on
the property that it determines to be most relevant for a given
exploration.

SELECTION OF SET OF EXPLORATORY MOVEMENTS
While there exist infinite combinations of contact force and sliding
velocities that can be used when exploring textures, experimen-
tal studies have demonstrated that individual subjects are quite
consistent in reproducing exploratory movements in these tasks,
although there is a high degree of variability among subjects
(Smith et al., 2002b). This suggests that certain combinations of
exploratory movement tend to be more efficient and that an indi-
vidual person discovers and uses such combinations consistently.
The internal representation of the objects in the external world
could then be based on predictable sensations obtained when
well-learned and, hence, dependable exploratory movements are
made.

To identify these useful movements, 10 textures were chosen
for the pilot study based on their perceived dissimilarity in the
multidimensional space of identified texture properties (low/high
traction, rough/smooth, coarse/fine; Table 2). Given the diversity
of this sample, this was believed to represent most of the perceptual
range of the complete set of 117 textures.

A total of 36 exploratory movements were chosen based on
all combinations of six speeds and six forces. The ranges of these
parameters were chosen to mimic the ranges humans typically
use when exploring textures (1–10 cm/s, 0.2–2 N). Force (F) and

Table 2 |Textures used in exploratory movement pilot study and their perceived properties of traction, roughness, and fineness when explored

by the human finger.

ID Name Traction Roughness Fineness

T2 Linen paper Med Rough Fine

T10 Velcro hooks Low Rough Coarse

T30 Foam High Very rough Coarse

T43 Graphite Very low Med Fine

T45 Milled aluminum Med Smooth Very fine

T46 Polished aluminum Very high Very smooth No features

T47 Rubber Very high Smooth No features

T84 Satin Med Med Very fine

T87 Rayon Med Very rough Med

T100 Burlap Med Very rough Very coarse

These samples were selected to represent the range of material properties to be expected over the larger population of textures.
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velocity (v) at these six steps were calculated as a geometric series:

vi = 10
i−1

5 × 1
cm
s (20)

Fi = 10
i−1

5 × 0.2N (21)

Using such a scale permits for comparisons to be made between
exploratory movements that had equivalent frictional sliding
power. For a given texture interacting with the BioTac skin, sliding
power is proportional to the tangential force times sliding veloc-
ity. Given the assumptions of Amoltons’ first law of friction, the
tangential force would be proportional to the normal force for a
given pair of surfaces with a constant coefficient of friction. With
this set of parameters, pairs of force and velocity with equal sliding
power could be found from the following equation:

Pa = Fi × va−i × μ = 10
a−2

5 × μ × 20mW (22)

Six repetitions of the 36 movements were collected for each of the
10 textures. At each trial the starting location on the texture was
randomized to ensure collected signals were properties of the tex-
ture itself and not necessarily an isolated feature on a given portion
of the texture. Exploratory movements were automated by soft-
ware and the data were saved to file for post processing. Data were
collected for each of the exploratory movements for a particular
texture before moving on to the next. The degree of uncertainty
for each movement was analyzed for each signal property inde-
pendently rather than as a multivariate system. This method was
chosen to avoid the curse of dimensionality, as discussed in the
previous section.

It was observed that high frictional sliding power exploratory
movements (combinations of high force and velocity) led to an
increase in skin wear and removal of fingerprints, resulting in sub-
stantial changes in the vibration signals recorded by the BioTac;
these pairs of exploratory movement parameters were avoided.
Of the remaining options, we selected three combinations, each of
which provided the lowest uncertainty for one of the three proper-
ties (see Figure 7). These three most useful movements were used
to explore the entire set of 117 texture samples.

CLASSIFIER TRAINING AND DATA COLLECTION
Five trials were completed at each of the three selected exploratory
movements for the entire set of 117 textures. All trials were com-
pleted on a single texture before moving to the next. During these
trials, the skin was checked regularly to identify if the finger-
prints were still intact. It was observed that fingerprint wear had a
detrimental effect on the repeatability of data, particularly in the
measurement of roughness from vibration power. To compensate
for this, the skin of the BioTac was replaced if there were any visible
signs of wear. With this approach we were able to avoid any signal
drift resulting from wear, which was verified by comparing signals
before and after the skin replacement. The skin of the BioTac was
replaced two times under these conditions. Data collection for all
117 textures took roughly 20 h and spanned 4 days.

The data from these trials served to build a prior experience
database that could be used to identify presented textures and to
compute expected benefit of a given exploratory movement. Dur-
ing the course of these tests, three textures were damaged during

FIGURE 7 | Selection of optimal exploratory movements for pilot study

of 10 textures. Tables present the uncertainty calculated for each
measurement property for combinations of contact force and sliding
velocity. Gray boxes with white numbers in the lower-right half plane
represent exploratory movements that were excluded due to the high wear
rate high force and velocity combinations had on the skin. Values in the
upper left half plane are coded from blue to white to represent decreasing
uncertainty with lower values being ideal for discrimination of the 10
textures. From this the three of the most useful movements were selected
as 1.26 N and 1 cm/s for discrimination based on traction, 0.2 N and
6.31 cm/s for discrimination based on roughness, and 0.5 N and 2.5 cm/s for
discrimination based on fineness. Movements at 0.2 N and 2.5 cm/s were
not selected for the roughness or fineness measures because they
appeared to be outliers and did not fit the general trend of performance
from neighboring movements.

the higher force exploratory movements. Data for these textures
were not used in the sample. Outputs of the various properties at
their optimal movements are presented (Figure 8) along with the
confusion probability matrices for all combinations of signals and
movements (Figure 9). Signal correlation is presented to show the
independence of each dimension (Table 3).
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FIGURE 8 | Summary of all texture properties at their most useful

movements for entire set of 117 textures. Similar types of materials are
grouped by color as shown in the top panel. Five trials are shown for each

property and texture to demonstrate the clustering of the measurements. In
many cases the clustering is so tight that all five trials appear as a single
marker.

TEXTURE DISCRIMINATION AND COMPARISON WITH HUMAN
PERFORMANCE
Analyzing the resulting confusion probability matrices of the
large texture dataset yielded surprising findings in the confusion
between textures. Many pairs of textures that were perceived as dif-
ficult to discriminate by touch were readily distinguishable based
on at least one dimension of the three calculated texture properties,
while some pairs of textures that appeared simple to discrimi-
nate by human touch were determined to be more challenging
to the artificial system based on the observed confusion matrices
(Figure 9). Eight pairs of textures (16 textures total) were selected
for a study of discriminability, including pairs that were perceived
to be similar to human observers but not the artificial system, the
reverse, or similar to both. Care was taken to select texture pairs
that did not have other properties that were readily discriminable
by other non-textural mechanisms such as compliance or ther-
mal properties, for which human subjects would have an obvious

advantage (the BioTac does provide signals that can be used to
estimate both properties (Lin et al., 2009; Su et al., 2012; but these
were not used in this study).

Five human subjects consented to participate in a study to
explore biological abilities to discriminate between similar tex-
tures. Prior to these experiments, subjects were informed that they
would be presented with one of the eight pairs of textures at a
time, which they could see and explore by sliding their fingers
over them for as long as they desired in order to feel comfort-
able discriminating between the two textures in the pair. They
were informed that after they were finished exploring, they would
begin the testing phase and would not be allowed to explore both
textures again. No additional guidance was provided on which
properties or exploratory movements would be optimal for per-
forming the discrimination task. They were also informed that
when ready, they would have their vision occluded and be pre-
sented with a random selection of one of the two textures for four
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FIGURE 9 | Confusion probability matrices for each combination of

exploratory movement and texture property and geometric mean of all

signals and only the most useful combinations of signals and

movements. Spots are scaled from white to black to represent low to high
confusion. Axes in each inset represent the texture indexes. The solid black
line on each diagonal indicates the value of unity, as each texture has a 100%
chance of being confused with itself at all movements. Blue outlines indicate
the optimal movement for each signal. The geometric mean of all confusion

probability matrices have very few off-diagonal dark spots, whereas
geometric mean of only the most useful exploratory movements for each
signal have substantially more dark spots indicating potential confusion
between similar textures and the value of multiple movements for each
signal. By taking advantage of all combinations of exploratory movements and
properties, rather than just the properties at their “optimal” movements, we
see an improvement of 60% in the geometric average of the confusion
probability matrices and overall uncertainty.

trials. Subjects were aware that the selection of the presented tex-
ture was predetermined from a random number generator (i.e.,
it would not always be each texture twice for the four trials, by
chance it could even be the same texture four times). The exper-
imenter suggested that the subjects could call these textures A or
B, however all subjects preferred to refer to the textures based on
their visual properties (i.e., “the blue one”). For the testing phase,
which started immediately after the exploratory phase, a small
platform was placed in front of the subject where textures were
to be placed. The platform was short and unobtrusive, allowing
subjects to assume the same posture used in the exploratory phase.
The experimenter placed the randomized texture on this platform
and the subject held his finger over the texture until an auditory
command was given to start exploration. After making exploratory
movements (which ranged from two or three to dozens of move-
ments depending on the difficulty the subject was experiencing),
subjects notified the experimenter which of the two textures they
thought they were touching. This was repeated for four trials for

each of the eight pairs of textures. While subjects were eager to
know their performance, this was not disclosed to them until the
completion of the experiment. Average performance across all five
subjects for the eight texture pairs in terms of percentage of correct
classifications (chance = 50%) is presented in Table 4.

Comparison in performance of humans with the artificial
system in this discrimination task requires two separate popu-
lations of data, one to represent the information obtained in the
exploratory phase and the other to represent novel information
being encountered in the identification phase. This is commonly
referred to in machine classifier problems as a training set and a
validation set. The training set consists of data to be used as the
previous experience that the Bayesian exploration algorithm refers
to when encountering an unknown texture in order to determine
optimal exploratory movements and to compute posterior proba-
bilities after these movements. The original set of data obtained in
the previous section was used to create this training set. A second
set of novel data was collected and used as a validation set for the
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Table 3 | Correlation matrix between each texture property at each of

the three movements.

Traction Roughness Fineness

MOVEMENT 1 (1.00 cm/s, 1. 26 N)

Traction 1.0000 −0.5564 −0.3560

Roughness −0.5564 1.0000 0.2183

Fineness −0.3560 0.2183 1.0000

MOVEMENT 2 (2.51 cm/s, 0.50 N)

Traction 1.0000 −0.4916 −0.5100

Roughness −0.4916 1.0000 0.3981

Fineness −0.5100 0.3981 1.0000

MOVEMENT 3 (6.31 cm/s, 0.20 N)

Traction 1.0000 −0.4019 −0.5472

Roughness −0.4019 1.0000 0.5581

Fineness −0.5472 0.5581 1.0000

same textures that were used in the human texture discrimination
studies. Similar to the training set, five trials for each of the three
exploratory movements were collected for these 16 textures.

The computational speed of computer processors made it
attractive to analyze the performance of this artificial discrimina-
tion task offline in a virtual texture exploration. When performing
a virtual exploratory movement, a randomly selected trial from the
unseen validation set of the texture being explored was given to
the classifier. Due to the high degree of randomness of these sim-
ulations, a total of 1000 simulations as described below for each
of the eight pairs of textures were conducted to establish a more
accurate measure of performance.

During a texture discrimination task for the artificial system,
a pair of textures was selected and their prior probabilities were
set equally to 50%. The probability for all other textures in the
database was set to zero, effectively eliminating them from the
classifier’s decision process. One of the two textures was selected
at random as the unknown texture to be identified by the system.
The Bayesian exploration algorithm used data in its previous expe-
rience (from the training set) to decide which exploratory move-
ment and signal would discriminate optimally between them. The
signal from this movement in the validation set was delivered to
the classifier and the posterior probabilities of the two textures
were updated using Bayesian inference. The process of performing
optimal combinations of exploratory movements and properties
to measure through Bayesian exploration was repeated until one
of the two textures converged to a probability of greater than
99.9%3. Data from these discrimination tasks was not added to the
database. Results comparing the performance of human subjects

3The 99.9% convergence criterion for texture pairs was higher than the 99% used
in the absolute classification task as discussed in the following section. It was found
that when discriminating between a smaller number of textures (i.e., two as used in
this experiment) the algorithm would quickly converge in only one or two move-
ments and frequently to a wrong decision if the required probability threshold was
not set to a high enough value. By increasing the required probability to a higher
level, additional exploratory movements would be required, resulting in better over-
all classification performance. At this level most solutions converged to the correct
values with a median of three exploratory movements with satisfactory results.

Table 4 | Comparison of AB discrimination of similar texture pairs

between human subjects and the Bayesian exploration classifier.

Texture pairs Percentage of correct

classifications

Human

subjects

Bayesian

exploration

Computer paper (Tl)

vs. smooth cardstock (T3)

60% 99.3%

Buna-N rubber (T50)

vs. silicone rubber (T54)

80% 100.0%

Acrylic felt (T12)

vs. velour (T96)

90% 100.0%

Textured vinyl #1 (T57)

vs. textured vinyl #2 (T58)

70% 100.0%

Pineapple fiber weave (T107)

vs. linen cloth (T111)

100% 100.0%

Plastic paper (T18)

vs. template plastic (T19)

85% 97.7%

Cotton duck (T102)

vs. jean denim (T104)

90% 100.0%

Santoprene rubber (T51)

vs. haplon rubber (T53)

75% 100.0%

In all cases Bayesian exploration outperformed human subjects with many pairs

of textures yielding 100% classification over the 1000 simulations for each pair

(the best performance for each pair of textures is highlighted in bold).

and the Bayesian exploration are presented as the percentage of
correct identifications in Table 4.

ABSOLUTE TEXTURE IDENTIFICATION
The new validation data from the 16 textures obtained in the pre-
vious section were also used against the entire set of 117 textures
to evaluate the performance of absolute texture identification. The
classifier was not aware of the 16 textures it was being presented
and initially set the probabilities for all textures to the same value
(1 divided by 117). The same process of Bayesian decision making
to determine optimal pairs of exploratory movements and sig-
nals for virtual exploratory movements was followed as discussed
in the previous section. The performance of this Bayesian explo-
ration approach was compared with two alternative exploratory
strategies. In the first, the most useful movements for each of these
signals as determined in Section “Selection of Set of Exploratory
Movements” were cycled; in the second, exploratory movement
and signal combinations were randomly selected. A maximum of
10 exploratory movements were allowed and the classifier was run
until any texture converged to greater than 99% probability or until
the 10 exploratory movements were conducted. If not converged,
the texture with the greatest probability after the 10 exploratory
movements was determined to be the most likely candidate. A
total of 8000 Monte Carlo simulations over the 16 textures were
conducted and performance is presented as percentage of correct
classifications (Table 5). Examples of the evolving probabilities
of possible textures and the selected exploratory movements for
some of these trials are shown in Figure 10.
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Table 5 | Summary of performance for absolute classification task for

uninformed cycling, random selection, and Bayesian Exploration.

Summary of performance Uninformed

cycling

Random

selection

Bayesian

exploration

Correct identifications 49.9% 84.1% 95.4%

And converged 36.4% 68.3% 89.3%

Median # of movements 10* 8 5

PERFORMANCE DETAIL

Computer paper (T1) 0.0% 57.8% 82.0%

Smooth cardstock (T3) 0.0% 81.2% 99.6%

Buna-N rubber (T50) 58.0% 84.4% 100.0%

Silicone rubber (T54) 88.6% 86.6% 99.6%

Acrylic felt (T12) 100.0% 94.2% 96.4%

Velour (T96) 33.4% 83.4% 100.0%

Textured vinyl #1 (TS7) 100.0% 99.6% 100.0%

Textured vinyl #2 (T58) 0.0% 51.4% 67.2%

Pineapple fiber weave (T107) 99.2% 94.0% 99.8%

Linen cloth (T111) 14.2% 90.6% 99.6%

Plastic paper (T18) 27.6% 86.4% 100.0%

Template plastic (T19) 86.2% 88.0% 94.4%

Cotton duck (T102) 100.0% 99.2% 100.0%

Jean denim (T104) 26.6% 91.8% 96.8%

Santoprene rubber (T51) 3.0% 75.4% 93.6%

Haplon rubber (T53) 61.2% 80.8% 97.6%

A total of 8000 Monte Carlo simulations for 16 textures from unique validation

data were compared against the training data from all 117 textures to determine

which of the 117 textures best fit the observed data when performing virtual

explorations. Results of Bayesian exploration are compared to uninformed cycling

through exploratory movements between the three signals at their most useful

movements and random selection of exploratory movements from all combina-

tions of movements and signals. The percentage of correct identifications are

shown for each. The algorithm that produced the best performance for each tex-

ture is displayed in bold.*For the case of uninformed cycling the median number of

movements to convergence could not be obtained as the simulation was stopped

at 10 movements before half of the simulations could converge.

RESULTS
ANALYSIS OF DESCRIPTIVE TEXTURE PROPERTIES
In the pilot study of 10 textures, descriptive properties were found
to reflect expected values. For instance, graphite produced the
lowest measure for traction between the surface and the skin of
the BioTac while polished aluminum and rubber had the highest.
Foam, satin, rayon, and burlap produced the highest measures of
roughness, while polished aluminum produced the lowest mea-
sure of roughness. In calculating the spectral centroid, the finer
textures such as graphite and satin produced higher values while
the coarser textures such as burlap and velcro produced lower val-
ues. Featureless textures such as polished aluminum and rubber
tended to produce low spectral centroids as well due to their 1/f
noise as discussed in (Wiertlewski et al., 2011). The exploratory
movements that produced the most discriminability within the
10-texture dataset as calculated by the minimal uncertainty are
presented in Figure 5.

A notable finding of these trials was that the spectral centroid
did not scale with sliding velocity for all textures (Figure 6). Such

scaling was observed only for certain coarse textures that were
also rough (Velcro hooks, foam, rayon, burlap). This constitutes
additional evidence that fingerprints do not simply convert sliding
velocity and spatial frequency into temporal signals as concluded
by (Scheibert et al., 2009).

IDENTIFYING THE MOST USEFUL EXPLORATORY MOVEMENTS
The most useful movement for each property was selected from
the set of 36 movements (Figure 7). It was observed that combina-
tions of high-power exploratory movements (high force and high
velocity) resulted in a high rate of fingerprint wear on the BioTac’s
skin. These high wear movements (gray boxes with white text in
Figure 7) were eliminated, although some appeared to be useful
for discrimination (e.g., 6.31 cm/s and 1.26 N for discriminating
roughness). As a general trend, it was observed that the ability
to discriminate traction improved at lower velocities and higher
forces, while the ability to discriminate roughness improved at
higher velocities and lower forces. These findings supported our
own intuition on the exploratory movements humans make to
extract these properties. We propose that when humans make a
movement to determine surface traction, they tend to use a high
amount of force while slowly moving their finger. Presumably this
is to maximize the amount of shear force sensed in the finger; it
is easier to control these forces by moving slowly. Similarly in our
experimental testbed, sliding at slower velocities produced more
stable sliding forces as measured by the motor current; this resulted
in more consistent measurements between multiple trials. To dis-
criminate roughness, we have observed that humans tend to use
very light forces while sliding over the surfaces of textures to feel
their vibrations. Our observations with the BioTac have demon-
strated a possible utility of this strategy. In general, faster velocities
tend to produce higher amplitude vibration signals, while greater
forces tend to dampen vibrations sensed by the BioTac. The find-
ings of these two exploratory movements as the most useful for
these properties in our artificial system provide additional support
to these hypotheses about biological exploratory movements for
perception of traction and roughness.

While a certain movement may be classified as generally “use-
ful” for a given property, other movements may actually be more
useful for discriminating a given pair of materials along this prop-
erty. Because all properties are collected with each movement, the
classification algorithm takes advantage of all nine combinations
of available movements and material properties during its deci-
sion process of determining the optimal movement and signal to
sense.

TRAINING DATASET
The measured properties of the 117 textures were individually
tightly clustered for repeated measures but spanned most of the
three dimensional property space, an ideal situation for an effi-
cient classifier. The complete set of measured properties for each
signal at the most useful movement for that property is shown
in Figure 8. In many cases, textures that had similar values for
one property tended to be dissimilar along other dimensions,
suggesting the utility of well-chosen next exploratory movements.

A graphical representation of confusion probability matrices
was generated for each combination of movements and properties
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FIGURE 10 | Evolution of estimated probabilities as virtual exploratory

movements are made to identify textures from the entire training set of

117 textures. In each of these plots the steps along the x -axis represent
discrete exploratory movements, and the y -axis represents the estimated
probabilities of likely texture candidates. The movement and signal taken at
each step are indicated below the tick marks [Movements (M): 1 = 1.26 N,
1 cm/s; 2 = 0.5 N, 2.5 cm/s; 3 = 0.2 N, 6.31 cm/s. Signals (S): 1 =Traction,
2 = Roughness, 3 = Fineness]. The color-coded key for probability traces
shows the numbers of the textures being classified in the validation trial.

Dashed line represents the 99% confidence required to end the simulation
before all 10 movements are made. In (A) texture 54 (Silicone) was rapidly
identified, as was the case for many of the simulations. In (B) texture 58
(Textured Vinyl #2) was eventually identified after a few initially more probable
candidates were ruled out. In (C) texture three (smooth cardstock) is shown
being misidentified as balsa wood (T38) and in (D) correctly identified,
although with only 60% confidence at the end of the simulation. In both
cases no texture reached a confidence of above 99% to stop the simulation
so it ran for the complete 10 trials.
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(Figure 9). The geometric mean (calculated by multiplying confu-
sion probability matrices and taking the nth root of the result) for
all of these movements and properties provides additional insight
into which pairs of textures have the most confusion across all
exploratory movements and properties. Results indicate that most
textures are readily distinguishable with a few exceptions. When
the confusion probability matrices are combined for only the opti-
mal movements, there are considerably more off-diagonal dark
spots representing textures that are likely to be confused. The
identification algorithm chooses the combination of movement
and signal type that will be most likely to discriminate among the
most probable alternatives at any given point in the identification
process.

Correlation between calculated texture properties were ana-
lyzed for all 117 textures for each movement and the average values
for each movement are provided (Table 3).

An interesting finding was a strong negative correlation
between roughness and traction. This can be observed in mate-
rials such as rubber and glass, which generally have smooth sur-
faces, yet produce a high amount of friction against the silicone
skin of the BioTac. This contradicts (Smith et al., 2002a), who
reported a strong positive correlation between friction and rough-
ness for human fingertips, but did not include such a diverse set
of materials.

TEXTURE DISCRIMINATION AND COMPARISON WITH HUMAN
PERFORMANCE
Results of the performance for discriminating between two tex-
tures for both humans and our artificial algorithm are provided
in Table 4. The performance of the classifier exceeded human
performance for all pairs. The average performance of human
subjects across all of the texture pairs was found to be 81.3%
while the average performance of our classifier was found to
be 99.6%. This result was quite unexpected, as human capabili-
ties have previously been thought of as the “gold standard.” Our
results in this study demonstrate that our artificial exploratory
algorithm can surpass this capability even when the methods were
designed to mimic the strategies that humans employ (but see
Discussion).

ABSOLUTE TEXTURE CLASSIFICATION
The texture classification algorithm was validated by using it to
identify the best match from the 117 textures in the database by
selecting the most efficient sequence of exploratory movements
from a novel set of data. Figure 10 shows a few examples of
these simulations, which exhibit a wide range of sequences of
exploratory movements and properties, depending on the actual
texture being classified and those in the data set with which it
might be most easily confused. In all cases the first movement is
0.2 N and 6.31 cm/s to determine texture roughness. This is due to
all textures starting with equal probability (1 divided by 117). In
this scenario, data from the training set has indicated that this first
movement will produce the largest benefit. After information from
this first movement is collected, each simulation went through a
set of exploratory movements that was optimal for discriminating
among the most likely candidates for the particular simulation.

This was found to be unique for each texture and even differ-
ent between simulations of the same texture due to the random
presentation of various trials from the validation dataset.

In this study we compared the Bayesian exploration algorithm
with alternative algorithms such as cycling through the most useful
movements for each signal and randomly selecting combinations
of exploratory movements and signals to measure. A summary
of performance for the 8000 Monte Carlo simulations of the 16
textures tested is provided (Table 5). Our Bayesian exploration
algorithm was found to be superior in both classification accuracy
and number of exploratory movements required to converge to
99% confidence. Furthermore the Bayesian exploration strategy
was more likely to converge on the correct texture before reaching
the maximum of 10 movements. Of the 16 textures explored for
global classification among the set of 117 textures in these sim-
ulations, Bayesian exploration outperformed uninformed cycling
and random selection for all but one of these textures.

DISCUSSION
SUMMARY OF FINDINGS
Previous investigations into the psychophysics of textures and their
classification from sensory data have looked at a fairly narrow
range of coarse textures and exploratory movements. This has
resulted in simplistic classifiers based on one or two dimensions
of the sensory information that tend to break down when extrapo-
lated beyond their original data. Such circumscription makes study
design more tractable but it may foreclose opportunities inher-
ent in considering the larger problem. The large set of textures
and large range of movements explored in this study forced us to
develop systematic and scalable methods for dealing with a prob-
lem whose scale is more similar to that faced by the human nervous
system. These methods extend conventional Bayesian decision
making to encompass optimal strategies for acquiring the data
for such optimal decision making, suggesting the term Bayesian
exploration.

For this study we have found the method of Bayesian explo-
ration to be far superior to other methods previously used for
discriminating textures: de Boissieu et al. (2009) were able to
demonstrate discrimination among 10 different textures with 62%
performance classification; Giguere and Dudek (2011) were able
to obtain a classification performance of 89.9–94.6% with 10
surfaces; Oddo et al. (2011) demonstrated a classification per-
formance of 97.6% classification across three fine gratings; Jamali
and Sammut (2011) demonstrated 95% classification across eight
textures; Sinapov et al. (2011) demonstrated a classification per-
formance of 95% across 20 different textures when using multiple
exploratory movements. Bayesian exploration yielded a perfor-
mance of 99.7% when choosing between two difficult textures,
surpassing even human capabilities, and 95.4% when choosing
from a database of 117 textures. Normally classification accuracy
would be expected to decline as the number of possible textures
increased.

A guiding principle throughout this study was biomimicry. We
used a tactile sensor that shares many mechanical features with
the human fingertip and we slid it over textured surfaces with
exploratory movements similar to those that humans make when
exploring textures. The exploratory movements and properties to
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measure were also inspired by observations of human behavior
and descriptive language humans use to describe textures. The
Bayesian exploration algorithm intelligently selects the optimal
exploratory movements to make based on current knowledge of
what the texture may be and prior experience of which move-
ment would best discriminate the likely possibilities, a method
also inspired by theories of biological behavior (Loeb et al., 2011).
Gratifyingly, we were able to obtain performance in discriminating
texture that surpassed human capabilities for both accuracy and
speed of classification.

The use of descriptive properties inspired by human language
was probably important. The human brain is an outstanding clas-
sifier, so naturally one would expect it understands what makes
textures different. Therefore, the language that humans use to
describe textures are inherently low-hanging fruit for inspir-
ing analytical measures of texture properties. In this study we
implemented relatively simple algorithms for estimating these
signal properties (motor current to estimate sliding force, vibra-
tion power to estimate roughness, vibration frequency to esti-
mate coarseness). The performance of our classifier, even using
this simplified set of inputs, far exceeded our expectations for
such a large database of textures. This approach of language-
guided signals may be useful for other artificial discrimination
tasks.

There are, of course, substantial differences between our
machine and a human hand or even other robotic systems. On
the plus side, the human fingertip has a much richer set of sen-
sors than the BioTac, which has a similar dynamic range but lacks
the spatial resolution of the dynamic Meissner’s receptors in the
individual fingerprint ridges (Jones and Lederman, 2006). On the
minus side, the movements of the human hand are subject to con-
siderably more motor noise than our electrical motors (Jones et al.,
2002; Jones and Lederman, 2006). Apparently these two differences
tended to cancel each other in terms of overall performance. This
may be a general property of the Bayesian strategy for selection of
exploratory movements and interpretation of the resulting sensory
data. Noise affecting either the movements or the sensory trans-
duction is represented automatically in the database and biases the
process away from choices that provide less useful information for
any reason. Extending this algorithm to a complete robotic system
working in unstructured environments is expected to degrade the
quality of measured signals, which was enhanced by the careful
design of a custom-built experimental apparatus. In particular,
the actuators in humanoid robots are likely to be considerably
noisier than our apparatus, introducing both variability into the
exploratory movements and noise into the sensor signals. Addi-
tional training to better understand the characteristics of noise
and variability is one way to compensate for this. We expect the
Bayesian exploration method to be robust to this and evolve to
make the most of available information.

CONSIDERATIONS FOR IMPROVING THE CLASSIFIER
The results presented in this study implement what is known in
machine learning as supervised learning. A set of textures and
their properties to measure were given to the classifier and it
was told that the textures were unique and therefore belonged
to separate classes. In the real world, the existence of discrete

entities must be inferred in the first place from the clustering of
data points that may arise from the existence of multiple dis-
crete entities, continuous gradations of material properties, or
simply noise in the measurement system. Any novel sensory expe-
rience might be taken to be a distorted sampling of a previously
known entity or a first example of a new entity. Such situations
can be accommodated by extending the classification algorithm
to continuously refine its experience for known textures as well
as to identify when new textures are encountered and a new
entity needs to be added to the database. One method to do
this would be to calculate the Bhattacharya coefficient between
the object currently being explored and the existing database
of objects. If the newly observed data are not similar enough
to known textures, a new class could be created. In addition to
the distributions of the tactile data themselves, the classifier may
be able to use other information such as the visual appearance
(used by our subjects when first comparing the two similar tex-
tures in the discrimination task) or the probability that an entity
could have changed or been replaced from one exploration to the
next.

In our system, the internal representation of a texture’s proper-
ties consists only of a mean value and a standard deviation for each
property and each movement that can be made. After successfully
identifying a texture, the system would benefit from adding these
new data to its library so future encounters with the same texture
will be identified more efficiently. Furthermore, as more explo-
rations are made, the true probability density function could be
identified, which may in fact deviate from the initially assumed
normal distributions. This would serve to improve classifier per-
formance. Adding these results to the system would also increase
the amount of training data it has available, eventually enabling
multivariate analysis as opposed to the univariate methods used in
this study to avoid the curse of dimensionality (Jain et al., 2000).
Updating the mean and standard deviation with the new data can
accomplish this, but it is not trivial. If all observations are assumed
to be equally valid regardless of when they occurred, then updat-
ing requires knowledge also of the previous number of experiences
with that entity. If a new entity is created, it is possible, even likely,
that a substantial number of the previous observations have been
misclassified. Creating two new means and standard deviations
from one previously learned distribution may not be feasible, in
which case the algorithm will need to“forget” much of the old data
and explore the two new entities intensively to create new internal
representations.

Collecting data sufficient for multivariate analysis was imprac-
tical for the large number of textures employed in these experi-
ments, but something like it may be feasible over the life of an
organism or robotic system learning progressively about its world.
We propose that a strategy of initially focusing only on salient
properties for novice systems with little experience is preferable. As
more experience is obtained, however, such systems could benefit
from the efficiency of multivariate analysis.

CONSIDERATIONS FOR IDENTIFYING OBJECTS BY ALL AVAILABLE
SENSORY MODALITIES
The strategies used in this study could be generally applied to
a more diverse class of problems involving object identification.

Frontiers in Neurorobotics www.frontiersin.org June 2012 | Volume 6 | Article 4 | 18

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Fishel and Loeb Bayesian exploration for texture identification

As discussed in the introduction, texture discrimination is only
a small subset of tools that humans employ when discrimi-
nating objects by touch, others include: compliance, thermal
properties, shape, volume, and weight. The development of
biologically inspired exploratory movements and signal mea-
sures for these properties would enhance the capabilities and
performance of the system. Furthermore, these must be inte-
grated with other exteroceptive modalities such as vision,
sound, and smell. Iterative decisions must be made about other
exploratory movements of the fingers, the eyes (e.g., saccadic
gaze shifts), and other attentive mechanisms. Anthropomorphic
robots provide both the need and the ability to implement
biomimetic strategies for coping with such high dimensional
data. In doing so, they may provide insights into those strate-
gies that are difficult to obtain from studying biological systems
alone.
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