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The sense of time is an essential capacity of humans, with a major role in many of
the cognitive processes expressed in our daily lifes. So far, in cognitive science and
robotics research, mental capacities have been investigated in a theoretical and modeling
framework that largely neglects the flow of time. Only recently there has been a rather
limited, but constantly increasing interest in the temporal aspects of cognition, integrating
time into a range of different models of perceptuo-motor capacities. The current paper
aims to review existing works in the field and suggest directions for fruitful future work.
This is particularly important for the newly developed field of artificial temporal cognition
that is expected to significantly contribute in the development of sophisticated artificial
agents seamlessly integrated into human societies.
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1. INTRODUCTION
The sense of time is an essential capacity of humans, animals,
birds, fishes, even plants (Cashmore, 2003). Time perception is
among the first competencies evolved in biological systems and
thus, it has affected the subsequent evolution of nearly all cog-
nitive modalities (Paranjpe and Sharma, 2005; Gerstner, 2012).
Therefore, it is really surprising that many time-dependent cog-
nitive capacities have traditionally been investigated in a theo-
retical and modeling framework that largely neglects the flow of
time (for years, we have studied a timeless memory, attention,
action planning, etc.). Only recently, limited research efforts were
addressed to the temporal aspects of cognition, integrating time
into a range of perceptual and motor skills (Taatgen et al., 2007;
Battelli et al., 2008; Holcombe, 2013).

Moreover, sense of time and temporal cognition are largely
missing from robotic systems, with a clear negative impact in
the integration of autonomous artificial agents into human envi-
ronments. This is because the core idea of symbiotic human-
robot interaction assumes the close, synchronized and temporally
extensive coupling between humans and machines. However,
existing systems assume short-term and nearly momentary inter-
action between the two ends, largely ignoring the inherent tem-
poral dimension of human-robot synergism. Recent studies have
revealed time as an entity that can be processed in its own
right by artificial autonomous systems (Maniadakis et al., 2009;
Maniadakis and Trahanias, 2013).

This article reviews computational modeling works that con-
sider the inherent temporal characteristics of cognition and high-
lights the great potential of equipping robotic systems with time
processing capacities. The review mainly focuses on efforts con-
sidering how the perception of time can be used in conjunction
with other cognitive or behavioral skills. Therefore, despite the
fact that a large number of computational models have been
introduced in the last years to explain time perception mecha-
nisms in the brain, they are not considered to be in the center
of this review and will be discussed very briefly. The interesting

reader is suggested to consider recent review papers in this direc-
tion (Wittmann, 2013).

The article is structured as follows. A brief review of neu-
rophysiological findings on time perception is first attempted
and the main types of computational models of interval timing
are discussed. Following that, computational models addressing
the interaction of time perception with other cognitive skills are
reviewed. Finally, the vital role of sense of time in human-centered
naturalistic human-robot interaction is addressed and directions
for fruitful future research are suggested.

2. TIME PROCESSING MECHANISMS IN THE BRAIN
Over the past decade, a number of different brain areas have been
implicated as key parts of a neural time-keeping mechanism in the
milliseconds-to-a-few-seconds time range and discussed together
with assumed functional properties: notably (among many oth-
ers), event timing in the cerebellum (Ivry and Spencer, 2004),
generalized magnitude processing for time, space and number in
the right posterior parietal cortex (Bueti et al., 2008; Oliveri et al.,
2009), working memory related integration in the right prefrontal
cortex (Lewis and Miall, 2003; Smith et al., 2003), a right fronto-
parietal network (Harrington et al., 1998), coincidence detection
mechanisms using oscillatory signals in fronto-striatal circuits
(Hinton and Meck, 2004), hippocampal time-cells focused on the
relation of time and distance (Kraus et al., 2013), as well as inte-
gration of ascending interoceptive (that is, body) signals in the
insular cortex (Craig, 2009; Wittmann, 2009).

The participation of many brain areas in the processing of tem-
poral information attest the key role of time in multiple aspects
of cognition such as decision making, action planning, mem-
ory storage and recall, etc. (Rao et al., 2001; Livesey et al., 2007;
Taatgen et al., 2007).

3. COMPUTATIONAL MODELS OF TIME PERCEPTION
In an attempt to explain where and how time is processed in the
brain, a large number of neurocomputational models have been
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implemented, most of them concentrating on duration percep-
tion. Broadly speaking, two main approaches have been proposed
in the literature to describe how our brain represents time (Ivry
and Schlerf, 2008; Bueti, 2011). The first is the dedicated approach
(also known as extrinsic, or centralized) that assumes an explicit
metric of time. This is the oldest and most influential explana-
tion on interval timing. The models included in this category
employ mechanisms that are designed specifically to represent
duration. Traditionally such models follow an information pro-
cessing perspective in which pulses that are emitted regularly by
a pacemaker are temporally stored in an accumulator, similar to
a clock (Woodrow, 1930; Gibbon et al., 1984; Droit-Volet et al.,
2007). This has inspired the subsequent pacemaker approach
that uses oscillations to represent clock ticks (Miall, 1989; Large,
2008). Other dedicated models assume monotonous increasing or
decreasing processes to encode elapsed time (Staddon and Higa,
1999; Simen et al., 2011). The second approach includes intrinsic
explanations (also known as distributed) that describe time as a
general and inherent property of neural dynamics (Dragoi et al.,
2003; Wackermann and Ehm, 2006; Karmarkar and Buonomano,
2007). According to this approach, time is intrinsically encoded
in the activity of general purpose networks of neurons. Therefore,
rather than using a time-dedicated neural circuit, time coexists
with the representation and processing of other external stim-
uli. However, besides the key assumption of multi-modal neural
activity, the existing computational implementations of intrinsic
interval timing models are not yet coupled with other cognitive
or behavioral capacities within a broader functional context, and
in that sense, the internal clock remains unaffected by outside
processes. Only the Behavioral Theory of Timing (Killeen and
Fetterman, 1988) and the Learning to Time (Machado, 1997)
make explicit coupling between time perception and behavior,
assuming that the behavioral vocabulary of subjects and their
current behavioral state support duration perception.

The main limitation of the dedicated approach regards its
weakness in explaining modality specific differences in time per-
ception. On the other side, intrinsic models are considered to
have limited processing capacity, therefore considered inappro-
priate to accomplish duration processing in complex and real
life tasks. However, both modeling approaches are supported by
neurophysiological and behavioral observations and the debate
concerning the representation of time in the brain is now more
active than ever.

An attempt to combine the two approaches is provided by the
Striatal Beat Frequency (SBF) model which assumes that timing
is based on the coincidental activation of basal ganglia neurons
by cortical neural oscillators (Matell and Meck, 2004; Meck et al.,
2008). The SBF model assumes a dedicated timing mechanism
in the basal ganglia that is based on monitoring distributed neu-
ral activity in the cortex. Recently, SBF has been integrated into a
generalized model of temporal cognition that subserves different
aspects of perceptual timing, either duration based or beat-based
(Teki et al., 2012).

4. COGNITIVE MODELS EXPLOITING SENSE OF TIME
Despite the essential role of temporal cognition in the survival
and social organization of humans and animals, a surprisingly

small number of computational models have been implemented
that address the integration of sense of time with other cognitive
modalities. This section provides an outline of the existing com-
putational models discussing the topics addressed so far, in an
attempt to reveal the broad range of cognitive processes directly
associated with the perception of time.

We note that, being capable to experience and process time is
drastically different to what is now known as the dynamic cogni-
tion approach (Van Gelder, 1998; Beer, 2000). The latter considers
brain as a dynamical system that is strongly linked with the body
and the continuously changing environment. Previous works
have examined tasks that involve spatio-temporal characteristics,
such as self-localization by means of information integration over
time (de Croon et al., 2006), and turn-taking alternation to coor-
dinate the behavior of two agents (Iizuka and Ikegami, 2004).
However, despite considering the coupled spatio-temporal nature
of real world phenomena, the dynamic cognition approach has
mainly focused on information integration over time and has not
provided cognitive systems with any kind of time perception that
is valid in its own right, or sense of time that is amenable to
processing.

In contrast to the above, the focus of the present article is on
works with a clear and explicit reference to the notion of time per
se. The description of existing works will concentrate on the qual-
itative characteristics of time interaction with numerous cognitive
modalities, avoiding implementation details. The works are listed
below.

4.1. TIME IN DECISION MAKING
The explicit perception of the notion of time by robotic agents
is first witnessed in a study on self-organized robotic cognitive
system (Maniadakis et al., 2009). Similar to animals that are capa-
ble of learning the temporal structure of tasks, artificial agents
that have been evolved to accomplish a behavioral rule switching
task that resembles Wisconsin Card Sorting, distinguish the avail-
able rules by considering the temporal properties of their own
behaviors. This time-perception mechanism that has emerged in
the robot’s brain without being requested by the designers of the
model suggests that the equipment of artificial agents with sense
of time may significantly enhance their cognitive capacities.

4.2. A GROUNDED TEMPORAL LEXICON
The exploration of how robots can be aware of the temporal
aspects of events is discussed in Schulz et al. (2011). Lingodroids
(language learning robots) have been used to learn terms for space
and time. Cognitive maps constructed by individual agents from
their own journey experiences have been used for grounding tem-
poral concepts in robot languages to answer the question how
long did it take to complete a journey. In a series of studies, the
authors demonstrated that a spatio-temporal lexicon for jour-
ney duration can be grounded, that is linked to the state of the
world, using a variety of concepts. Effective concepts and names
for duration provide a first step toward a grounded lexicon for
temporal intervals. Even if spatial and temporal terms are not
identical, the study showed that both can be learned using similar
language evolution methods, and that time, distance, and change
can serve as proxies for each other under noisy conditions.
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4.3. INTERVAL TIMING GROUNDED IN MOTOR ACTIVITY
This work is relevant to the category of time perception models
that assume memory-trace decay. Such models can not asso-
ciate memory-trace decay into temporal information, unless there
is a means of grounding that decay in meaningful, repeatable
event sequences. Infant motor activity is a plausible way in which
this calibration could be achieved early in development as sug-
gested in Addyman et al. (2011). In other words, body and arm
movement serve as a rough temporal yardstick for visual and
auditory memory-trace decay. The implemented model learns an
association between limb movement and how long ago an event
took place (as measured by activation decay of a memory trace).
Therefore, embodied learning leads to the calibration and syn-
chronization of clocks in audition and vision metronome for the
timing of memory decay.

4.4. REPRESENTATION OF DURATION
In an attempt to perform an unconstrained investigation of
the possible representations of duration in cognitive systems,
self-organized computational models can serve as a new tool
that facilitates the exploration of alternative representations. In
Maniadakis and Trahanias (2013) a single robotic cognitive sys-
tem is employed to accomplish two different robotic behavioral
tasks which assume diverse manipulation of time intervals. The
careful examination of the artificial brains puts forward a new
representation of time that incorporates characteristics from both
the “dedicated” time representation approach and the “intrinsic”
time representation approach (see section 3).

4.5. TIME PERCEPTION AS A SECONDARY TASK
The incorporation of a timing module in the ACT-R architecture
enables the investigation of how the timing mechanisms interact
with other aspects of cognition (Taatgen et al., 2007). The basis
of the module is a pacemaker-based internal clock. Interaction
of the clock module with the rest of the ACT-R system allows
explanations for the role of timing, attention, perception and
learning in the accomplishment of complex tasks. An exemplar
scenario regards the exploration of time perception in contexts
where interval timing itself is secondary to a main task, since this
is often the natural role time estimation plays in everyday life.
By investigating a complex task in which keeping track of time
intervals is only a single aspect of what participants have to do,
the composite model provides an abstracted view on how sense
of time interacts with a complex set of cognitive processes and
highlights the key role of time in large scale brain functioning.

4.6. PAST, FUTURE PERCEPTION
The evolution of perceptual capacities beyond the here and now
of the world are discussed in Choe et al. (2012). The condi-
tions that have facilitated the emergence of the notion of past
and future in the form of memory and prediction, respectively,
are investigated through the simulated evolution of simple neural
networks. Memory has been evolved as an autonomous self-
driven mechanisms that is significantly more powerful compared
to stigmergy (i.e., the production of a certain behavior in agents
as a consequence of the effects produced in the local environ-
ment by previous behavior). Moreover, predictable internal states

dynamics turned out to have a high selective value in evolu-
tion, resulting in significantly more robust systems, compared
to equally performing memory-less systems which develop much
more fragile internal mechanisms.

4.7. MENTAL TIME TRAVEL
Our ability to recall the past or imagine the future is referred
with the term Mental Time Travel. Capitalizing on extensive
neurophysiological and computational modeling studies on the
functionality of hippocampus, it is possible to construct a com-
putational model that explains the ability to recall and potentially
re-experience a previously experienced event, by associating spe-
cific stimuli with specific memories (Hasselmo, 2009). The imple-
mented brain-like model uses representations of head direction
activity, entorhinal grid cell activity and hippocampal place cell
activity to perform encoding and retrieval of episodic memory.
The model has so-far addressed recalling trajectories experienced
as continuous curves through space and time, but it can be
extended to describe more complex events.

4.8. LEARNING THROUGH TIME
The role of time in conditional learning is discussed in Howard
(2014). Considering the Stimulus Sampling Theory, one of the
first rigorous mathematical models for learning that describes
how the memory representation of stimulus changes over time,
it is possible to explore the temporal properties of learning. The
paper contrasts subsequent mathematical models of learning to
SST and associates neuroscientific data of brain activity at differ-
ent times, with predictions from mathematical models describing
cognition.

4.9. FORGETTING
The typical explanation of forgetting assumes information to
decay over time making information held in short-term mem-
ory to be quickly forgotten unless it is constantly rehearsed or
refreshed. The Time-Based-Resource-Sharing (TBRS) is one of
the most successful explanations addressing the intricate trade-off
between deterioration and restoration of memory. A computa-
tional instantiation of the TBRS, is presented in Oberauer and
Lewandowsky (2011) explaining how working memory evolves
and reshapes through time. The model accomplishes to success-
fully explain behavioral data on particularly complex working
memory tasks.

4.10. MEMORY RECONSOLIDATION
According to the idea of reconsolidation, the retrieval of memo-
ries returns their representation to a plastic state, which means
that the memory can be changed or even erased. In Sederberg
et al. (2011) an existing computational model of memory
retrieval, the Temporal Context Model (TCM) is employed
to explain human reconsolidation data. Episodic encoding in
TCM involves binding items to their temporal encoding con-
text. Retrieval involves cueing with a temporal context, which
then reinstates the memory item through a learning proce-
dure. Computational experiments show that TCM successfully
addresses short-term and long-term recency and contiguity
effects in memory encoding and manipulation.
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5. DISCUSSION
The works listed above provide evidence for the multimodal inter-
action between sense of time and cognition that goes far beyond
the perception of duration, addressing a very broad range of cog-
nitive functions. This suggests temporal cognition as the cognitive
glue that enables the integration of skills into a coherent smoothly
functioning composite system (Figure 1). Along this line, we
have previously argued that a key milestone for the develop-
ment of truly autonomous and intelligent artificial agents regards
implementing computational systems capable of considering the
temporal aspects of cognition (Maniadakis and Trahanias, 2011).

In addition to the frequent argument that “time is ever present
in life” (Mittelstrass, 2001) the famous philosopher Immanuel
Kant (1724–1804) has described time as “. . . an unavoidable
framework of the human mind that preconditions possible experi-
ence”. According to this view, cognition is shaped by the temporal
properties of the world and our ability to engage them in our
thoughts.

Consider for example the case of taking a decision under time
pressure. The choice that we make emerges from the requirement
of a fast decision, and if this temporal constraint was absent a
completely different decision would probably be made. In a differ-
ent context, when we discuss with friends trying to recall a specific
event from high-school, a part of our mind is situated into the

FIGURE 1 | Temporal cognition operates as the cognitive glue that

integrates cognitive skills in order to effectively accomplishing

high-level intelligence.

past high-school period, while another part of our mind remains
focused into the present, coordinating the real time communica-
tion with friends. This ability to simultaneously situate our mind
in multiple periods in the past-present-future timeline is inherent
in our brain, and is crucial for our daily activities. Therefore, our
thoughts and experiences are not only situated in space but also
in time, suggesting an innate entimed nature for cognition that
nicely complements the well known embodied nature of cogni-
tion. While embodiment focuses mainly on the here and now of
the world, entiment additionally postulates that past experiences
and future goals beyond the here and now are also very impor-
tant for the brain to develop cognition. Interestingly, the concepts
of entimed and embodied cognition bridge when we consider the
temporal properties of the “present,” an abstract term that is very
flexibly defined by humans to include moments of both the past
and the future (e.g., I am writing a book, now). To sufficiently per-
ceive the current state of the world and understand our role in it,
we have to consider both the spatial and the temporal properties
of the environment. In other words, our minds are situated both
in space and time. If either the space or the time is differentiated,
then the state of our mind will also be differentiated.

Turning into the machinery of the cognitive systems, we can
identify two broad aspects on how time affects cognition:

• Implicitly, as a key regulator of internal cognitive mechanisms.
Time determines our ability to learn and forget (Oberauer and
Lewandowsky, 2011; Howard, 2014), the temporal allocation
of mental resources (Salvucci and Taatgen, 2008), the effect of
habituation on cognition (Rankin et al., 2009), the sense of self
(Zeman and Coebergh, 2013), and our whole perspective on
life (Zimbardo and Boyd, 1999).

• Explicitly, as a sensory modality or information that can be
processed in its own right. Time can be perceived and processed
(Wittmann, 2013), be abstracted quantitatively (Dehaene and
Brannon, 2010) or qualitatively (Silva et al., 2007), passed as a
parameter from one cognitive process to another (Miles et al.,
2010), support perceptuo-motor activities in the 4D rather
than 3D world (Wallis, 1967).

Unfortunately, in the field of artificial systems, even state of the
art devices cannot handle time in a way comparative to humans.
As devices and systems are becoming increasingly powerful, the
typical momentary interaction between humans and comput-
ers is often lagging behind and constitutes a bottleneck for fully
exploiting the power of modern devices. Moreover, in the field
of robotics, research has mainly focused on technical problems
related to the accomplishment of complex behavioral tasks, but
has not paid sufficient attention to temporal cognition and its

Box 1 | Outstanding problems in computational temporal cognition

• Where is the source of temporal sensory experiences in the human and animal brain and what this suggests for the computational
representation of time?

• How can we computationally represent the property of unidirectional temporal flow that separates time from all other perceptual
dimensions?

• How we perceive different temporal granularities and how we assign time a numerical meaning?
• What is the best way to smoothly integrate time processing capacities in the existing (time-lacking) cognitive systems?
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vital role in implementing systems that live for long periods in
the real world. Unfortunately, this enhances the phenomenon of
“uncanny valley” that concerns the acceptance of robots as intel-
ligent artificial partners. The more a robot is made to resemble a
human, the more sensitive humans become to the subtle cogni-
tive differences, shattering the illusion of intelligence. Therefore,
the lack of temporal cognition in robotics acts as an obstacle in
their symbiosis with humans.

Next generation robotic cognitive systems are necessary to
offer new modes of interaction that will base on the deep under-
standing of the long-term trajectories of human machine conflu-
ence (see Box 1). Even if humans have conventionally structured
their lifetime into past, present and future, artificial systems
have not so far developed these notions in an adequate level,
therefore being unable to understand and adapt to the heavily
time-structured human social life. To proceed effectively toward
implementing artificial temporal cognition, it is necessary to con-
sider the natural, developmental procedure of the human brain
that enables different time processing capacities to develop and
integrate with other cognitive skills. While primary sense of
time capacities mature very early in the human developmental
procedure, our temporal cognition skills continuously improve
until adolescence (Droit-Volet, 2007; Tucholska and Gulla, 2012).
Following a similar incremental procedure, computational imple-
mentations should first focus on basic skills such as duration pro-
cessing or synchrony, then consider the wider timeline that spans
over past present and future to explore time in memory, atten-
tion, learning, and action planning, proceed with time language
interactions and finally consider how time integrates into com-
plex cognitive capacities such as mind reading, or imagination.
Future works along these unpaved pathways are expected to have
high impact in developing the next generation of autonomous
intelligent systems.

6. CONCLUSIONS
Time is ubiquitous in brain functioning and cognition. The
present article presents early attempts linking cognitive capac-
ities with numerous aspects of sense of time and temporal
cognition. The largely heterogenous approaches adopted so
far, render the integration of the models and the develop-
ment of a single composite system a very challenging future
research topic. However, making progress toward the develop-
ment of a unified system capable to consider the flow of time is
expected to provide new impetus in symbiotic human–machine
interaction.

Clearly, if we are going to ever implement intelligent robots
that live next to us and operate in a way comparable to humans,
then these robots will be definitely equipped with advanced time
perception and processing capacities.
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