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Neurobiological studies have shown that insects are able to adapt leg movements and
posture for obstacle negotiation in changing environments. Moreover, the distance to an
obstacle where an insect begins to climb is found to be a major parameter for successful
obstacle negotiation. Inspired by these findings, we present an adaptive neural control
mechanism for obstacle negotiation behavior in hexapod robots. It combines locomotion
control, backbone joint control, local leg reflexes, and neural learning. While the first three
components generate locomotion including walking and climbing, the neural learning
mechanism allows the robot to adapt its behavior for obstacle negotiation with respect
to changing conditions, e.g., variable obstacle heights and different walking gaits. By
successfully learning the association of an early, predictive signal (conditioned stimulus,
CS) and a late, reflex signal (unconditioned stimulus, UCS), both provided by ultrasonic
sensors at the front of the robot, the robot can autonomously find an appropriate distance
from an obstacle to initiate climbing. The adaptive neural control was developed and
tested first on a physical robot simulation, and was then successfully transferred to a real
hexapod robot, called AMOS II. The results show that the robot can efficiently negotiate
obstacles with a height up to 85% of the robot’s leg length in simulation and 75% in a real
environment.

Keywords: obstacle negotiation, autonomous robots, neural control, adaptive behavior, associative learning,
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1. INTRODUCTION
Insects are truly remarkable creatures with fascinating capabili-
ties. Although their brains are much simpler structures than the
human brain, this does not limit their capacity of generating
a vast variety of complex behaviors (Chittka and Niven, 2009).
In particular, insects exhibit tremendously agile and versatile
locomotion. Furthermore, insects show the outstanding ability
to adaptively move through their natural habitats (Ritzmann
and Büschges, 2007). The adaptability of motor behavior in
insects enables an effective response to unknown and novel sit-
uations. These observations have encouraged many roboticists to
develop biologically-inspired robots and control schemes. Most
of them aim to design robots emulating biomechanical proper-
ties of certain animals, including stick insects (Schneider et al.,
2012), cockroaches (Cham et al., 2002; Kingsley et al., 2006),
and ants (Lewinger et al., 2006). Others extract basic principles
from biological systems to reduce system complexity by using
hybrid leg-wheeled robots (Saranli et al., 2001; Lewinger et al.,
2005). Several works use an inverse parametric model to con-
trol leg movements and posture of robots (Fielding et al., 2001;
Gassmann et al., 2001), some of them take inspiration from bio-
logical control paradigms like Central Pattern Generators (CPGs)
and local leg reflex controls (Espenschied et al., 1996; Klaassen
et al., 2002). Only a few works have focused on obstacle negotia-
tion. Most of them have increased climbing performance by using
certain biomechanical improvements, such as a controllable body

joint (Lewinger et al., 2005) and a “sprawled posture” (Pavone
et al., 2006). Recent works on obstacle negotiation also have been
done on hybrid leg-wheeled robots (Chen et al., 2011; Chou et al.,
2011). These robots have fewer degrees of freedom and therefore
can be more easily controlled than legged robots. However, in
contrast to legged robots, these robots have problems perform-
ing versatile locomotion such as omnidirectional walking and
negotiating very tall or narrow steps due to their reduced mobility.

Comparing the capabilities of current autonomous mobile
robots with the agility of insects, one can easily notice the supe-
riority of biological systems. Insects, such as cockroaches and
stick insects, are able to adaptively negotiate very high obstacles
compared to their body scale. Adaptive motor behavior enables
insects not only to initiate different higher-order behaviors, such
as climbing or turning, but also to locally adapt their leg and pos-
tural control (Ritzmann and Büschges, 2007; Schütz and Dürr,
2011). Recent insect studies have shown the use of antennae in
gauging the distance from an obstacle to adapt leg and pos-
tural movements to successfully surmount an obstacle (Harley
et al., 2009; Schütz and Dürr, 2011). The other components sug-
gested by behavioral neurobiology are reactive key behaviors [i.e.,
a positive change in body-substrate angle, body flexion, center of
mass (CoM) elevation, and local leg reflexes] of insect climbing
(Fischer et al., 2001; Watson et al., 2002; Ritzmann et al., 2004).
Some parts of these key behaviors have been utilized by previous
studies (Klaassen et al., 2002; Lewinger et al., 2005; Pavone et al.,
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2006), though only few groups have applied adaptive mechanisms
(Pavone et al., 2006) and machine learning algorithms (Lee et al.,
2006) for obstacle negotiation. Adaptive mechanisms allow the
robot to deal with unknown situations, making it possible to
negotiate a wide variety of obstacles autonomously.

These findings have motivated us to develop an adaptive neural
control mechanism for obstacle negotiation behavior of hexa-
pod robots consisting of locomotion control, reactive control,
and associative learning based on a distributed scheme (Verschure
et al., 1992; Verschure and Voegtlin, 1998). The CPG-based loco-
motion control generates versatile and efficient walking behavior
with a multitude of gaits while reactive controls utilizing all men-
tioned key behaviors of insect climbing is for leg reflexes and
body posture control. The neural learning mechanism enables the
robot to adapt its step climbing behavior according to changing
conditions, i.e., different obstacle heights and walking patterns.
As a result, the robot successfully learns the association of an early,
predictive signal (conditioned stimulus, CS) and a late, reflex sig-
nal (unconditioned stimulus, UCS), both provided by ultrasonic
sensors at the front of the robot. Consequently, after learning the
robot finds an appropriate distance from the obstacle to initiate
negotiating it. In the results, we will show that the neural learning
mechanism leads to stable, adaptive behavior allowing the robot
to overcome very high obstacles.

The following section describes the biological background
used as inspiration for the design of an adaptive obstacle negotia-
tion control for hexapod robots. In section 3, we present method
and materials used in this study. First, we introduce the hexapod
robot AMOS II and the robot simulation framework LpzRobots
as the development and testing platforms of our proposed con-
trol system. The implementation of the neural control mechanism
for adaptive obstacle negotiation of hexapod robots is described.
Section 4 presents experimental results of the learning mecha-
nism and the resulting obstacle negotiation behavior of AMOS II.
Finally, in section 5, we discuss our results and provide an outlook
of conceivable future work.

2. BIOLOGICAL BACKGROUND
Insects, such as cockroaches and stick insects, can easily deal with
various kinds of obstacles on their way. This is due to the neural
control and biomechanics of the animal that generate and coordi-
nate adaptive and reactive behaviors necessary for efficient obsta-
cle negotiation. Efficiency and success in surmounting obstacles
are strongly reliant on sensory data gathered from the environ-
ment and the adaptability of motor behavior. It has been shown
that the antennae are mainly involved in evaluating an obsta-
cle and detecting its spatial parameters (i.e., distance and height)
through various mechanosensors (Harley et al., 2009; Schütz and
Dürr, 2011). These parameters have shown to be crucial in effi-
cient obstacle negotiation in insects, especially as an indicator
of when to initiate climbing (Watson et al., 2002). Varying these
parameters leads to behavioral adaptations of insects.

In general, biological systems are able to adapt through learn-
ing (Staddon, 1983). It allows organisms to alter their behavior
in order to succeed in unpredictable environments. Classical con-
ditioning (Pavlov, 1927), a subclass of associative learning which
has been found in a variety of different insects (Alloway, 1972), is

applied here for adaptive, insect-like obstacle negotiation behav-
ior. In classical conditioning, an animal learns to associate a
previously neutral stimulus (conditioned stimulus, CS) and an
unconditioned stimulus (UCS) when both are presented tempo-
rally paired. Before learning, the UCS elicits a behavioral response
that is referred to as unconditioned response (UCR). After the
conditioning procedure, the presence of only the CS is capable to
cause a response, called the conditioned response (CR). Note that
due to temporal causality the CS has to precede the UCS; thereby,
the CS becomes a predictive stimulus of the UCS. Different asso-
ciative learning mechanisms have been previously developed and
applied to robots for generating adaptive behavior [(Grossberg
and Schmajuk, 1989; Baloch and Waxman, 1991; Verschure et al.,
1992; Verschure and Voegtlin, 1998; Porr and Wörgötter, 2003),
see the Discussion section for details]. For our adaptive climb-
ing control described in section 3, we apply input correlation
(ICO) learning (Porr and Wörgötter, 2006) as a model for classi-
cal conditioning to associate distal and proximal distance signals
provided by ultrasonic sensors of the robot. As a result, the robot
can learn to find an optimal distance from an obstacle to initiate
climbing.

Several neuroethological studies have identified at least four
behaviors necessary for efficient obstacle negotiation in insects: a
positive change in body angle, center of mass elevation, body flex-
ion, and local leg reflexes. (Watson et al., 2002) examined neural
control and kinematics in obstacle negotiation of the deathhead
cockroach (Blaberus discoidalis). In preparation for climbing, a
cockroach extends its front and middle legs leading to a positive
change of the body-substrate angle which is defined as the angle
between ground and torso axis. Significant alternations from nor-
mal walking behavior are not required for obstacles smaller than
the height of their front leg swing trajectory. For higher obsta-
cles the transitional phase from walking to climbing is anticipated
before the front legs reach the obstacle. This anticipatory upward
movement of the torso is called the rearing stage (Watson et al.,
2002). Stick insects prepare for obstacle negotiation by tilting
the prothorax upwards before placing their front leg on top of
the obstacle (Schütz and Dürr, 2011). The tilting behavior also
assures a positive change in body angle. Similar changes of the
body angle have been observed in potato beetles (Pelletier and
McLeod, 1994). After the tarsus touches the top of the obsta-
cle, the coxal-trochanteral (CTr) joint extends to elevate the body
lifting the center of mass (CoM) upwards. A translation of the
CoM above the obstacle is required to enable insects to fully
climb the obstacle. This is done by a stronger leg extension of
the middle leg pair. This stage has been named the rising stage
(Watson et al., 2002). In cockroach climbing, it appears that
climbing does not require any remarkable dispositions of gen-
eral walking control mechanisms, but manipulative alternations
of posture and leg movements in the anticipatory behavior of
the rearing stage. Besides kinematic stability, insects compensate
perturbations during locomotion dynamically (Ghigliazza and
Holmes, 2005; Spence et al., 2010) which requires a large set of
sensory organs for force/torque sensing as well as posture con-
trol. Moreover, preflexes provided by the musculoskeletal system
of the animal have been shown to stabilize locomotion (Jindrich
and Full, 2002; Seipel et al., 2004; Proctor and Holmes, 2010).
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Legged animals are able to compensate for small terrain irreg-
ulaties using their legs. However, significant irregularities, such
as edges, can cause problems of instability due to the rigidity of
the thorax. Thus, legged animals increase their mobility by having
jointed body segments rather than a single rigid one. This biome-
chanical property is found in many insects, such as cockroaches
and stick insects. (Ritzmann et al., 2004) observed that control
of the two body joints provides significant support for obstacle
negotiation in insects. Cockroaches use their body joint to sup-
port their locomotion over an object by bending the front body
downwards (Ritzmann et al., 2004). This specific behavior can
be referred to as body flexion. It allows the cockroaches to apply
more vigorous propulsion forces. Even more importantly, it keeps
the CoM near to the surface, so that the cockroach does not fall
over backwards.

Generally, moving through complex landscapes may cause
problems for legged animals due to irregularities, e.g., holes in
the ground as well as steps. As mentioned earlier, legged animals
are able to deal with such irregularities by alternating leg move-
ments based on reflexes. The so-called searching and elevator
reflexes observed in insects lead to effective rough terrain loco-
motion and climbing over obstacles (Cruse, 1979; Bässler, 1983;
Pearson and Franklin, 1984). The searching reflex appears in sit-
uations in which a leg looses ground contact during stance phase,
e.g., in a hole or a pit. The reflex then extends the respective leg
to search for a foothold. This behavior has been found in several
insects, including stick insects and locusts (Fischer et al., 2001).
Moreover, insects are able to avoid hitting an obstacle with their
legs triggered by the elevator reflex (Franklin, 1985). This reflex
leads to a higher amplitude of succeeding leg swings.

The following section introduces a biologically-inspired, adap-
tive neural control mechanism for obstacle negotiation behavior
in hexapod robots utilizing the aforementioned adaptive and
reactive behaviors of insect climbing. As we will later show, this
leads to effective and energy-efficient negotiation of a wide range
of different obstacle heights.

3. MATERIALS AND METHODS
The six-legged walking machine AMOS II is employed as the
experimental platform of this work. For practical reasons, we
developed and tested our proposed control system first on a
robot simulation framework called LpzRobots using an accurate,
simulated model of AMOS II, and then we successfully trans-
ferred it to the real robot. Therefore, the next section describes its
biomechanical setup and the simulation framework. Finally, we
present the adaptive neural control mechanism for obstacle nego-
tiation and its modules while some results are shown alongside to
illustrate their operating principles.

3.1. BIOLOGICALLY INSPIRED HEXAPOD ROBOT AMOS II
The biomechanical and control design of the hexapod walking
machine AMOS II (Figure 1) is biologically inspired by insects
(Manoonpong et al., 2008a). One of the important characteris-
tics of AMOS II is an actuated hinge joint called the backbone
joint (BJ) connecting the two parts of its body enabling controlled
flexibility in the thorax (Figures 1A,C). One of its three similar
leg pairs is attached to the front body part and two are attached

to the rear body part. The motion of the thoracal-coxal (TC)
joint is limited in forward (+) and backward (−) directions, the
coxal-trochanteral (CTr) joint elevates (+) and depresses (−) the
leg and the femoral-tibial (FTi) controls extension (+) and flex-
ion (−) of the third limb (Figure 1B). The 19 DC servomotors
(three at each leg, one BJ) actuate the joints of AMOS II with a
stall torque of 2.9 Nm at 5 V and are controlled in position mode.
Additionally, the backbone joint torque is increased threefold by
using a gear to accomplish a more vigorous motion. To perceive
its environment, AMOS II has mounted 21 sensors in total: two
ultrasonic (US) sensors attached to the front body part, six foot
contact (FC) sensors for its legs, six reflex infrared (IR) sensors
located at the front of its legs (Figure 1B), a built-in current sen-
sor (BICS) and an inclinometer sensor (IM) inside the trunk,
three light dependent resistors (LDR), a USB camera (CM), and
a laser scanner (LS) at the front body part (Figure 1C). This large
number of sensors enables the robot to generate various behav-
iors, such as obstacle avoidance and phototropism (Manoonpong
and Wörgötter, 2009; Steingrube et al., 2010). Here only the US,
FC, and IR sensors are employed for adaptive obstacle negotia-
tion behavior. We use the robot simulation framework LpzRobots
(Martius et al., 2010) based on the Open Dynamics Engine [ODE,
see Smith (2006)] to simulate AMOS II (see Figure 1D) and to test
the developed adaptive neural control before transferring it to the
real robot. Note that the simulation uses the same physical param-
eters as the real robot and, therefore, control parameters obtained
from the simulation can be directly tested on the real robot, lead-
ing to almost identical behavior. Additionally, it enables us to
accurately predict the maximum obstacle or step height that the
robot can overcome.

3.2. CONTROL ARCHITECTURE FOR ADAPTIVE OBSTACLE
NEGOTIATION BEHAVIOR

The proposed control architecture for adaptive obstacle negotia-
tion behavior (see Figure 2) is composed of three major neural
control modules: adaptive backbone joint control (BJC), cen-
tral pattern generator (CPG)-based neural locomotion control
(NLC), and local leg reflex control (LRC). The adaptive BJC com-
bines a neural learning circuit, based on input correlation learn-
ing, and hierarchical, behavior-based neural control. The neural
learning circuit enables AMOS II to perform adaptive behavior
of the backbone joint. In principle, it learns to respond to a con-
ditioned stimulus, here an ultrasonic signal related to a distance
to an obstacle. The neural learning circuit output is fed into a
recurrent neural network with five input neurons generating three
different, hierarchical behaviors. Finally, the backbone joint is
directly driven by a summation output neuron. The NLC gener-
ates frequency- and phase-modulated periodic signals controlling
all leg joints resulting in various insect-like behavioral patterns
for walking, including omnidirectional locomotion, turning, and
a multitude of hexapedal gaits. The robot is therefore able to
traverse different kinds of terrains in the maximum efficiency
attained by the AMOS II system (Manoonpong et al., 2013b).
The set of different behavioral patterns can be autonomously
controlled by higher-order control structures based on input sig-
nals coming from exteroceptive sensors, such as a camera, a laser
scanner, and ultrasonic sensors. The LRC allows AMOS II to
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FIGURE 1 | Biologically-inspired hexapod robot AMOS II. (A)

Sensors and leg configuration of AMOS II (front view). (B) Motor,
sensor and passive component configuration of an AMOS II leg (R0).
(C) Example of flexion and maximum range of the backbone joint

and additional sensors of AMOS II. (D) Robot simulation toolkit
LpzRobots with GUI and real-time plots. Abbreviations: L0, R0 = left
and right front legs, L1, R1 = left and right middle legs, L2, R2 =
left and right hind legs.

FIGURE 2 | Embodied closed-loop neural control architecture for

adaptive obstacle negotiation behavior. It is composed of an adaptive
backbone joint control (BJC), a neural locomotion control (NLC), and six local

leg reflex control (LRC) units (i = 0,1,2). While the BJC drives the backbone
joint (BJ), the NLC and the LRC both control the TC, CTr, and FTi joints of each
leg (see text for detailed description). Abbreviations are referred to Figure 1.
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effectively react to variations of terrain. To do so, it provides two
efficient reflexes using proprioceptive (i.e., FC sensors) and visual
feedback for rough terrain locomotion: the searching and the ele-
vator reflex. The searching reflex is activated as soon as a FC
sensor loses ground contact in the stance phase. The respective
leg consequently starts to adapt its movements through exten-
sion to search for the ground. The elevator reflex prevents the
leg from hitting an obstacle during swing phase by using an IR
sensory input. Neural preprocessing is applied for noise elimina-
tion as well as functional signal modulation. All control networks
apply a standard additive, non-spiking neuron model with a
discrete-time updating frequency of approximately fTS ≈ 27 Hz.
The activity of a neuron i is given by

ai(t + 1) =
n∑

j = 1

wi j σj
(
aj(t)

) + �i, ∀i = 1, ..., n, (1)

where n corresponds to the number of neurons, �i is a con-
stant bias term to the neuron i, and wij the synaptic weight of
the connection from neuron j to neuron i. For the output of
the neuron, we use different types of transfer functions here:
the standard sigmoid σi (ai(t)) = (1 + exp (−ai(t)))−1, hyper-
bolic tangent σi (ai(t)) = tanh (ai(t)), linear, and binary thresh-
old transfer function. Input units are linearly mapped onto the
interval [0, 1] (for sigmoid, linear, and binary threshold) and
[−1, 1] (for hyperbolic tangent). Note that artificial neural net-
works are used here as robot control because they are concep-
tually close to biological systems compared to other solutions
(Kalakrishnan et al., 2011). They can form as a modular struc-
ture where the entire controller consists of different functions as
shown here. Additionally they also allow for the application of
different off-line and on-line learning algorithms.

3.3. NEURAL PREPROCESSING OF SENSORY DATA
Sensory data from the ultrasonic (US), foot contact (FC), and
infrared (IR) sensors serve as input to generate adaptive obstacle
negotiation behavior. For signal preprocessing of the sensory data,
we apply neural modules with self-excitatory connections for
non-linear filtering and hysteresis effects based on their dynam-
ical properties [see Manoonpong et al. (2008b) for details about
neural preprocessing of sensory signals]. Non-linear filtering sup-
presses unwanted noise (i.e., low-pass filtering) and shapes the
sensory data, while hysteresis effects assure the neural activation
to be present longer than the stimulus itself. This short-term
memory capacity depends on the strength of the self-recurrent
connections (Pasemann, 1993). For the US sensory preprocess-
ing module, we apply a series of two single recurrent neurons
where the weights were chosen empirically (Figure 3). As a result,
the connection weights from the US input to the first recurrent
neuron and from the first recurrent neuron to the second recur-
rent neuron are set equally to 0.1 while the recurrent weight of
each neuron is set to 0.9. Using this setup, the module prolongs
the activation of the sensory signal which is required to maintain
control of the backbone joint for obstacle negotiation. For the FC
and IR sensory preprocessing modules, we apply a single recur-
rent neuron for each module using the same neural parameters
(Figure 3). The parameters were empirically adjusted. As a result,

FIGURE 3 | Recurrent neural modules for signal preprocessing of

ultrasonic (US), foot contact (FC), and infrared (IR) sensors. US
preprocessing applies two recurrent neurons using a linear transfer function
where the incoming connection weights are set to 0.1 while the recurrent
weight of each neuron is set to 0.9. FC and IR preprocessing modules both
apply a single recurrent neuron using a hyperbolic transfer function where
the incoming connection weights are set to 5.0 and the recurrent weights
are set to 2.0. The neural parameters of all sensory preprocessing modules
were chosen empirically.

the connection weights from the FC input to its recurrent neu-
ron and the IR input to its recurrent neuron are set equally to
5.0 while the recurrent weight of each neuron is set to 2.0. Using
this setup, each module eliminates noise and shapes its sensory
signal to a binary-like output [see also Steingrube et al. (2010);
Manoonpong et al. (2013b) for details].

3.4. ADAPTIVE BACKBONE JOINT CONTROL
In this work, adaptive backbone joint control (BJC) has been
developed for generating efficient obstacle negotiation behavior.
It consists of two components: a neural learning circuit and a
behavior-based, hierarchical neural network, also referred to as
backbone joint control. While neural learning allows the robot to
learn the association between a predictive (conditioned, CS) and
a reflex stimulus (unconditioned, UCS), the BJC integrates sen-
sory information from US and FC sensors to generate an output
signal that directly drives the backbone joint.

3.4.1. Neural Learning Circuit
The learning goal in this study is to learn to efficiently negotiate an
obstacle. This entails learning to tilt the front body part upwards
early enough to avoid running into the obstacle. Preprocessed
sensory signals coming from the US sensors at the front of the
robot serve as input signals for the learning circuit. The US sig-
nal is divided into a proximal and a distal range (Figure 4A)
leading to an early, predictive signal x1 and a late, reflex signal
x0, respectively, as the robot approaches an object. While x1 is
equal to the US signals fed into the circuit, x0 is only active when
the US signals surpass a certain threshold � = 0.85 and is then
mapped onto the interval [0, 1]. The learning circuit employs a
correlation-based, differential Hebbian learning rule called input
correlation (ICO) learning (Porr and Wörgötter, 2006) to modify
a plastic synapse ρ1 during learning (Figure 4B). It consists of an
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FIGURE 4 | Learning mechanism for insect-like, adaptive obstacle

negotiation behavior. (A) Sensory signal setup of the robot with proximal
and distal signal ranges. (B) Neural circuit of the input correlation (ICO)
learning rule for correlation-based learning. The correlation (depicted by �)
of an early, reflex signal x0(t) a late, predictive signal x1(t) alters the weight
of the plastic synapse ρ1(t) according to Equation 3 while the synaptic
weight ρ0 is fixed. The output neuron applies a linear transfer function to
generate the output signal σlearn. Note that the learning rule applies the
positive time-derivative of x0 to change the plastic synapse ρ1(t). (C)

Behavioral response to different values of ρ1. The ascent slope of the
learner neuron output σlearn controlling the BJ increases proportional to the
strength of ρ1, thus, the higher the value the faster and stronger the
leaning motion takes place. Note that the behavioral output also alters the
perceived sensory input such that a faster response leads to an earlier
cut-off, i.e., when the robot leans beyond the edge of the obstacle. As a
result, the time interval in which the BJ is active gets shortened.

integrating output neuron that applies a linear transfer function.
The neuron sums up the weighted input signals x0(t) (reflex sig-
nal) and x1(t) (predictive signal), thus the output signal σlearn is
given by:

σlearn(t) = ρ0x0(t) + ρ1(t)x1(t). (2)

The synaptic weight ρ0 = 0.1 is set to be constant. The output
signal σlearn is fed into the BJC to control the leaning behavior
of the robot which is described below. Thus, the strength of ρ1 is
proportional to the BJ motor output signal (Figure 4C). The ICO
learning rule alters the plastic synapse ρ1(t) as follows:

dρ1(t)

dt
= μx1(t)

dx0(t)

dt
. (3)

Note that only positive changes of x0 are applied to modify the
weight. At the beginning, ρ1 is set to zero and therefore, the
leaning behavior is weakly controlled by the reflex signal. As
a result, the robot leans too late to avoid hitting the obstacle.
Consequently, the robot starts to turn away from the obsta-
cle. Due to the correlation of x0 and x1, the plastic synapse ρ1

increases with every climbing trial resulting in a stronger response
of leaning behavior to the predictive signal. Consequently, the
robot leans earlier to avoid the occurance of the reflex signal. After
a finite number of climbing trials, the plastic synapse ρ1 converges
toward a value for which the leaning behavior avoids the reflex
signal completely.

3.4.2. Backbone Joint Control
The behavior-based, hierarchical BJC is applied to enhance obsta-
cle negotiation of the robot by emulating thoracic joint behaviors
observed in cockroaches. It is a recurrent neural network that
consists of five input neurons, a hidden, postprocessing neu-
ron and a summation output neuron that directly drives the
backbone joint and has a behavior-based, hierarchical topology
(see Figures 5A,B). The behavior-based approach of the BJC is
inspired by key behaviors for efficient obstacle negotiation as
observed in insects. Three different behaviors are induced by the
BJC: Leaning, flexion and normalizing. Leaning behavior emu-
lates a behavior observed in stick insects in which the animal
leans its front body part upwards before approaching an obstacle
(Schütz and Dürr, 2011). This leads to a positive body-substrate
angle which is required for an effective placement of the front tarsi
onto the obstacle. Note that leaning behavior is used to approach
the obstacle instead of rearing behavior of cockroaches resulting
in significant instabilities of walking for our robot. The leaning
neuron (UP) receives the output σlearn from the neural learn-
ing circuit described above and generates an output signal using
a linear transfer function. Flexion behavior emulates body flex-
ion of insects (Ritzmann et al., 2004) in order to increase the
efficiency of traversing surface irregularities, including edges and
depressions. It is generated by two neurons SD and SU for down-
ward and upward movements, respectively. They receive input FC
sensory signals from the front (for SD) and the middle leg pair
(for SU), respectively. Both neurons serve as an AND gate using
a binary threshold transfer function. By this means, these neu-
rons are only activated when both legs of the respective leg pair
are in the air. Consequently, flexion behavior allows the robot
to contain stability and effective locomotion on irregular terrain.
Normalizing behavior drives the backbone joint to normal posi-
tion while walking on even terrain, such as after obstacle nego-
tiation. This behavior is controlled by two neurons ND and NU
for downward and upward movements, respectively. They receive
recurrent feedback from the output neuron of the neural network
and apply a threshold transfer function. The binary output signals
of the neurons for flexion and normalizing behavior are fed into
a postprocessing neuron applying a linear transfer function that
serves as a lowpass filter to smoothen the output signal. Due to the
hierarchical structure of the controller the occurence of higher-
ordered behaviors suppresses those of lower-ordered behaviors.
In neural networks, this is done by neural inhibition through neg-
ative synaptic weights. The described topological properties of
the behavior-based, hierarchical BJC result in both the maximum
energy efficiency achieved by the AMOS II system (see Figure 14
shown in the Experimental results section) and versatile body
joint behavior for obstacle negotiation.

3.5. NEURAL LOCOMOTION AND LOCAL LEG REFLEXES
Controlling only the backbone joint is not sufficient for suc-
cessful obstacle negotiation. This section briefly describes the
neural locomotion control (NLC) and the local leg reflex control
(LRC) as additional modules required for adaptive obstacle nego-
tiation behavior. As presented in (Manoonpong et al., 2013b),
it is composed of a neuromodulated CPG mechanism includ-
ing postprocessing, neural motor control networks and motor

Frontiers in Neurorobotics www.frontiersin.org January 2014 | Volume 8 | Article 3 | 6

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Goldschmidt et al. Adaptive obstacle negotiation control

FIGURE 5 | Backbone Joint Control (BJC). (A) Neural module for BJC. It
receives preprocessed sensory input signals from ultrasonic (US) and foot
contact (FC) sensor. Five input neurons are connected to an output neuron

which signal σBJ directly drives the backbone joint. (B) Behavior-based,
hierarchical topology of BJC. Lower ordered behaviors are surpressed
through inhibitory synapses.

FIGURE 6 | Neuromodulated CPG mechanism. (A) CPG circuit
diagram for periodic pattern generation. The synaptic weights w12

and w21 are modulated by an extrinsic control input c, i.e.,
w12 = 0.18 + c = −w21. The fixed synaptic weight are set to
w11 = w22 = 1.4. (B) The eigen frequency of the resulting CPG output
signals (red solid line, left y-axis) and the corresponding walking speed

of AMOS II (green dashed line, right y-axis) with respect to the
modulatory control input c. The sample interval of c is �c = 0.01. For
negative values of c the network dynamics exhibits solely fixed point
attractors instead of periodic or quasi-periodic ones. Note that the
updating frequency is approximately fTS ≈ 27 Hz which corresponds to
a time step interval of t ≈ 0.037 s.

neurons with a delay line mechanism that are finally sent to all
leg joints of AMOS II. By generating a large variety of periodic
output signals without relying explicitly on sensory input, the
CPG mechanism provides a broad repertoire of insect-like walk-
ing gaits. It is a fully connected, two-neuron circuit (Figure 6A).
The activity function ai for both neurons i ∈ {1, 2} is defined
as shown in Equation 1 and the tanh function is applied as the
transfer function generating the output signal σi. The connec-
tions are defined by two fixed synapses with w11 = w22 = 1.4
as default weight generating periodic or quasi-periodic attrac-
tors (Pasemann et al., 2003) and two synapses w12 = −w21 =
0.18 + c modulated by an extrinsic input given by the control
parameter c (see Figure 6A). By increasing c, the output signal
frequency and thus, the walking speed increases proportionally
up to a certain limit (c ≤ 0.19, see Figure 6B). This restriction
is given by the limited response frequency of the motors of
AMOS II. Due to neural motor control and the delay line mech-
anism of the motor neurons (described below), AMOS II is able

to perform different walking gaits depending on the value of c
(e.g., 20 patterns). In order to show the adaptability and per-
formance of our control system, we will compare six different
gaits: wave (c = 0.03), tetrapod (c = 0.06), caterpillar (c = 0.09),
intermixed (c = 0.12), slow (c = 0.15) and fast tripod (c = 0.18)
gaits. The selected slow wave gait is more stable for climbing
compared to another faster wave gait generated by c = 0.04.
According to this using the slow wave gait leads to the highest
climbable obstacle (i.e., 15 cm, see the Experimental results sec-
tion) which cannot be achieved by the faster wave gait. Thus, we
use here the slow wave gait as one of selected gaits for experi-
ments while the other gaits are arbitrarily chosen without being
tuned for a particular surface. The CPG outputs are transmit-
ted to motor neurons through its postprocessing and neural
motor control networks. The postprocessing unit is for slightly
shaping the CPG signals for smooth movements. The motor con-
trol networks perform further phase and frequency modulation
of the postprocessed CPG signals enabling AMOS II to walk
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omnidirectionally, e.g., walking backwards and sidewards as well
as turning in each direction. They consist of three generic feed-
forward networks: a phase switching network (PSN) and two
velocity regulating networks (VRNs). They have been developed
using standard neural learning algorithms (i.e., backpropagation
learning). The PSN switches the phase of the periodic signals
controlling the motors at the CTr and FTi joints. This allows
us to control lateral movements of the robot [see Manoonpong
et al. (2008a) for details]. The VRNs control the TC joints on
each side. The impact of the VRNs on the locomotion can be
modulated by exteroceptive sensors to induce obstacle avoid-
ance behavior. In general, these inputs affect the velocity of the
right- and left-sided TC joints by scaling the amplitude of all sig-
nals. This allows for transversal locomotion as well as turning
[also see Manoonpong et al. (2008a) for details]. Finally, the out-
put signals from the motor control networks are transferred to
motor neurons through delay lines. These delay the output sig-
nal for each joint type (i.e., TC, CTr, and FTi) about τ = 0.8 s
for each following ipsilateral leg (from hind to front) while there
is an additional delay τL = 2.4 s between the left and right side.
Note that these delays are fixed and independent of the CPG
signals.

Negotiating obstacles requires adaptations of leg movements
due to irregularities of the terrain. In order to tackle this issue, we
employ the LRC that emulates two reflexes observed in insects.
The first reflex is the searching reflex in which the leg searches
for a foothold when the foot has no ground contact, thus the
foot contact signal σfc does not match the leg motor pattern.
This reflex is implemented by using a neural module (Figure 7)
including a neural forward model (Manoonpong et al., 2013b).
The model transforms a motor command from the CPG (effer-
ence copy) into an expected foot contact signal σforward for normal

FIGURE 7 | Neural modules for local leg reflexes: searching and

elevator reflex. A neural forward model is applied to determine expected
foot contact signal from leg motor pattern provided by the CPG. The
additive neuron accumulates positive errors which cause vertical shifting of
the CTr and FTi signals, resulting in searching reflex. A preprocessed
infrared reflex signal are fed into a neuron using a linear threshold transfer
function. The threshold is set to 0.01. The output signal σe shifts the CTr and
FTi signals upwards. As a result, the leg is elevated. Note that each leg has
its own searching and elevator reflex modules.

walking [see Manoonpong et al. (2013b) for more details]. The
output signal of the module is given by � = σfc − σforward and
can be referred to as an error. The actual reflex is enforced by
vertical shifting of the CTr and FTi signals using the accumu-
lation of significant, positive errors: �+ = ∑

t |�(t)|; ∀�(t) ≥
0.15. Consequently, the CTr/FTi signals are shifted when an error
occurs, such as when the respective leg searches for a foothold.
The second reflex causes a leg elevation after the leg touches an
obstacle during the swing phase. This reflex is called elevator
reflex. It is induced by the infrared (IR) reflex sensors at the front
of each leg (Figure 7). Using this sensory data as an input signal,
a threshold neuron provides an output signal σe which shifts the
CTr/FTi signals upwards, i.e., the leg is elevated. Note that this
elevator reflex only occurs in the swing phase.

4. EXPERIMENTAL RESULTS
In order to evaluate the performance and robustness of the
proposed learning mechanism and control system, we carried
out six experiments using the simulated robot for the first four
experiments and the real robot for the final two experiments.

The first experiment is carried out to illustrate the convergence
of the applied learning mechanism for negotiating an obstacle
using a wave gait (c = 0.03). The experimental result is shown
in Figure 8. We placed AMOS II in a square surrounded by an
8 cm high obstacle with a fixed initial distance d = 0.75 m. The
task of AMOS II was to approach and negotiate the obstacle. The
learning goal of AMOS II during this task was to optimize its
backbone joint motion with respect to the synaptic plasticity of
the learner neuron. For the rest of this article this experimen-
tal setup is referred to as the convergence trial. As described in
the previous section, the plastic synapse ρ1 of the learner neuron
increases due to the correlation of the predictive and the reflex
signal provided by the US sensors. Initially, ρ1(t = 0) is set to
zero resulting in a diminutive leaning behavior of the BJ driven
only by the reflex signal (Figure 8, salmon colored area). Thus,
for this height, the robot is unable to negotiate the obstacle and
hits it; thereby activating the reflex signals. As a consequence, for
practical reasons in the first and second experiments, the robot
is automatically reset to its initial position and then reapproaches
the obstacle. However, instead of resetting the robot position, the
reflex signals can be used to drive the robot to avoid the obstacle;
enabling it to learn to overcome obstacles in an autonomous way
without interference (see Video S1). During learning, the plastic
weight ρ1 increases and therefore, the robot leans the BJ faster and
with a larger amplitude (Figure 8, olive colored area). At some
point, the BJ motion is sufficient to negotiate the obstacle suc-
cessfully (Figure 8, sky blue colored area). Because the occurence
of the reflex signal x0(t) vanishes over time, the weights converge
at finite time instant T, i.e., ρ1(t = T) ≡ ρ∗

1 = const. Our con-
vergence time criterion is set to tc = 900 s without any change of
ρ1. Here the weights converge after approx. 7500 s. Note that the
time required to let the weights converge is related to the learning
rate μ which is here set to 0.01. We have chosen a small learning
rate to avoid overshooting a possible optimum for ρ1.

In order to deal with changes in certain conditions, such as
the obstacle height and the walking speed of the robot, the ICO
learning rule adapts the backbone joint behavior accordingly
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FIGURE 8 | Learning curve of a negotiation of an obstacle with a height

of 8 cm. The weight ρ1 (orange line) changes according to the ICO learning
rule, i.e., due to correlations of the predictive signal (red line) and the reflex
signal (green line). In the beginning of the experiment, the backbone joint
(BJm, yellow line) does not exhibit any behavior because of a small weight ρ1

(see salmon colored area, photo 1). With an increasing weight ρ1, the
amplitude as well as the slope of the backbone joint motor output increases
(see olive colored area, photo 2). After learning, ρ1 has converged toward a

value ρ∗
1 (dashed line) for which the robot generates an optimal backbone

joint motion, i.e., an optimal leaning behavior (see sky blue colored area,
photo 3). The convergence is due to the fact that the reflex signal is avoided
such that it does not occur after learning. Raw data (USraw, blue line) coming
from the ultrasonic (US) sensors is also shown. Note that all graphs
illustrated in this figure correspond to the right US sensor. The learning curve
of signals coming from the left US sensor shows a similar behavior. The
learning rate is set to μ = 0.01.

FIGURE 9 | Average learned weights ρ∗
1

(±SD) with respect to the

obstacle height h for different gaits: wave (c = 0.03), tetrapod (c = 0.06),

caterpillar (c = 0.09), intermixed (c = 0.12), slow tripod (c = 0.15), and

fast tripod (c = 0.18) gait. For increasing h and c the learned weights

converge to higher values, respectively. For the more unstable, faster gaits
the learning algorithm does not converge due to instabilities during climbing.
However, these non-convergences correspond to the maximum obstacle
height that the robot is able to achieve for given gaits (see Figure 12).

by converging to different weights. The second experiment
aims to determine learned weights ρ∗

1(h, c) after convergence
of the learning algorithm with respect to obstacle height h
and modulatory input c defining the walking gait. For each
the 15 × 6 parameter pairs of h = 1, 2, 3, . . . , 15 cm and c =
0.03, 0.06, 0.09, 0.12, 0.15, 0.18, we ran 20 convergence trials
to obtain the learned weights (ρ∗

1)k. Figure 9 presents the aver-

aged learned weights ρ∗
1 = 1

20

∑20
k = 1(ρ

∗
1)k obtained from this

experiment. The results show that for higher obstacles h, the
learning algorithm converges at larger values ρ∗

1 meaning that the
robot must apply a stronger backbone joint motion to successfully
negotiate the obstacle. The same applies for higher gait param-
eters c (i.e., faster walking speed). In principle, ICO learning is
able to converge for any of the given parameters because it avoids
the unwanted reflex signal by responding earlier due to the pre-
dictive signal. However, Figure 9 shows that ICO learning does
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not converge in a finite amount of time for some of the param-
eter pairs, i.e., higher obstacles and faster gaits. This is due to
dynamical perturbations caused by the tilting of the front body
during certain gaits. These instabilities lead to random occur-
rences of the reflex signal during a trial, and thus, to weight
changes of the plastic synapse. This effect is rather small for the
more stable gaits such as the wave gait but occurs more often
for faster gaits. Furthermore, the non-convergence of ICO learn-
ing seems to coincide with the maximum climbing capabilities
for given parameters (h, c) as shown later in Figure 12. Figure 10
shows the average convergence times of 20 learning trials for
selected obstacle heights (h = 2, 5, 8, 11, 14 cm) and gait param-
eters as described above. At 2 cm, the weights for the slower gaits
(c = 0.03, 0.06, 0.09, 0.12) converge approximately at the crite-
rion time (tc = 900 s) while for the faster gaits (c = 0.15, 0.18)
the weights take a longer time to finally stabilize. This is due to the
instabilities mentioned above causing the reflex signal to occur
randomly. For higher obstacles, convergence times increase due to
larger weights which are required to tilt the backbone joint with
a larger amplitude to surmount the obstacles. The convergence
times are depending on the learning rate chosen. The learning
rate used for this experiment is rather small (μ = 0.01) to avoid
overshooting of optimal weights. Also, note that the convergence
criterion has been chosen very conservatively to ensure learning
the optimal weights.

The third experiment exemplifies the generic use of our adap-
tive obstacle negotiation control for more complex obstacles. We
tested obstacle negotiation learning of five different obstacle types
(see Video S2). To demonstrate weight convergence, we set the
learning rate to μ = 0.1. Figure 11 shows the resulting average
learned weights ρ∗

1 (±SD) for 5 trials for each obstacle. The results
show that the robot is able to deal with more complex obsta-
cles. The learned weights approximately correspond to values of
the respective heights required to overcome the obstacle (see the
Discussion section for details).

The fourth experiment investigates AMOS II performance in
obstacle negotiation comparing three different configurations:
activated BJC using weights from ICO learning, activated BJC
using suboptimal weights (i.e., five times larger than ICO), and
deactivated BJC. The performance is measured by the success rate

after 20 trials. In each trial, the robot has to traverse a distance of
1 m with an obstacle placed in the middle. Here, success means
that the robot surmounts the obstacle without triggering the
reflex signal and reaches the 1 m goal position in a certain period
of time (t < 180 s). The results are shown in Figure 12. Using the
weights from ICO learning, the robot is able to climb obstacles
with a maximum height of 15 cm in an effective way (i.e., success
rate > 0.5). This maximum height is achieved using a wave gait.
For faster gaits, the robot shows decreasing climbing performance
but it is still able to surmount high obstacles (5−10 cm). The
manually increased weights of the second configuration lead to
suboptimal backbone joint behavior which decreases the perfor-
mance in obstacle negotiation. The maximum obstacle height the
robot is able to achieve using these suboptimal weights decreases
by up to 2 cm for some of the gaits (e.g., 13 cm for the wave gait).
Finally, deactivating the BJC leads to rapidly decreasing perfor-
mance in obstacle negotiation. Although the robot is still able
to surmount lower obstacles through local leg reflexes, the effect
of the disabled BJC prevents the robot from overcoming higher
obstacles.

In the fifth experiment, we aim to show that the control sys-
tem with learned parameters can be successfully transferred to
the real robot AMOS II to generate obstacle negotiation behav-
ior. To do so, we connected the robot to a PC through a serial
interface. We placed the robot in front of an adjustable obsta-
cle. Applying the learned weights ρ∗

1(h, c), the robot is able to
overcome various obstacles in a wave gait, including an 11 cm
high obstacle as shown in Figure 13A. AMOS II approached the
obstacle (photo 1) and tilted its backbone joint upwards as the
US sensors detected the obstacle (photo 2). The backbone joint
moves back into normal position when AMOS II’s front leg is
placed on top of the obstacle (photo 3). Note that this behav-
ior is due to the lowpass filtered US signals driving the leaning
behavior of the BJC. Downward flexion of the backbone joint and
local leg reflexes support the stability in climbing behavior (photo
4). Finally, the robot surmounts the obstacle successfully (photo
5). The highest climbable obstacle that the robot can achieve has
shown to be 13 cm using a wave gait (see Video S3). Moreover, we
tested the robot in an outdoor environment. Figure 13B shows
the robot climbing up a curb having a height of 11 cm. Besides

FIGURE 10 | Average convergence times for five selected heights using different gaits. Five different obstacle heights (h = 2, 5, 8, 11, 14 cm) were
selected using the set of gait parameter as described in Figure 9 to compare the average convergence times (±SD) of 20 learning trials.
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FIGURE 11 | Average learned weights for complex obstacles. We tested five different obstacle types (see Video S2) and measured the average learned
weights ρ∗

1 (±SD) for 5 trials each.

FIGURE 12 | Performance heatmaps of AMOS II obstacle

negotiation with respect to obstacle height h and gait parameter

c using three different control configurations. (A) Activated BJC
with learned weights (ICO), (B) activated BJC with suboptimal

weights (5× ICO), (C) and deactivated BJC. The performance is
measured by the success rate of 20 trials. The robot is successful
by traversing a 1 m distance in a certain time (t < 180 s) with an
obstacle on the way.

climbing up an obstacle, the robot is also able to climb down from
an obstacle as shown in Video S3.

Finally, the sixth experiment investigated the energy efficiency
of adaptive backbone joint control for obstacle negotiation in
terms of specific resistance (Gabrielli and Von Kármán, 1950).
We multiply the ICO learned weights ρ1 by three different weight
factors ω = 0.1, 1 and 10 to investigate the specific resistance dur-
ing climbing. The factors are used to compare the results for the
weights obtained from ICO learning (ω = 1) with suboptimal

weights (ω = 0.1, 10) The specific resistance is given by:

ε = UI

mgv
, (4)

where I is the average electric current in amperes measured by
the Zap 25 BICS, U = 5 V is the supply voltage to the motors,
mg = 56.9 N is the weight of the robot, and v is the walking
speed of the robot (m/s). The walking speed is determined by
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FIGURE 13 | Obstacle negotiation behavior in hexapod robot AMOS II over large obstacles in an (A) indoor and (B) outdoor environment.

Table 1 | Average electric energy consumption for climbing trials using three different weight factors and walking without an obstacle in the

way.

ω 0.1 1 10 no obstacle

Pt [Ws] 2673.15 ± 226.55 1524.44 ± 100.04 1529.96 ± 100.45 1341.50 ± 88.73

the time t the robot needs to travel a distance of 1 m with an obsta-
cle in the way. The obstacle used has a height of 11 cm. The carpet
covering the obstacle forms a slope to ensure that the robot is still
able to negotiate the obstacle, despite having weights smaller than
those from ICO learning. This way we are able to compare the
energy efficiency for the three configurations. Note that AMOS II
can still overcome obstacles regardless of its material or slope as
shown in Figure 13 and Video S3. For each weight, we repeated
the experiment three times. Table 1 shows the average electric
energy consumption Pt (±SD) in Ws. In addition, we provided
the energy consumption of walking a 1 m distance without an
obstacle in the way. The resulting average specific resistances ε

(±SD) with respect to the weight factors (Figure 14) show that a
certain degree of backbone joint behavior (i.e., ω ≥ 1) requires
less energy and produces a much faster locomotion, allowing
energy-efficient obstacle negotiation. The red line indicates the
specific resistance ε = 23.6 for walking a 1 m distance without
an obstacle in the way. Despite no significant differences between
the specific resistances of ω = 1 and ω = 10, we have shown that
the maximum climbable obstacle height decreases for weights
considerably larger than the ones obtained from ICO learning
(Figure 12).

5. DISCUSSION
In this work we introduced neural learning and control mech-
anisms for adaptive obstacle negotiation behavior in hexapod
robots. The learning mechanism employs a differential Hebbian
learning rule, called ICO learning. It strengthens a plastic synapse
based on the correlation of temporal input sequences. The
strength of the plastic synapse corresponds to the behavioral
response of the active backbone joint of a hexapod robot. Here
the hexapod robot AMOS II was used as our test bed. However,
the learning and control mechanisms can be transferred to other

hexapod robots (described below). Once the synapse has been
established, it transmits a proximal, predictive signal to drive the
backbone joint for negotiating an obstacle. This way, the robot
achieves adaptive climbing behavior through associative learning
and can deal with unknown or changing external environmen-
tal and internal conditions. Here, these conditions are given by
different obstacle heights (environmental changes) and different
robot walking speeds of the robot (internal changes) determined
by a gait parameter of neural control. The weights of the plas-
tic synapse converge in finite time for a large variety of these
conditions leading to stable behavior. As a result, the behavioral
response corresponding to the learned weights leads to a suc-
cessful and efficient negotiation of given obstacles. Hence, the
proposed neural controller generates robust obstacle negotiation
behavior enabling the robot to autonomously overcome a wide
range of different obstacles with different gaits. Furthermore, it
is flexible enough to deal with more complex obstacle shapes as
shown in Video S2.

Several correlation-based learning rules have been proposed
for generating complex, adaptive locomotor behavior in a mobile
robot (Grossberg and Schmajuk, 1989; Verschure et al., 1992;
Verschure and Voegtlin, 1998; Porr and Wörgötter, 2003, 2006;
Manoonpong and Wörgötter, 2009; Kulvicius et al., 2010; Kirwan
et al., 2013). For example, the Distributed Adaptive Control
(DAC) proposed by Verschure (Verschure et al., 1992) learns the
association of an UCR to a conditioned stimulus and employs
distal and proximal sensors installed on a robot for generating
adaptive behavior, such as obstacle avoidance. The DAC learning
rule is based on homosynaptic plasticity. This way, it requires an
inhibition of conditioned stimuli to compensate for autocorrela-
tion signals. Without the inhibition, weights can diverge. In con-
trast, ICO learning used here is based on heterosynaptic plasticity
where this learning mechanism leads to weight stabilization as
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FIGURE 14 | Average specific resistance for the three different weight

factors. The specific resistance has been determined by measuring power
consumption and travel time (see Table 1) of a 1 m distance with an
obstacle on the way. The results suggest that a certain degree of backbone
joint motion is necessary to produce energy-efficient obstacle negotiation
behavior. The red line denotes the specific resistance for walking a 1 m
distance without an obstacle in the way.

soon as a reflex signal (e.g., proximal sensory signal) has been suc-
cessfully avoided. As a result, we obtain behavioral and synaptic
stability at the same time without any additional weight-control
mechanisms, like the inhibition mechanism used in the DAC.
In addition, ICO learning allows implementation of fast learn-
ing [i.e., one shot learning (Porr and Wörgötter, 2006)]. While it
has been previously applied for goal-directed behaviors (Porr and
Wörgötter, 2006), obstacle avoidance behavior (Kulvicius et al.,
2010; Kirwan et al., 2013) and escape behavior (Manoonpong and
Wörgötter, 2009), it is for the first time here applied to obstacle
negotiation. The basic physical components required for obstacle
negotiation learning using our control scheme on a walking robot
are a proximity sensor, such as an infrared sensor, an ultrasonic
sensor, a laser range finder, or antennae, and an actuated body
joint for tilting the front body part upwards and downwards. The
adaptive control of a body joint basically increases the perfor-
mance in obstacle negotiation and reduces the mechanical load
acting on the legs whilst climbing. Although our results are pre-
sented on AMOS II, the controller can be also transferred to other
walking robots, such as SpaceClimber (Bartsch et al., 2012) and
Whegs™ II (Lewinger et al., 2005) which have the required basic
physical components (i.e., actuated body joint and proximity sen-
sor). However, other robots with actuated body joints, such as
HECTOR (Schneider et al., 2012) and MechaRoach II (Wei et al.,
2005), will require an implementation of a proximity sensor to
apply our adaptive backbone joint control.

The coordination of obstacle negotiation behavior generated
by our neural controller is based on neuroethological observa-
tions of insects such as cockroaches and stick insects. Although
both individuals share certain key behaviors in solving this task,
there are also significant differences in locomotion due to differ-
ent morphologies. Stick insects generally walk and climb with a
high center of mass, i.e., high ground clearance (Bässler, 1967;
Graham, 1972; Cruse, 1976) and they perform upward tilting of
their prothorax body segment to initiate a targeted reach-to-grasp
movement of the front leg during climbing (Schütz and Dürr,

2011); while cockroaches exhibit low ground clearance for agile
and energy-efficient locomotion and they extend their front and
middle legs for rearing up the body and raising their center of
mass by tipping on top of the obstacle (Watson et al., 2002).
Hereby we combine these effective key behaviors for a hexapod
robot, such as AMOS II. Specifically, we design the locomo-
tion control for walking with low ground clearance followed the
cockroach walking strategy. This leads to more stable and energy-
efficient locomotion (Manoonpong et al., 2013b). For climbing
behavior combining stick insect and cockroach strategies, the BJC
drives the body joint to tilt a front body upwards and performs
the reach-to-grasp movement in concert with the searching leg
reflex as stick insects do. In order to lift the center of mass on
top of the obstacle the searching leg reflex also controls the CTr
and FTi joints, respectively, to extend the middle legs after the
first foot contact is made on top of the obstacle. This behavior
is related to the rearing and rising behaviors observed in cock-
roaches. Moreover, when traversing an edge, the BJC flexes the
body joint downwards in resemblence with the behavior of stick
insects and cockroaches (Ritzmann et al., 2004; Schütz and Dürr,
2011). Taken together this work suggests a biologically-inspired
approach emulating insect climbing and locomotion behavior to
solve a complex task, such as negotiating obstacles, in artificial
legged systems. As mentioned earlier, insects use their anten-
nae to detect and to evaluate obstacles (Harley et al., 2009). The
hereby extracted tactile information serves as cues for control-
ling adaptive motor behaviors during climbing. These are mainly
determined by the distance from the obstacle being the main
parameter for the initiation of negotiation behavior. In an artifi-
cial walking system, such as AMOS II, ultrasonic sensors installed
at its front can be used to perceive the distance to an obstacle
and responds to these stimuli by generating adaptive backbone
joint behavior for effective obstacle negotiation. Nevertheless,
the underlying learning mechanisms applied for adaptive motor
behavior for obstacle negotiation in insects still leaves an open
question.

We compared the success rate of obstacle negotiation using
the BJC with learned weights, with suboptimal, larger weights
and deactivated BJC to show the effectiveness of the adaptive BJC
for this task. It has been shown that the adaptive BJC is most
effective for very high obstacles where our test bed AMOS II
achieves robust negotiation of obstacles with a maximum height
of 15 cm in simulation and 13 cm in a real environment. This
height is approximately 85 and 75%, respectively, of the robot’s leg
length given by the length of the femoral and tibial leg segments.
This measure ensures an appropriate comparison with other
state-of-the-art, legged robots performing obstacle negotiation.
The hexapod robots Gregor III (Arena and Patané, 2011) and
SpaceClimber (Bartsch et al., 2012) achieved approximately 70%,
and the quadrupedal LittleDog (Kalakrishnan et al., 2010) accom-
plished about 60% of its leg length. Other hybrid wheel-legged
robots (i.e., one DOF per leg) such as Whegs™ II (Lewinger
et al., 2006) and Rhex (Saranli et al., 2001) were able to overcome
higher obstacles relative to their respective leg lengths. However,
their climbing behavior is not comparable to climbing behavior
of insects like stick insects and cockroaches. In addition, reduc-
ing the number of DOFs also decreases the mobility of the robot
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for, e.g., omnidirectional locomotion including sideways walking
(Manoonpong et al., 2008a). Most of the aforementioned robots
utilize parts of the strategies described in this work. Many stud-
ies use biologically-inspired locomotion control for walking robot
including CPG mechanisms (Ijspeert, 2008), decentralized archi-
tecture with inter-leg coordination (Cruse et al., 1998; Schilling
et al., 2013a) and local leg reflexes (Klaassen et al., 2002; Lewinger
and Quinn, 2011). Recently, an increasing number of robots have
been designed with a controllable body joint (Boxerbaum et al.,
2008; Bartsch et al., 2012; Schilling et al., 2013b).

In contrast to these approaches, our adaptive neural con-
trol mechanism combines various key behaviors (i.e., walking,
backbone joint behavior, and local leg reflexes) necessary for
obstacle negotation. Its neural locomotion control allows the
robot to generate robust and energy-efficient walking behavior
(Manoonpong et al., 2013b) and a controller for local leg reflexes
supports the obstacle negotiation behavior. As the main contri-
bution of this work, the existing concept of an active body joint
for hexapod robots (Allen et al., 2003) has been extended by the
novel approach of adaptive body joint behavior through learn-
ing. Combining these modules, the controller generates adaptive
motor behaviors for efficient obstacle negotiation of very high
obstacles. Its modularity provides flexible use of the controller.
It can be combined with obstacle avoidance behavior triggered
by the proximal signal enabling the robot to autonomously learn
obstacle negotiation. This behavior is very effective in situations
in which the robot is surrounded by obstacles in an unknown
and complex environment as shown in Video S1. Furthermore,
a laser scanner can be employed for complex task decision mak-
ing (Kesper et al., 2013). The modular and generic control scheme
simplifies transfer from simulated to real robots.

The focus of this work was to coordinate obstacle negotiation
behavior of hexapod robots through adaptive and reactive neural
control mechanisms. To further increase the climbing capabilities
(e.g., increasing climbing speed and climbable obstacle height),
this can be achieved by combining the control schemes with
mechanisms such as virtual muscle models (Xiong et al., 2013)
and biomimetic materials (e.g., shark skin) for the feet and belly
(Manoonpong et al., 2013a). In principle, the muscle models can
provide compliance and act as simulated mechanical reflexes for
minor disturbance rejection and stabilizing the system while the
materials can generate frictional anisotropy allowing for firmly
grip surfaces during climbing. Furthermore, reservoir computing
architectures can be applied for a generic neural control frame-
work increasing temporal signal processing such as short-term
memory capacities (Dasgupta et al., 2013). Although the learning
mechanism serves as a general framework for obstacle negotia-
tion, learned weights have to be stored by hand for later use. This
issue will be resolved by implementing a self-organizing mech-
anism that stores weights obtained through ICO learning and
also preserves the topology of the parameter space given by the
obstacle height and the gait parameter.
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Video S1 | Autonomous learning combining adaptive obstacle negotiation

with reactive obstacle avoidance. Simulated AMOS II learns to surmount

an 8 cm high obstacle in an autonomous way. An obstacle avoidance

reflex, triggered by the proximal signals of the US sensors, causes the

robot to turn away from the obstacle. Here the robot learns to negotiate

the obstacle after four trials.

(http://www.manoonpong.com/AdaptiveClimbing/S1.wmv)

Video S2 | Obstacle negotiation learning for complex obstacles. We let

AMOS II learn to overcome five different complex obstacles: (1) an 8 cm

high default obstacle for comparison, (2) a heteromorphic obstacle (i.e.,

with a 5 cm high left half and an 8 cm right half), (3) an 8 cm high slanted

obstacle, (4) an obstacle with the sides declining toward a 5 cm high

center box, and (5) stairs with varying step length and 6 cm high steps.

The learning rate was set to μ = 0.1 for every obstacle.

(http://www.manoonpong.com/AdaptiveClimbing/S2.wmv)

Video S3 | Robust, insect-like negotiation of high obstacles in a real

environment. By applying the weights obtained from ICO learning in the

simulation, the robot is able to climb high obstacles in a real environment.

Three examples show the climbing capabilities, robustness, and

insect-like behavior generated by the controller. The examples correspond

to the results shown in Figure 13 of the manuscript. The cockroach videos

are taken from (Ritzmann et al., 2004; Lewinger and Quinn, 2009).

(http://www.manoonpong.com/AdaptiveClimbing/S3.wmv)
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