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One of the hottest topics in rehabilitation robotics is that of proper control of prosthetic
devices. Despite decades of research, the state of the art is dramatically behind the
expectations. To shed light on this issue, in June, 2013 the first international workshop on
Present and future of non-invasive peripheral nervous system (PNS)–Machine Interfaces
(MI; PMI) was convened, hosted by the International Conference on Rehabilitation
Robotics. The keyword PMI has been selected to denote human–machine interfaces
targeted at the limb-deficient, mainly upper-limb amputees, dealing with signals gathered
from the PNS in a non-invasive way, that is, from the surface of the residuum.The workshop
was intended to provide an overview of the state of the art and future perspectives of such
interfaces; this paper represents is a collection of opinions expressed by each and every
researcher/group involved in it.
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INTRODUCTION AND MOTIVATION
The first international workshop on Present and future of non-
invasive PNS–Machine Interfaces took place in June, 2013 in Seattle,
USA, hosted by the 13th International Conference on Rehabilita-
tion Robotics (ICORR). The keyword peripheral nervous system
(PNS)–Machine Interface (MI; PMI from now on) was chosen to
denote one of the hottest topics in the rehabilitation robotics com-
munity, namely the interpretation of biological signals extracted
non-invasively from the PNS, with the intent to equip an indi-
vidual with disability to reliably, dexterously, and naturally
control a robotic artifact gifted with many degrees of freedom
(DOFs).

In the paradigmatic case, surface electromyography (sEMG)
is used as the main source of signals, and the complexity of
modern upper-limb prostheses (self-powered mechanical shoul-
ders, elbows, wrists, hands, and fingers) represents a formidable
challenge and an ideal benchmark for the PMI dealing with the
problem. sEMG has been in use since the 1960s to proportionally

control single-DOFs hand grippers since it involves neither surgery
nor hospitalization, its signal remains rich in information even
decades after an amputation, and it provides clearer signals than
brain–computer interfaces based upon, e.g., electroencephalog-
raphy. The application of machine learning to sEMG has been
proposed since the 1960s as a means of converting electrical
activation signals to useful control signal for arm and hand
prostheses; nevertheless, the state of the art of control is still
poor.

Literally dozens of different approaches have been applied to
sEMG to decode an amputee’s intentions, but none has as yet
made it to the clinics: as a PMI, sEMG has revealed to be unreliable,
badly conditioned, subject to change with time, fatigue, and sweat.
No valid alternatives to sEMG are used in the clinics, whereas
dexterous prosthetic artifacts are now appearing on the market,
demanding ever better control by the patient.

The workshop revolved around four “themes” or “questions,”
with the aim of shedding at least a partial light on some of them:
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(1) what is wrong with sEMG? why do clinicians not use it?
(2) how can sEMG be better used?
(3) what alternative, radically new solutions are available, if any?
(4) what are the benefits of sharing control between the human

subject and the prosthesis?

Ten invited talks were given at the workshop, in which each
research group gave a broad overview of its activities and offered
its point of view on one of the above topics. This paper collects
the opinions appeared in the workshop.

The remainder of the paper is organized according to the four
above questions; an overview of the talks, as well as a presentation
of the workshop and of the PNS–MI workgroup, can be found at
the URI pnsinterfaces.wordpress.com.

WHAT IS WRONG WITH EMG? WHY DO CLINICIANS NOT
USE IT?
Merkur Alimusaj, Levi Hargrove, Todd Kuiken, and Rüdiger Rupp.

WHAT IS WRONG WITH IT?
The benefit and acceptance of myoelectric prostheses are influ-
enced by a number of reasons: weight, noise, cosmetic appearance,
battery duration, price, and expense of servicing. State-of-the-art
mechatronic devices (prosthetic hands, wrists, elbows, etc.) aim
to increase the number of motorized DOFs available. To make
full use of these multifunctional prosthetic systems an appropriate
user interface must be implemented. Several research groups are
working in the field of sEMG pattern recognition, trying to create
a more robust prosthetic control by adding predictors into control
schemes. Although a lot of work has been done, only marginal
progress has been made in the clinically available solutions for
prosthetic control. A bigger effort is therefore needed to address
the prosthesis user’s needs within multidisciplinary projects. This
leads to the necessity of putting the user at the center of the research
and shaping research to target clinical relevant outcomes.

THE GRAND GOAL: TOTAL RESTORATION
Loss of a hand or an arm due to an amputation dramatically
decreases the quality of life. The amputee has not only lost her/his
grasping functions, but also an important communication tool.
Not only amputees, but also patients with congenital deformities
are prosthetic users and should therefore be addressed. Since the
human hand/arm has more than 20 DOFs, the idea of a complete
substitution by a prosthesis represents a highly ambitious goal.

The dexterity of current prosthetic effectors is not yet anywhere
near that of the human upper limb. The lack of functional-
ity and intuitive control increases by the level of amputation –
most dramatically at the level of shoulder disarticulation or four-
quarter amputation; in such cases the usage and acceptance of
currently available upper extremity prostheses is dramatically low
(Peerdeman et al., 2011; Østlie et al., 2012), mainly due to the
lack of sensory signals to deal with, and with the weight imbal-
ance caused by the harness and the devices themselves. Figure 1
shows the typical harness implanted on a patient of shoulder
disarticulation.

The replacement of a human hand by means of a prosthe-
sis already poses a number of challenges from the mechatronic
point of view. However, the control issue might be even harder

FIGURE 1 | A myoelectric prosthesis implanted after shoulder

disarticulation (A) 2-DOFs self-powered hand, wrist, and elbow, plus

non-motorized mechanical shoulder with electrical fixation (B).

(Peerdeman et al., 2011). This leads to the conclusion that an
increased number of DOFs of prosthetic components is only the
first step in improving these systems. Limitations in articulated
control become even more apparent in the case of multi-fingered
prosthetic hands, which are still controlled by a conventional
two-sEMG-electrode configuration. Such prostheses are operated
via a non−physiological and non−intuitive series of muscle co-
contractions. This control strategy results in a rather slow transfer
of the user’s intentions to an action by the prosthesis and needs a
relevant training period assisted by highly educated experts. The
limitation of the control interface does not allow for full exploita-
tion of the mechanical dexterity of current multi-fingered hands.
Taking into account that this control strategy is also used in higher
amputation levels like transhumeral amputations or shoulder dis-
articulations, it is obvious that the mental effort and workload
of a user exponentially increases with level of impairment. The
user needs to control at least three independent components
(hand, wrist, and elbow) and co-contractions are needed to switch
between operation of each component. Simultaneous and pro-
portional activation of all DOFs or components is, at the time of
writing, still a dream.

STATE OF THE ART
Targeted muscle reinnervation (TMR) transfers the residual motor
branches of arm nerves to alternative muscle sites (Kuiken, 2006),
while sensory nerves are surgically reconstructed in shoulder dis-
articulated patients at the skin near the neck for tactile feedback. If
TMR is successful, it projects the muscles of the hand to chest mus-
cles, thereby increasing the number of sites available for recording
specific sEMG signals for prosthetic control. Currently, data from
up to six sEMG electrodes are considered without the need for any
sEMG pattern recognition algorithms. Using pattern recognition
methods in combination with TMR, prosthesis with a more intu-
itive and robust control were developed and applied in patients
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(Kuiken et al., 2009). TMR is now a procedure that is performed
clinically at institutions around the world.

TMR was developed primarily to create independent EMG
control sites for proximal level upper-limb amputees. TMR is
also suitable for other amputations levels. For example, analy-
sis of high-density surface EMG signals shows that information
corresponding to intrinsic hand-muscles may be decoded using
pattern recognition (Zhou et al., 2007). Our clinical observation is
that TMR amputees can control multiple hand grasps easier and
more reliably than transradial amputees supporting the applica-
tion of TMR to this population (Li et al., 2010). We have also
shown that TMR has applications for lower-limb amputees using
powered prostheses. It improves control during ambulation and
allows the amputees to independently reposition their knee or
ankle to prepare for difficult transfers (Hargrove et al., 2013b).
Finally, there is compelling data to suggest that TMR is an excel-
lent treatment for neuroma pain and likely prevents neuroma
formation. After nerve transection in an amputation, the prox-
imal nerve attempts regeneration with significant sprouting at the
nerve stump terminus (Zhang and Fischer, 2002). If the nerve is
unable to reconnect to a target, sprouting may progress to form
a neuroma: a dense, poorly organized mass of neurons in con-
nective tissue (Song et al., 2006). In TMR, the amputated nerve is
sutured to the motor point of a nerve that previously innervated
the TMR target muscle. In a rabbit model, transferring brachial
plexus nerves to denervated muscle reduced axonal sprouting by
over 50% and reduced neuroma size (Kim et al., 2012; Ko et al.,
2013). In a retrospective review of TMR patients with preopera-
tively painful neuromas, 14 of 15 patients had complete resolution
of their pain, and the remaining patient had a significant reduc-
tion in neuroma pain (Ko et al., 2013), such that he could wear a
prosthesis.

Simultaneous and proportional control of more DOFs has
highest priority in research and clinical routine (Jiang et al.,
2012a). According to this schema, patients are able to control,
e.g., wrist and hand motion without the need of learning artifi-
cial co-contraction sEMG patterns to switch between the control
of prosthetic components. With an increasing number of EMG
signals, the control becomes more intuitive and robust, even with
the use of non-invasive sEMG electrodes (Hargrove et al., 2013a).
Nevertheless, prosthetic control via sEMG is inherently influenced
by different disturbances such as, e.g., muscular fatigue, signal
degradation due to sweating, inadequate positioning of the socket,
stump volume fluctuation, and cognitive effort. This leads to high
variations in the user’s ability to ensure a safe and stable prosthetic
control in particular over several hours. Incorrect operation of the
prosthesis raises the level of frustration and herewith the tendency
of rejection of the device.

In addition to the developments in pattern recognition and
surgical intervention, relevant effort has been spent on the
improvement of motion prediction (Pilarski et al., 2013b), i.e.,
analysis of sEMG patterns to predict the arm kinematics. An incor-
poration of predictors into prosthetic control schemes could lead
to a reduction of latency in prosthetic action. Implementing a
robust method within the control algorithm for prediction of the
user’s intention shall improve the“speed”of control, the functional
outcome and the user’s satisfaction with the device.

CHALLENGES FOR THE CLINICIANS
One of the major limitations of current devices is the lack of
feedback to the user about forces or position of the prosthe-
sis. To achieve an intuitive and reliable control, feedback must
be provided (Dhillon and Horch, 2005). Feedback will sup-
port the embodiment of the whole device consisting of the
prosthetic socket and the components of the prosthesis itself
(Figure 2).

Most of the research in the field on advanced prostheses is cur-
rently carried out in robotics/electrical engineering laboratories.
Like in other fields of assistive technology, the introduction of an
iterative user-centered design is needed to establish a close link
between researchers, clinical experts, professional, and end-users.
The feedback of end users on the usability of complex prosthe-
ses developed by engineers and robotic specialists would help to
come up with devices that match the user needs and capabilities;
clinical evidence shows that the high variability in the population
of amputees needs individual solutions, not only at the level of
mechatronic components but also for the socket, the control sys-
tems, and the training. Prosthetic fitting is always dependent on
the patient’s needs and individual anatomy which all should be
addressed by including clinical aspects in the development process
of novel devices.

Future work should target the integration of additional and/or
novel sensors and sEMG arrays (Youn and Kim, 2010; Cooper et al.,
2014) within the prosthetic socket. Embedded sEMG sensors in the
socket could also lead to more robust control. Invasive, minimally
invasive, and non-invasive methods should be targeted. Further-
more, electrocutaneous or vibrotactile stimulation as a feedback
system for the first contact to an object, for slip detection, and of
the grasp force, could lead to better embodiment of the prosthesis
(Peerdeman et al., 2011).

FIGURE 2 | Closed-loop prosthetic control: including appropriate

feedback for an increased embodiment.
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HOW CAN sEMG BE BETTER USED?
Barbara Caputo, Kevin Englehart, Arjan Gijsberts, Patrick M.
Pilarski, and Eric Scheme.

OVERVIEW
In light of the observed limitations to conventional myoelectric
control, a number of approaches have been developed to more
effectively process and use existing myoelectric control informa-
tion. In particular, enhanced pattern recognition and other forms
of machine intelligence have been recently deployed to increase the
robustness, adaptability, and situational awareness of myoelectric
control systems and other human–machine interfaces (Figure 3).
As a whole, the studies reviewed in this section suggest that, by
increasing the decision making and information processing capac-
ity of sEMG control technologies, it may soon be possible to
surpass many of the existing barriers to their use in a clinical
setting.

ENHANCING THE ROBUSTNESS OF PATTERN-RECOGNITION-BASED
MYOELECTRIC CONTROL
Pattern-recognition-based myoelectric control has been discussed
in the research literature for decades (Parker et al., 2006; Oskoei,
2007) but has only very recently been deployed commercially. Con-
sequently, recent work has focused on identifying the reasons that
have inhibited its successful transition into clinical practice. Var-
ious arguments have been made; however, most have pointed to
concerns about clinical robustness (Scheme and Englehart, 2011).
Transitioning away from conventional laboratory testing poses sig-
nificant challenges as many confounding factors are introduced
during clinical use. It has been proposed that increases in sig-
nal variability during functional tasks contribute to degradation
in repeatability, and as a result, overall performance. Hargrove
et al. (2006) showed deterioration of performance due to elec-
trode shift, but suggested that it could be minimized by pooling
data from shifted electrodes during training. Young et al. (2011)
found similar results relating to electrode size, spacing, and ori-
entation. Scheme et al. (2010, 2011) showed the negative effect of

changes in residual limb position. Since then, several groups have
reiterated these results, concluding that the inclusion of multiple
limb positions during training can minimize these effects (Fougner
et al., 2011; Geng et al., 2012; Jiang et al., 2012b). Lorrain et al.
(2011) investigated the importance of the training set when testing
with dynamically varying data. Similarly, Scheme and Englehart
(2013a) examined the consequence of using proportional control
concurrently with pattern recognition on classification accuracy.
Both groups found that training with dynamically varying data
helped to drastically improve the robustness of the control scheme.

Each of these studies indicated a need for a more compre-
hensive representation of the usage case during training. This
suggests that the common approach to classification validation in
the literature (constrained, moderate intensity contractions) yields
only a sparse population of the discriminatory feature space. This
sparsity, typically combined with highly repeatable experimental
conditions, has led to the observation that the selection of classifier
has a minimal effect on the overall system performance (Hargrove
et al., 2007). Incorporation of multiple sources of variability dur-
ing training data collection, however, can be burdensome on the
users and clinicians. As more of these factors are identified, this
may become a prohibitively intensive approach. Ultimately, it is
not reasonable to represent all possible variations during training,
inevitably resulting in patterns being elicited during functional use
that were unaccounted for during training.

Another criticism of pattern-recognition-based approaches has
been a perceived lack of visibility into its inner workings (Lock
et al., 2011). Some groups are working to improve understand-
ing of the training process (Powell and Thakor, 2013), but the
basic premise of pattern recognition is unchanged. The assump-
tion that a user will only elicit patterns associated with one of n
motions is predisposed to fail as more challenging usage scenarios
are introduced and more sources of variability are added. Instead,
the myoelectric control task may more naturally lend itself to a
detection problem, where the presence of a known/desired signal
is not guaranteed. This subtle difference in philosophy accom-
modates the notion that observed active myoelectric signals may

FIGURE 3 | Robustness, adaptability, and situational awareness (sensorimotor knowledge) as three complementary machine intelligence pursuits to

enhance the expected clinical effectiveness of conventional and emerging myoelectric control systems.
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not result from an intention to activate the prosthesis – current
pattern-recognition-based systems, however, do not consider this
scenario; rather, the assumption is made that all active contrac-
tions originate from a desire to activate the prosthesis, resulting in
inadvertent movement of the device during aberrant, accidental,
or stabilization contractions. Further complicating the matter is
the discrete nature of pattern classification, which gives no indica-
tion that patterns are changing until an error actually occurs. This
greatly limits the ability to anticipate changes in the system and to
measure the influence of confounding factors.

Recently, an extension of the commonly used linear discrimi-
nant classifier (LDA) was introduced that converted its nonlinear
probability outputs into usable confidence scores (Scheme et al.,
2013). These confidence scores, bounded between 0 and 1, were
used to represent the certainty that a given decision was correct.
It has been suggested that inadvertent activation of a device is
one of the leading causes of frustration during clinical testing of
pattern recognition systems (Hargrove et al., 2010). Assuming no
other result such as dropping or crushing an object being held,
a user must – at minimum – correct such an error by eliciting a
compensatory antagonist motion. Drawing on inspiration from
biometrics, Scheme et al. (2013) only actuated motion when the
corresponding confidence was above a minimum threshold. Oth-
erwise, the decision was rejected and overwritten with an inactive
or no movement decision. The introduction of this rejection option
complicates the offline quantification of performance because
the effect of the tradeoff between false activations and excessive
rejection is unclear. Instead, using a real-time Fitts’ law style vir-
tual target achievement test (Scheme and Englehart, 2013b), a
significant improvement was seen in throughput, path efficiency,
overshoot, stopping distance, and completion rate. This approach
demonstrated the potential for using confidence based rejection
to improve performance and robustness by accounting for situa-
tions that might fall outside of the naïve assumptions of standard
offline classification.

While their work (Scheme and Englehart, 2013a) focused on
the realizable improvement through the use of a rejection scheme,
it also established a framework for using a classifier’s probabilistic
outputs for something more than a discrete class decision. It is
clear that the treatment of pattern-recognition-based myoelectric
control as a standalone classification task is insufficient. These
recent advances suggest that significant gains in robustness may
result from a greater emphasis on its use as part of a complete
dynamic control system.

LEARNING TO ADAPTIVELY CONTROL DEXTEROUS PNS–MI DEVICES
One of the main goals of the biorobotics community is to develop
hardware and software tools for providing amputees with dexter-
ous, easy to control prosthetic hands. Still, as of today we live a
dichotomy between the hardware and software capabilities of such
devices. While today’s hardware for robotic hands has reached
impressive levels, control over a satisfactory range of hand pos-
tures and forces is still coarse. Progress in the field has often been
slowed down by the lack of public data collections. Until 2012,
only a limited set of data for hand prosthetics was available. Mostly,
such proprietary databases contained up to 10 different grasping
actions, static hand postures or fingers and wrist movements.

Recently, the first version of the NinaPro database
(www.idiap.ch/project/ninapro, Atzori et al., 2012) was introduced
to the community. This public dataset provides kinematic and
sEMG signals from 52 finger, hand, and wrist movements. As
such, it supports experiments at a far larger scale than previously
used data, challenging machine learning researchers in terms of
classification accuracy, dexterity and life-long learning control of
PNS–MIs.

Besides dexterity, the problem of hand prosthetic control
involves the training time needed by a user to alleviate the incon-
sistencies between the desired and performed movements. This
process can take up to several days and it is generally perceived as
very tiring, sometimes painful. As a consequence, amputees often
give up and settle eventually for a cosmetic hand. This issue calls
for machine learning techniques able to boost the learning pro-
cess of each user. Adaptive methods (Chattopadhyay et al., 2011;
Matsubara et al., 2011; Tommasi et al., 2013), i.e., methods able to
exploit knowledge gathered from previous experience to accelerate
learning by a new subject—are suitable for this task. Indeed, the
experience gained over several source subjects can be leveraged to
reduce the training time of a new target user. In this way the learn-
ing process does not start every time from scratch, but it reduces
to a faster refinement of prior knowledge.

One general issue pointed out by previous work is the time-
and user-dependent nature of the sEMG signals (Sensinger et al.,
2009; Matsubara et al., 2011). The first is mainly due to fatigue
or electrode displacement, while causes of the second are the
personal quantity of sub-cutaneous fat, skin impedance, and dif-
ferences in muscle synergies. Variations among the probability
distribution of sEMG signals across different subjects make the
experience gained on one person not naively re-usable (Castellini
et al., 2009). When designing a prosthetic hand, this problem
induces a strong limitation: each user needs a long training
time before being able to fully exploit the prosthesis. Adaptive
learning methods focus on transferring information between a
source and a target domain despite the existence of a distribution
mismatch among them (Ben-David et al., 2010; Pan and Yang,
2010). Thus the knowledge originally acquired on the source
can be re-used for the target with a benefit that is as more
evident as the target training available data is scarce. This fits
perfectly with the problem of prosthetics hand control. Consider
the ideal case where an amputee wears his new prosthetic hand
for the first time and becomes proficient in using it after only
few basic exercises. This would dramatically reduce the number
of cumbersome training sessions and make the user much more
comfortable, leading to a drastic reduction in functional prosthe-
sis abandonment. To reach this goal, the prosthetic hand should
be endowed with an adaptive system that is already informed
about the possible basic hand movements and refines this source
knowledge through few signals collected from the specific target
user.

Still, adaptive techniques have been applied only marginally
on this problem. In Matsubara et al. (2011), the authors suggest
extracting from the sEMG data a user-independent component
that can be transferred across subjects. The source and target
data coming from different persons can also be combined together
after re-weighting as proposed by Chattopadhyay et al. (2011). In
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Tommasi et al. (2013), the transfer process is formulated as a max-
margin learning method and relies on pre-trained models. All
these algorithms have been tested on proprietary data of limited
dimension, with respect to the number of subject and the num-
ber of hand postures considered. Thus, it is not clear how their
performance compares against each other, nor how they would
perform on the more realistic scenario of larger numbers of sub-
jects and postures. Even more unclear is how the several algorithms
proposed so far in the machine learning literature for adaptive
learning would perform in the PNS–MI devices domain, and what
specific characteristics such algorithms must provide in order to
enable natural and stable control of non-invasive prostheses over
extensive periods of time.

LEARNING AND USING SITUATIONAL KNOWLEDGE IN THE CONTROL
OF PNS–MI DEVICES
The intuitive sEMG control of multiple actuators and the robust
unsupervised adaptation of devices to changes encountered dur-
ing deployed operation remain important challenges for users of
prostheses and other robotic rehabilitation devices. As discussed
above, recent advances in machine intelligence and pattern recog-
nition are helping to alleviate some of these challenges by opening
up a wealth of improved control options for the users of sEMG-
based prostheses (e.g., Sensinger et al., 2009; Micera et al., 2010;
Scheme and Englehart, 2011, 2013b; Tommasi et al., 2013). One
emerging area of potential benefit is that of real-time machine
learning, wherein prediction and control information is learned
during ongoing operation of a robotic PMI device (Pilarski et al.,
2013a). This sub-section therefore discusses work-to-date and
future perspectives on the use of real-time sensorimotor knowl-
edge acquisition as a strategy to gain more functionality from both
existing and emerging sEMG control solutions.

A key point underpinning work on real-time machine learning
for PMI control is that contextual or situational awareness (knowl-
edge in the form of temporally extended predictions) is important
for improving and adapting myoelectric control systems (Pilarski

et al., 2013a). This viewpoint is not surprising – in human action
selection and decision making, situational information at both
a low level (instantaneous information from sensory organs and
afferent never fibers) and high level (e.g., cortical activity relating
to location, emotional state, or long-term memory) is known to
be integrated in multiple, complementary ways to modulate and
enable action (Redish, 2013). In particular, knowledge encoded by
learned predictions in the cerebellum can be influential in effect-
ing timely and appropriate actions (Linden, 2003), and adaptable
predictions made by the central nervous system seem to play an
important role in human motor learning (Wolpert et al., 2001;
Flanagan et al., 2003). Real-time machine learning of predictions
and contextual information may be one way to provide the same
kind of situation-appropriate modulation to sEMG controllers
and other PMI devices (Figure 4).

A good starting point for situational or contextual awareness is
the anticipation of human and robot dynamics, namely, predic-
tions about changes in the stream of sensorimotor data flowing
between the human, their device, and the device’s control sys-
tem. As described in several recent studies, temporally extended
prediction learning and anticipation can be made possible during
the ongoing use of a human–prosthesis interface via techniques
from reinforcement learning (Pilarski et al., 2012, 2013a; Edwards
et al., 2013), namely the use of nexting with general value func-
tions (Modayil et al., 2014). As described by Modayil et al. (2014),
robot systems can now learn thousands of accurate predictions
in a computationally efficient way from a single stream of data,
in perpetuity, with learning and predicting occurring many times
per second. Studies using computational nexting showed the abil-
ity to predict and anticipate the future position, motion, sEMG
input signals, and contact forces of a myoelectrically controlled
robotic limb (Pilarski et al., 2013a), to anticipate the control func-
tions desired by a user (Pilarski et al., 2012), and also to predict
the timing of a user’s control behavior (Edwards et al., 2013). This
move towards more knowledgeable controllers supports and res-
onates with non-real-time PMI prediction learning work, e.g., the

FIGURE 4 | An abstract representation of the use of situational

awareness (knowledge) to supplement myoelectric control. In
conventional myoelectric control, state information in the form of
sEMG features is provided to the controller (A). Learned,

prediction-based knowledge regarding the context (or contexts) of
use can be used to modulate the parameters and the state-action
mapping of a controller in a situation- and user-appropriate
way (B).
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sEMG-driven predictions of upper-arm joint trajectories demon-
strated by Pulliam et al. (2011). Creating systems that acquire
and maintain predictive temporally extended knowledge regarding
human–machine interaction has been shown to be both possible
and potentially virtuous.

To be of benefit, situational sensorimotor knowledge must not
only be learned in real time, but also deployed in real time to
supplement the existing information available to a PMI device.
As depicted in Figure 5, learned temporally extended predictions
can be used to modify the internal parameters of conventional or
pattern-recognition-based controllers during their ongoing use.
Possible examples include using situational, user-specific predic-
tions to dynamically re-order control options, change controller
gains, or adapt thresholds and filters such that they are matched
to a user’s immediate needs and physical condition. As suggested
by Pilarski et al. (2012) and Edwards et al. (2013), a clear instance
of this approach is the use of task- and user-specific predictions to
optimize the control interface of a switching-based limb controller
– e.g., dynamically change how co-contractions are interpreted to
cycle through the numerous grip patterns of a dexterous hand
prosthesis or sequentially controlled actuators of a robot limb.
Once learned through active use, facts (predictions) about user
preferences and past activity can be applied to rank-order control
options in real time such that the correct options are made avail-
able to the user at the correct time (dynamic or adaptive switching,
Pilarski et al., 2012).

Learned predictions may also be fed into controllers as addi-
tional state information (e.g., predictive representations of state;
Littman et al., 2002). As depicted in Figure 6, this approach allows
the flexible coupling of prediction learning with control, provid-
ing additional and perpetually up-to-date state information to a
conventional or learned controller. Alternatively, predictions may
be directly mapped in some way to predetermined movements,
as is suggested to occur via the cerebellum and Pavlovian action
selection in the brain (Linden, 2003; Redish, 2013). As one exam-
ple, learned predictive state information has been shown to enable

FIGURE 5 | Learned predictions can be used to adjust the control

parameters of both conventional and emerging PMI controllers.

Examples include using situational predictions to dynamically re-order
control options, change controller gains, or adapt thresholds and filters
such that they are matched to a user’s immediate needs.

FIGURE 6 | Real-time machine learning provides up-to-date predictive

state information to a control system. Temporally extended predictions
can serve as supplementary state information to improve control
performance, or may be directly mapped to a set or subset of the available
control functions.

the simultaneous, anticipatory actuation of a supplementary wrist
actuator during the myoelectric operation of other robot joints
(Pilarski et al., 2013b).

In summary, learning and using situational sensorimotor
knowledge appears to be a promising area for enhancing assistive
devices, and there are preliminary results to show unsupervised
adaptation, facilitation of simultaneous multi-joint control, and
streamlining of interfaces that use switching. Using a real-time
learning approach, predictions, and thus control behavior, can
adapt during ongoing use without the need to explicitly redesign or
retrain a controller. Real-time machine learning of predictions and
anticipations may therefore present a way to preserve consistency
in a control interface while at the same time allowing the control
system to adapt quickly to things that are challenging (or impossi-
ble) for a designer to model prior to deployment. Continued work
is this area will enable a move toward more advanced, persistent
machine intelligence in PMIs and other assistive technologies.

WHAT ALTERNATIVE, RADICALLY NEW SOLUTIONS ARE
AVAILABLE, IF ANY?
Claudio Castellini, William Craelius, and Michael Wininger.

OVERVIEW
Attempts to use sEMG signals for volitional control of advanced
prostheses have not met with universal success, due in part to
the fact that each central command propagates via variable trans-
mission pathways to diverse muscles lying both superficially and
deep, that act both synergistically and antagonistically, and in part
to the fact that sEMG is labile to environmental factors endemic
to the socket, i.e., moisture. The mechanical actions of the end-
effectors, however, are better surrogates for volitions, since they
embody trajectory, speed, and force directly, and are insensitive to
upstream variability (Wininger et al., 2008; Yungher et al., 2011),
and obviate the need for detection of neuroelectrical signals. Here
we review two novel approaches for controlling a prosthesis based
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on measurement of the end-product of neural signaling, muscle
activation.

ULTRASOUND IMAGING
In the quest for novel peripheral interfaces, recently (Castellini
and Passig, 2011; Zhou and Zheng, 2012; Guo et al., 2013; Sierra
González and Castellini, 2013) medical ultrasound (US) imaging
has proved its effectiveness as a means of detecting in real-time the
position and force configuration of the human hand and wrist.
Simple image processing techniques are applied to live ultrasound
images gathered using standard medical ultrasonography devices.
In the first case, the results have been used to control a simple,
one-DOF wrist prosthesis, whereas in the second, anatomically
irrespective features have been employed to reconstruct a sub-
ject’s desired metacarpo-phalangeal angles and fingertip forces.
The reported accuracy results are in both cases comparable or
superior to those obtained by sEMG, at the price of lower weara-
bility and higher sensitivity to arm/hand displacement during the
prediction.

In Sierra González and Castellini (2013) it is further shown
that, in order to overcome at least the second drawback, a
slightly more complex data gathering procedure could be used.
As the learning/training procedure is extremely fast and simple,
a wider sampling of the input space can potentially account for
the inevitable movements of the subject’s arm and forearm. This
seems a much simpler way than, e.g., to build a detailed model
of the musculoskeletal structure, whose parameters should be
assessed on a case-by-case basis given the inevitable inter-subject
anatomical difference. Additionally, the learning system, based
upon linear regression, is able to interpolate intermediate values
from extreme values: it suffices to train on minimal and maximal
forces/positions. This makes the approach realistic for usage with
amputees.

All in all, from these results it seems that US has a future in the
midterm run, but not as a direct competitor to sEMG. The main
drawback remains the necessity of carrying the ultrasound trans-
ducer and the machine along; as it stands at the time of writing, the
current technology forbids the complete miniaturization of such
a device. Nevertheless, smaller and cheaper ultrasonographers are
being built and marketed by the main manufacturers basically
every year. On the other hand, more immediate applications are
those in which the immensely richer information gathered from
US imaging would really help. Firstly, wherever it is not strictly
necessary to miniaturize the machine, although fine control is
required; for instance, aboard a robotic wheelchair, or to control a
robotic setup in the domotic framework (reaching, grasping, carry-
ing). In such cases, related to patients with highly reduced mobility,
US imaging could help, in that extremely tiny musculoskeletal
changes could be fully detected and interpreted.

Secondly, US imaging could be used in a hospital as a day-
care therapy for rehabilitation. Since every hospital in the Western
world has nowadays access to ultrasound imaging (and the pro-
posed approaches are irrespective of the characteristics of each
single machine), it is imaginable to have muscle- and nerve-
impaired patients, e.g., stroke and ALS patents, amputees, etc.,
attend periodic meetings to work out virtual-reality rehabilita-
tion tasks. For instance, a virtual piano-playing application or

the imitation of a visual model moving its arms and hands. The
therapy could be finely tuned to each single patient. This therapy
could be seen as a follow-up to mirror therapy (Ramachandran
et al., 1995).

In both cases, and in particular if and when US-based control is
required for a somewhat longer time than what is usually enforced
in standard US examinations, it will be necessary to first investigate
the effects of continuous ultrasound beams on the human tissues.
US imaging is so far deemed harmless, but more testing in harder
conditions is very likely to be required. Summing up, the usage
of US imaging as a peripheral human–machine interface is being
explored and is a promising alternative or complement to more
portable – but less accurate – PMIs.

TOPOGRAPHIC FORCE MAPPING
Signatures of the soft-tissue (i.e., mechanical) response of an
upper-limb amputee can be represented as forces exerted by the
entire residuum against the prosthetic socket. Volitions are thus
encoded as topographic force maps (TFMs) that can be reg-
istered via a variety of pressure sensor arrays (Abboudi et al.,
1999; Craelius, 2002; Yungher et al., 2011). Like ultrasound, this
approach is not dependent on precise anatomical placement, and
measures soft tissue response to neural activation.

Topographic force maps registers the 3D volume changes of the
residuum are registered as a dynamic map of muscle recruitment.
This measurement is made via force-sensitive resistors (FSRs),
which change resistance according to force application normal
to its sensor face. The FSR sensor comprises a resistive element
printed onto a thin, flexible polymer, with a sensing head dimen-
sion as low as 5 mm diameter (3 mm active area). While the FSR
material is not waterproof, the FSR’s manufacturer (Interlink, CA,
USA) is ideally suited for placement within a waterproof enclosure.

Previous work with the FSRs in prosthetic sensing have placed
them in a variety of arrangements: embedded in silicone or fab-
ric, in direct- and indirect contact with the skin. In studies with
generic sensor placement, the TFM technique shows high accu-
racy in predicting the basic movement parameters associated with
isometric grasp, both in free- and targeted tasks (Wininger et al.,
2008); this suggests feasible implementation as an off-the-shelf
technology with self-application (donning and doffing). In clin-
ical application of TFM, the sensors are more likely to be placed
with an eye to capturing muscle activations at their most pro-
nounced locations, i.e., bony prominences. In studies with custom
sensor placement, outward pressures of the forelimb have shown
high fidelity to basic grasp types and finger individuation (Craelius
et al., 1999; Curcie et al., 2001; Phillips and Craelius, 2005). TFM-
derived systems can be integrated into rehabilitation and training
programs for retraining the upper-limb (Kuttuva et al., 2005; Kim
et al., 2010; Yungher and Craelius, 2012).

Topographic force maps produce fast and accurate control over
several independent DOFs by upper-limb amputees (Abboudi
et al., 1999; Wininger et al., 2008; Yungher et al., 2011). Advan-
tages of TFM over sEMG control include (1) better reliability due
to inherently more reliable signals, (2) a resolution that is not
dependent precision of sensor placement, allowing for convenient
donning and doffing of the socket, (3) insensitivity to sweating,
and (4) biomimetic, intuitive control. TFM-derived systems can be
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integrated into rehabilitation and training programs for retraining
the upper-limb (Kuttuva et al., 2005; Kim et al., 2010; Yungher and
Craelius, 2012). Recent work has extended the TFM paradigm to
lower limb musculatures, showing high fidelity to basic parameters
of the gait cycle in healthy ambulators (Yungher et al., 2011).

The practicality of TFM, and its limitations in terms of num-
ber of DOFs, and applicability to types of amputation, remains to
be proven, since it has only been a laboratory technique thus far.
Whether and to what extent this constrains the utility of TFM –
and whether sEMG or any other detection modality has a greater
likelihood of capturing these subtleties – remains to be seen: it
may be that the enhanced stability of the TFM signal reduces the
caprice as multifunction hands and wrists become more widely
accessible (Scheme and Englehart, 2011). Clearly, TFM is limited
by the dynamic mechanical environment within the socket, and
in a way that other detection paradigms (including EMG and US)
would not be. TFM has been studied only in “mature” residual
limbs and primarily in patients with limb loss due to traumatic
injury. In this way, TFM has been case-tested primarily in situ-
ations where there is relative stability in the residual limb shape
and volume (Sanders and Fatone, 2011). In the future, testing
TFM longitudinally and in patients with vascular disease would
allow for important insight into how TFM performs across the
stages of the recovery from amputation and in patients with poten-
tially less stable volumetric change. However, we note that TFM
does mitigate the issues associated with loss of signal baseline in
re-application (i.e., it must be re-calibrated in doffing and re-
donning), and classifiers built on the TFM calibration are likely to
lose accuracy over time as the volumetric properties change within
the residuum.

Topographic force map has not yet been tested in scenarios
where grasp volition is to be decoded throughout a heavy lift-
ing task. The socket and residuum are not rigidly connected,

so placing a heavy weight in the prosthetic hand would shift
the weight distribution across the surface of the limb, and
would unload some sensors while increasing load on other sen-
sors. This presents a unique signal decoding challenge not faced
in EMG or US, and presents a need for further development
in TFM.

WHAT ARE THE BENEFITS OF SHARING CONTROL BETWEEN
THE HUMAN SUBJECT AND THE PROSTHESIS?
Arash Ajoudani, Panagiotis Artemiadis, Antonio Bicchi, Strahinja
Dosen, Dario Farina, Sasha Blue Godfrey, Mark Ison, Marko
Marković.

SEMI-AUTONOMOUS CONTROL OF UPPER-LIMB PROSTHESES
Recently, the prosthetic devices have evolved greatly, significantly
growing in complexity from simple, single DOF grippers to highly
dexterous systems providing individual finger control. However,
the actual potential of these systems still remains largely under-
utilized in daily life applications, as the current state-of-the-art
PMIs cannot accommodate the emerging complexity of the sys-
tem control. Conventionally, the development of PMIs has been
driven mostly by the advances in the acquisition and processing
of myoelectric signals, with the classical master–slave myocontrol
being the most common command interface. In this traditional
control setup, the prosthetic device (slave) “listens” for the mus-
cle activity and then translates the user (master) intentions into
actions. Here, we advocate a different approach that is based on
developing systems which are capable of autonomous decisions
making and independent, automatic operation, while at the same
time sensing the environment and communicating with the user
via a range of feedback interfaces.

In its general form (Figure 7), such a system comprises:
(1) a processing unit (PU ; e.g., high-performance computing

FIGURE 7 | Conceptual design of the semi-autonomous control of

prostheses. The basic idea is to enhance the artificial controller (processing
unit) with an extra source of information (sensing interface) so that the
system can operate automatically and autonomously, while the user has

supervisory and corrective role. The main features of the system are
automatic operation, bidirectional communication, semi-autonomous, and
closed-loop control (see text for details). The flow of commands, sensor data,
and feedback information are represented using blue, red, and green lines.
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device) implementing control algorithms; (2) a sensing inter-
face (e.g., cameras, inertial sensors) providing information for
the autonomous decision making; (3) a feedback interface (e.g.,
vibrato- and/or electro-tactile stimulator, augmented reality dis-
play) communicating the state of the system to the user; (4) an
upper limb prosthesis (e.g., a dexterous hand); and (5) a user com-
mand interface (e.g., myoelectric channels) providing high- and
low-level manual control. The key features of the system are: auto-
matic operation, bidirectional communication, semi-autonomous,
and closed-loop control. Using a simple command interface, the
user triggers the system operation. The PU acquires and ana-
lyzes the data from the sensing interface and then, independently
from the user, commands the prosthesis to perform autonomous
actions, such as, pre-shaping and orienting the hand to perform
the grasp. Simultaneously, the PU uses the feedback interface to
communicate the control decisions (e.g., selected preshape and
orientation) as well as the current state of the prosthetic device
(e.g., grasping force) to the user, thereby closing the control loop.
The user can exploit this information to supervise the system
operation and, when needed, take over the control to fine tune
and/or correct online the automatic decisions of the artificial con-
troller (bidirectional communication). Therefore, the control is
shared between the user and the artificial controller, where the
latter effectively shields the former from the low level execution
details and thereby significantly decreases his/her cognitive burden
(semi-autonomous control).

Representative examples of the above concepts have been pre-
sented in (Dosen et al., 2010; Dosen and Popović, 2011; Marković
et al., 2013). In the prototype system for the control of grasping
of a dexterous prosthetic hand, the user wears special glasses with

embedded stereo cameras and an augmented-reality (AR) display.
The glasses operate like a see-through interface, i.e., the cam-
eras record the scene in front of the user, which is then projected
stereoscopically to the display. The user triggers the operation of
the semi-autonomous controller via a simple two-channel myo-
electric interface. The system operation is organized as a state
machine comprising several phases (Figure 8): (1) object targeting:
the user looks at the object he/she would like to grasp. The com-
puter vision is used to segment the scene and identify the targeted
object. The system acknowledges the successful identification to
the user by covering the object with a transparent overlay (i.e.,
AR feedback of the controller decision); (2) automatic hand pre-
shaping : the user triggers the system indicating the intention to
grasp the selected object. The controller determines the properties
of the target object (shape and size), and based on this infor-
mation, employs cognitive like processing (rule base) to decide
grasp type and size suitable for the object. The hand is automati-
cally preshaped and AR feedback communicates the selected grasp
parameters to the user. The grasp type is shown as a visual icon in
the peripheral visual field while the aperture size is depicted in the
form of a virtual box placed next to the target object, where the
size of the box corresponds to the amount of the hand opening;
(3) user corrections the user evaluates the outcome of the auto-
matic control (i.e., selected grasp type and size) by consulting the
AR feedback and if needed adjusts the prosthesis preshape by issu-
ing simple sEMG commands (bidirectional communication); (4)
object manipulation: once the preshape is adjusted, the user issues
the command for the prosthesis closing. The system was success-
fully evaluated in an experiment with 13 healthy subjects operating
a prosthesis mounted on the forearm using a custom made splint

FIGURE 8 | Example operation of a prototype system

implementing semi-autonomous control of grasping in a

dexterous prosthetic hand. The user wears augmented reality
glasses equipped with a stereo camera pair and a stereoscopic
“see-through” display. From top to bottom, the snapshots depict: (1)

object targeting phase with augmented reality (AR) feedback about
object selection, (2) automatic hand preshaping phase with AR
feedback on the selected grasp type and aperture size, and (3)
object manipulation phase. The panels on the right depict what the
user actually sees through the glasses.
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(Marković et al., 2013). The full dexterity of the hand was utilized,
i.e., the system controlled hand preshape by driving all available
actuators to implement four grasp types and continuous range of
aperture sizes.

The developed system is an illustrative example of how an
artificial controller can be enriched with an additional, non-
conventional information source (stereo camera pair), and a
high level processing (cognitive-like reasoning) to achieve fully
automatic control of the functions that are conventionally the
responsibility of the user (e.g., hand pre-shaping; Jiang et al.,
2012a). In this scheme, which is a form of the shared user-
prosthesis control (see next section), the user is able to “release”
predefined“motor programs”performing relatively complex func-
tions, instead of continuously monitoring and controlling each
step during the task execution. This substantially simplifies the
myoelectric interface, which only needs to implement a simple
triggering mechanism and also reduces the burden from the user.
The presented control concept scales smoothly with the system
complexity. For example, in the case of an entire upper limb
prosthesis, the computer vision interface could be supplemented
with inertial sensors tracking the prosthesis orientation in space.
This could be used both to pre-shape the hand and to navigate
the arm to reach and grasp the selected target object. Put dif-
ferently, the complex “pre-shape and reach program” could be
triggered via a simple myoelectric command. Finally, closing the
loop through AR feedback has many potential advantages. Com-
pared to the“classical”methods of tactile stimulation, AR feedback
can utilize a much higher bandwidth of the visual communication
channel.

The ultimate goal of this research is to make grasping and reach-
ing using a complex dexterous hand and/or arm prostheses into a
straightforward, routine activity, which corresponds to how these
functions are performed in a daily life by able-bodied persons.
Ideally, the subject would decide on the functional goal, and then
he/she would simply trigger the system. The artificial controller
takes over and autonomously implements all the low level details of
the task execution. When delicate manipulation is necessary, how-
ever, the system allows the subject to assume a complete control
of the system and fully focus on the task execution.

SHARED USER-PROSTHESIS CONTROL
One approach to simplifying myoelectric interfaces is to share
the burden of control between the hardware, software, and user.
Many basic myoelectric devices make use of simple, proportional
control but only allow one grasp with limited functionality. More
complex systems require a different approach to control: current
anthropomorphic hands require users to switch between postures
in sequence before actually commanding the grasp, thus placing
the burden almost entirely on the user. Pattern recognition and
machine learning techniques, as are found in the literature (Naidu
et al., 2008), in contrast, place that burden almost entirely on the
software, which can require long training sessions and may limit
the flexibility of the controller. By sharing control between the
user and the device, one can achieve more malleable and intuitive
control of complex systems. With the Pisa/IIT SoftHand (Figure 9;
Catalano et al., 2014), we use a combined control strategy that
takes advantage of the brain’s own means of simplifying hand

FIGURE 9 |The Pisa/IIT SoftHand and the forearm adapter used to test

the device on control subjects.

movements to create an anthropomorphic hand with an intuitive
control architecture.

The SoftHand design incorporates the motor control princi-
ple of synergies (Bernstein, 1967). With synergies, the brain is
thought to command multiple DOFs, or joints, simultaneously
in a coordinated pattern. Through principal component analy-
sis (PCA; Santello et al., 1998) a mathematical representation of
these synergies was developed and in turn used as the basis for a
mechanical design (Bicchi et al., 2011). This design strategy was
combined with principles from under-actuation (Birglen et al.,
2008) to enable a soft robotics approach encode the movement
pattern of the first PCA synergy. A single motor is thus used to
pull a tendon that runs through the fingers and thumb. Because
of the flexibility afforded by using a soft robotics approach, the
SoftHand closes with a natural, human movement pattern that
automatically molds around the object in contact. Additionally,
the SoftHand fingers are designed to bend in virtually any direc-
tion in the event of a collision and then spring back to their original
position, to avoid damage to the environment, hand, or human
user.

Previous work on teleoperation of a robotic arm resulted in
a shared control scheme dubbed teleimpedance (Ajoudani et al.,
2011). This scheme uses sEMG to measure cocontraction levels of
antagonist pairs to estimate joint stiffness. The goal was to increase
transparency and intuitiveness of control by imbuing the robotic
arm with human-guided stiffness modulation in addition to tra-
ditional position control. The teleimpedance algorithm developed
for robotic tele-operation was modified and transferred to the
SoftHand. Because the SoftHand contains only one motor, only
one antagonist pair of muscles is needed to control the hand. To
maximize the intuitiveness of the controller, the main external
finger flexors and extensors were chosen as the controlling mus-
cle pair, the M. flexor digitorum superficialis and the M. extensor
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digitorum communis, respectively. For higher level amputees, an
alternative pair can be used, such as the biceps and triceps.

Establishing a complete biomechanical model of the forearm
muscles to accurately map the sEMG signals of the sampled
muscles to joint stiffness is impractical and likely invasive in an
amputee population. For the SoftHand, two modified hyperbolic
tangents were used in place of such a biomechanical model, one
each to map the desired position and stiffness of the hand. To
establish the parameters of the hyperbolic tangents, a brief cali-
bration procedure is used in which the user repeatedly opens and
closes the hand naturally (for position mapping) and at various
self-selected levels of cocontraction (for stiffness mapping). In
preliminary testing with five intact control subjects, normalized
root-mean-square error rates of 17.6 and 13.4% were calculated
for each synergy, respectively. Ultimately, parameter identification
for these models in amputees is likely possible through various
training methods such as mirror-box, teacher imitation, or mental
imagery (Castellini et al., 2009).

The teleimpedance controller described above was tested along-
side stiff and compliant fixed-stiffness controllers with five intact
subjects. Subjects were asked to grasp and lift objects of various
size and weight off a table repeatedly; success rate and sEMG
were recorded throughout the experiment. Interaction forces pro-
duced while using the teleimpedance controller were intermediate
to those produced with the stiff and compliant fixed-stiffness
controllers (Figure 10) and an intermediate ramp-up time was
required to reach these forces (data not shown). The adaptability
of the teleimpedance controller produced more favorable interac-
tions with everyday objects: the stiff controller often resulted in
object deformation when used to grasp more compliant objects,
whereas grasps with the compliant controller were likely to slip
despite adequate molding around the object. Another method
to share control is to close the loop by providing feedback to
the user. Because the human hand is capable of perceiving a
variety of signals from temperature to surface texture to pres-
sure, etc., in providing feedback to assist control, it is difficult
to reproduce the full range of the hand’s sensory information.
In preliminary testing, we have focused on feeding back grasp
force to the user via vibrotactile motors (Godfrey et al., 2013).
We have also explored mechanotactile force feedback and vibro-
tactile surface feedback. While still preliminary, feedback seems
to enhance the user experience with the SoftHand and possi-
bly limit fatigue effects, which is often a concern with prosthetic
devices.

Results suggest the teleimpedance controller is a useful mecha-
nism, potentially in combination with force feedback, to share the
control burden. Ultimately, the proportion of the control the user
and software/hardware are responsible for can shift to accommo-
date differing levels of needs and abilities. For example, for highly
skilled users with the need for a greater variety of postures, more
synergies can be incorporated, requiring a switching or selection
from the user. Conversely, for users with minimal muscle control
or limited musculature, the proportional force and teleimpedance
control currently employed can be simplified to a simple on/off
switch requiring only minimal signal from one muscle wherein
the controller controls both the speed and stiffness of the
hand.

FIGURE 10 | Average interaction torques (in mNm units) by controller

type (Ajoudani et al., 2014).

HUMAN-EMBEDDED CONTROLLERS FOR PROSTHETIC DEVICES
With the desire for simultaneous and proportional control of mul-
tiple DOF prosthetic devices, recent research has stressed reducing
the burden on users through intuitive controls that mimic human
intentions (Figure 11A). However, placing the full burden on soft-
ware prediction currently leads to more user frustration due to
the aforementioned intensive training sets and limited prediction
accuracy placing upper-bound constraints on user performance
(Lorrain et al., 2011; Scheme and Englehart, 2013a). Alternatively,
recent works have supported a shift in myoelectric control appli-
cations towards human-embedded controllers learned through
interaction with a constant mapping function associating sEMG
inputs with control outputs (Antuvan et al., 2014). Mussa-Ivaldi
et al. (2011) propose that the human motor system is capable
of learning novel inverse mappings relating the effect of motor
commands on control outputs while interacting with myoelectric
interfaces. This learning has been modeled and verified in the pres-
ence of closed-loop feedback (Radhakrishnan et al., 2008; Chase
et al., 2009; Héliot et al., 2010), allowing users to perform tasks
simply by learning controls in a given task space (Mosier et al.,
2005; Liu and Scheidt, 2008; Liu et al., 2011; Pistohl et al., 2013).
In this approach, the motor system adapts to the decoder, using
knowledge of the inverse mapping to produce desired outputs, as
depicted in Figure 11B.

Such controllers naturally integrate simultaneous and propor-
tional controls through predefined mapping functions associating
sEMG input with control outputs, and provide real-time learning
that is difficult to achieve using pattern recognition techniques.
This learning is prevalent for both intuitive (e.g., outputs roughly
corresponding to limb motions) and non-intuitive (e.g., ran-
dom mappings) mapping functions (Radhakrishnan et al., 2008;
Antuvan et al., 2014). Although non-intuitive mappings are asso-
ciated with a steeper learning curve, Antuvan et al. (2014) show
they also incur higher learning rates capable of producing better
performance over time compared to intuitive mappings, indi-
cating that intuitive control schemes are not essential given the
presence of feedback.
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FIGURE 11 | General models of myoelectric interface interaction.

(A) Interfaces with trained decoders. A decoder is trained to map sEMG
signals (m) to human arm motion (y). Once trained, the decoder is used in

real-time to estimate arm motion (y′) and map it to output (z) for an interface.
(B) Interfaces utilizing motor learning. The brain adjusts the neural commands
based on the interface output (z) by learning the inverse model of the decoder.

Recent work (Ison et al., 2014) has shown that users not only
learn the mapping function relating sEMG with control outputs
(Figure 11), but train their motor system to develop unique muscle
synergies associated with the full system dynamics of the myoelec-
tric device (Figure 12). Nazarpour et al. (2012) analyzed motor
learning in the context of muscle synergies, which represent spe-
cific cross-muscle activation patterns used to achieve a behavioral
goal (D’Avella et al., 2006). They set up a visual interface with
common center to reach out tasks using cursor position control
via pairs of biomechanically independent muscles. By examining
user reactions to virtual perturbations in cursor position, they
show that users obtain flexible control through the formation of
dynamic, task-dependent muscle synergies.

Ison et al. (2014) recently analyzed long-term trends in human
motor learning through interaction with similar visual interfaces
incorporating human-embedded myoelectric controls. The work
reveals the natural emergence of a new muscle synergy space as

the user identifies the novel system dynamics of the interface
(Figure 12). The system dynamics include not only the map-
ping function, but also disturbances from electrode placement
and shift, limb position, and unique movement patterns, resulting
in a robust control of the full task space. The developed synergies
have common population-wide components, and their continu-
ous refinement correlates with a long-term learning component
that increases both performance and control efficiency over time
during consistent, repeated use. Moreover, it is found that these
synergies are maintained after periods of non-use, allowing sub-
jects to retain a significant amount of performance on familiar
tasks and generalize upon the introduction of new tasks within
the same control space. The user then has freedom to increase
control efficiency simply by interacting with the device to adap-
tively identify the system dynamics relating neural activity to the
given, novel task space. The ability to retain and refine unique
synergies and utilize them to generalize control to the entire task

FIGURE 12 | Embedded brain control for myoelectric interfaces. The brain learns a model of the plant to be controlled (system dynamics identification) by
comparing neural commands and output (z) of the interface. New synergies are developed through controller design based on the system identified, which are
then utilized while adjusting neural commands.
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space supports the use of synergy development, not necessarily
user-specific trained decoders, for efficient myoelectric control of
robots designed for long term use.

Although these studies have only evaluated learning through
visual interfaces, Pistohl et al. (2013) demonstrates the natural
extension of human-embedded control to robotic devices. In addi-
tion, Ison et al. (2014) find that motor learning incurred using
one interface translates to better initial performance with differ-
ent interfaces utilizing the same mapping function, likely due to
the use of the same previously developed muscle synergies.

Both studies suggest that users can be trained to control a
multiple DOF myoelectric prosthetic device with minimal frus-
tration, simply by interacting with the specific mapping function.
In the case of amputees, especially TMR patients (Kuiken, 2006),
there is opportunity to train the user to develop new synergies
from residual muscles in order to achieve efficient control of a
prosthetic device, robust to degradations currently plaguing pat-
tern recognition methods. Thus, a shift in research focus toward
human-embedded control potentially provides a novel and prac-
tical way to achieve user-friendly and robust myoelectric control
of prosthetic devices.

LESSONS LEARNED AND DISCUSSION
There is clearly no definite answer to any of the questions posed
as the motivation for the workshop, but the opinions expressed in
this paper are at least indicating a direction in which to go. Here
is a list of recommendations for the future research in PMIs.

APPROACH THE CLINICS
Research in PMIs is still essentially a matter of the academic
community of rehabilitation robotics and machine learning; this
means that the level of practical involvement of the scientists in
the clinical environment is inadequate. The research focusses too
much on the mathematics and the mechatronics and tends to
neglect the final target, that is the patient. The clinicians involved
in conceiving, designing, and fitting the prostheses and instructing
the patients are still highly unsatisfied with the tools they get; this
calls for a major change in the research perspective, which must
be transferred on the field, namely, the hospital, or even at home,
since the beginning.

A further theme which was not treated in the workshop is that
of providing real-time feedback to the patient. So far, this branch
of the PNS–MI topic, i.e., the feedback path, seems much less
explored than its feedback counterpart. Nevertheless, the feed-
back path would definitely improve the feeling of embodiment,
therefore strengthening the “reciprocal learning” effect, and over-
all enhancing the control. Subsequent editions of the workshop
will take this issue into account.

IMPROVE RELIABILITY
The tendency of machine–learning-based myoelectric control
schemas to output unstable control signals is still a major issue,
mostly caused by the inherent instability of biological signals.
There are several suggestions to counter this problem. First and
foremost, in the machine learning community there is still a dan-
gerous tendency to claim that approach A is better than approach
B on the basis that A achieves a better classification rate, whereas

most of the times the classification rate is evaluated using the
same dataset gathered offline (Wagstaff, 2012), an idiosyncrasy
denoted as“abstract versus concrete performance measures.” Con-
crete measures of performance involve tasks performed by the user
in real life, e.g., how often a grasping action failed, how long it took
to reach a target, etc.; these measures should become the gold stan-
dard. The community recommends that algorithms be first tested
on standard benchmarks (which are still mostly unavailable) and
then definitely tried in a clinical setup.

Secondly, machine–learning-based control is still, by and large,
discrete and sequential, meaning that one DOF can be controlled
on–off at each point in time (classification); as opposed to this,
simultaneous and proportional control should be enforced. In this
schema, one real-valued control signal is simultaneously available
for each of the DOFs of the mechanical artifact. Each control signal
should be independently controlled by the patient, possibly in the
natural way (i.e., by “desiring” so), and short training should be
enforced by devising a way to combine the single DOF activations
into more complex patterns. It is clearly unacceptable to have the
subject show the system, e.g., each and every grasping pattern.

Thirdly, novel PMIs should be used to improve the intent detec-
tion enforced by sEMG. There are indications that ultrasound
imaging and topographic force mapping are viable approaches;
computer vision for the estimation of the action to be taken, the
development of new muscular synergies and the delegation of
grasping to a lower-level closed-loop control are also interesting
paths ahead.

LACK OF EMBODIMENT
Most amputees will not feel that the prosthesis is their own hand,
notwithstanding the well-known properties of adaptation shown
by the human brain. This is due to at least two factors: lack of dex-
terity of the prosthetic devices (no prosthetic hand on the market
allows for, e.g., force control of single fingers, let alone manipu-
lation) and lack of feedback to the subject, let alone the need to
improve the control, shorten the reaction times, and miniaturize
the systems to be onboard. Ownership and immersion, the feeling
of self with respect to the device, is in fact the ultimate goal.
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