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In the framework of rehabilitation robotics, a major role is played by the human–machine
interface (HMI) used to gather the patient’s intent from biological signals, and convert them
into control signals for the robotic artifact. Surprisingly, decades of research have not yet
declared what the optimal HMI is in this context; in particular, the traditional approach based
upon surface electromyography (sEMG) still yields unreliable results due to the inherent
variability of the signal. To overcome this problem, the scientific community has recently
been advocating the discovery, analysis, and usage of novel HMIs to supersede or augment
sEMG; a comparative analysis of such HMIs is therefore a very desirable investigation. In
this paper, we compare three such HMIs employed in the detection of finger forces, namely
sEMG, ultrasound imaging, and pressure sensing.The comparison is performed along four
main lines: the accuracy in the prediction, the stability over time, the wearability, and the
cost. A psychophysical experiment involving ten intact subjects engaged in a simple finger-
flexion task was set up. Our results show that, at least in this experiment, pressure sensing
and sEMG yield comparably good prediction accuracies as opposed to ultrasound imaging;
and that pressure sensing enjoys a much better stability than sEMG. Given that pressure
sensors are as wearable as sEMG electrodes but way cheaper, we claim that this HMI
could represent a valid alternative/augmentation to sEMG to control a multi-fingered hand
prosthesis.

Keywords: pressure sensing, machine learning, incremental learning, human–machine interaction, rehabilitation
robotics, force control

1. INTRODUCTION
Despite decades of research by roboticists, mathematicians, and
physiatrists, properly controlling a hand prosthesis by a hand
amputee is, still nowadays, an open problem. In the ideal case,
proper control means that each single degree of freedom (DOF)
of the prosthesis should be independently and proportionally
controllable according to the amputee’s intent; for instance, the
desire to grab a bottle should immediately result in a stable cylin-
drical power grasp. So far, this is only enforced on single-DOF
grippers such as, e.g., Otto Bock’s Sensorhand Speed1 using two
surface electromyography (sEMG) electrodes (Merletti et al., 2009,
2011a,b) placed on the loci of maximal residual muscle activity
found on the stump. Although this form of control is reliable,
it cannot go very much past such non-dexterous prostheses, e.g.,
proportional control of two DOFs at best, with switching between
DOFs enforced by sequences of cocontractions.

On the other hand, with the recent advent of multi-fingered
hand prostheses as well as active prosthetic wrists and elbows, the
need for more dexterous control has become urgent. Commer-
cially available devices (certified as prostheses and employed in
the clinics) include, e.g., Touch Bionics’s i-LIMB Ultra Revolution,
RSL Steeper’s BeBionic, and Vincent Systems’s Vincent Evolution
22, each one equipped with four to six motors and single-finger

1http://www.ottobock.com
2http://www.touchbionics.com, http://www.bebionic.com and
http://www.vincentsystems.de

DOFs; in some cases, the prosthesis can even independently rotate
and flex the thumb. Academic prototypes are going in the same
direction, e.g., Prensilia’s Azzurra hand, derived from the Smart-
Hand (Cipriani et al., 2011), gifted with five independent motors
and tendon-actuated fingers, and the SoftHand (Catalano et al.,
2012), exploiting the concept of motor synergies (Santello et al.,
1998) to dramatically simplify the control without reducing the
functionality. For these mechatronic artifacts, Amsüss et al. (2014)
have shown that the old one-DOF control schema does not suf-
fice any longer; more sophisticated forms of sEMG-based control,
relying on pattern matching, do not yet work as desired. Matching
sEMG patterns via classification is clumsy, unstable, and limiting
for the patient, to the point that (Micera et al., 2010; Peerdeman
et al., 2011) a large percentage of hand amputees do not routinely
use such costly devices.

The community is therefore calling for novel human–machine
interfaces (HMIs) to complement, augment, or substitute sEMG,
together with the necessity to enforce simultaneous and propor-
tional control using these signals (Fougner et al., 2012; Jiang
et al., 2012). To this aim, novel HMIs are currently being explored
(Castellini et al., 2014) for control of multi-fingered hand prosthe-
ses, but so far little is known about their comparative advantages
and disadvantages. In this paper, we propose one such analysis
focusing on two such HMIs recently appeared in the scientific liter-
ature, namely ultrasound imaging (Sierra González and Castellini,
2013) and pressure sensing (Wininger et al., 2008; Yungher et al.,
2011), in comparison to sEMG. We analyzed their performance
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Ravindra and Castellini Comparison of three HMIs for the disabled

under four aspects: the accuracy in the prediction of the activa-
tion of the DOFs of the prosthesis; the stability of the prediction
over time; the wearability; and the projected costs.

A psychophysical experiment was set up in which ten able-
bodied subjects would repeatedly flex their fingers to different
extents of maximal voluntary contraction, while their sEMG sig-
nals, pressure signature of the forearm, and ultrasound images of
the forearm were recorded. The experimental results seem then
to indicate that pressure sensing represents a viable alternative
to sEMG, at least as far as single-finger-force control of a hand
prosthesis is concerned.

1.1. RELATED WORK
The three HMIs chosen for this study have already been indi-
vidually investigated for hand prosthetic control. Namely, sEMG
is a very long-standing choice, its use dating back to the 60s for
one-DOF control (Finley and Wirta, 1967). Several comprehen-
sive surveys about its use in modern, multi-DOF hand prostheses
have appeared (e.g., Micera et al., 2010; Peerdeman et al., 2011),
showing that basically all possible electrode arrangements and
machine-learning methods have been tried to enable fine con-
trol over self-powered prosthetic hands; nevertheless, it turns out
that sEMG has a number of drawbacks, which still make it unsuit-
able. The main problem lies in its changing nature due to sweat,
electrode shift, and fatigue (Merletti et al., 2011a), the latter being
especially hard to counter since it entails shifts in the frequency
components of the signals as well as in its amplitude. The problem
is all the more relevant whenever standard commercial electrodes,
such as, e.g., Otto Bock’s MyoBock 13E2003 are used, which are
the de facto standard in clinical applications. These electrodes pro-
vide a rectified, low-pass filtered version of the raw sEMG signal,
with no original frequency content remaining. Attempts to counter
fatigue include, e.g., the usage of switching regimes as the signal
changes (Artemiadis and Kyriakopoulos, 2011) or static methods,
i.e., filtering (Dimitrova and Dimitrov, 2003). The limited suc-
cess of these methods mean that the level of abandonment of
hand prostheses remains unusually high (Biddiss and Chau, 2007;
Peerdeman et al., 2011).

The idea of using ultrasound imaging is, as well, not new. Zheng
et al. (2006) originally used it to track the thickness of the exten-
sor muscle in the forearm to drive a one-DOF prosthetic wrist; the
approach was then extended in Chen et al. (2010, 2011) and Shi
et al. (2010) to multiple DOFs and to a better accuracy. Castellini
et al. (2012) and Sierra González and Castellini (2013) demon-
strated its feasibility to predict finger forces and positions in a
realistic setting, i.e., using no sensors for ground truth and train-
ing on maximal and minimal forces only. An attempt at comparing
sEMG and ultrasound imaging in a discrete tracking task appears
in Jing-Yi et al. (2011), from which it seems that ultrasound imag-
ing obtains better results than sEMG. In Castellini (2014), it is
speculated that, given the wealth of information obtained from
ultrasound images, this technique might be superior to sEMG.

As far as pressure sensing is concerned, the main idea is that
of detecting the intent of a subject by estimating the deformation

3http://www.ottobock.com

induced on the forearm/stump surface by the underlying muscle
activity – the so-called “pressure signature” of the muscle activa-
tion. This path was initially explored in the 2000s by Craelius and
Wininger (Craelius, 2002; Phillips and Craelius, 2005; Wininger
et al., 2008) who showed that an array of variable resistors could be
used to determine the forces required during walking and/or while
grasping a dynamometer. Comparison between sEMG and this
technique showed that these novel signals enjoy less variability in
time and provide more repeatable patterns. This is not surprising,
since muscular fatigue should not affect such signals. In Castellini
and Ravindra (2014), the effectiveness of such an approach was
further demonstrated by showing that a simple bracelet containing
10 force-sensing resistors (FSRs), similar to those used by Craelius
and Wininger, can be used to detect finger forces to a degree of
accuracy comparable to that found in literature for sEMG.

In the following, we will denote the three above-described
HMIs as, in turn, sEMG (surface electromyography), US (ultra-
sound imaging), and FSR (the acronym of force-sensing resistors,
the devices used to gather the pressure signature of the forearm).

2. MATERIALS AND METHODS
A psychophysical experiment involving ten able-bodied subjects
was set up, in order to determine the pros and cons of the three
HMIs mentioned above. We gathered fingertip forces from the
subjects, while they were induced to apply force patterns using a
visual stimulus. At the same time, their sEMG signals, FSR signals,
and US images of the forearm were recorded.

2.1. EXPERIMENTAL SETUP
2.1.1. Forearm pressure signature
The pressure sensing setup comprised a semi-rigid bracelet with
ten force-sensing resistors (FSR400 short by Interlink Electron-
ics4 affixed along the inner surface of the bracelet, as shown in
Figure 1A). The sensors have a 5.6 mm-diameter pressure sen-
sitive surface, whose resistance changes in a predictable manner
when a force is applied on it. The behavior of the sensor is typi-
cally non-linear, with no guarantee of repeatability across sensors,
which accounts for their inexpensiveness – a single unit costs in
Germany <5 EUR. Each force sensor was placed on an aluminum
plate of 3 cm× 1 cm× 1 cm dimension and immobilized by means
of a double sided tape. A spherical rubber foot was placed on the
sensing surface and the whole arrangement was encased in a heat
shrink rubber tubing so as to keep the parts in place. A detailed
description of the bracelet as well as of its calibration can be found
in Castellini and Ravindra (2014).

2.1.2. Surface electromyography
Ten Ottobock MyoBock 13E200 sEMG electrodes were attached to a
bio-compatible reusable self-adhesive tape at regular intervals – see
Figure 1B. These electrodes are the standard, off-the-shelf sEMG
device used in clinical prosthetic sockets, and are commercially
available; they provide an amplified, bandpass filtered, rectified
sEMG signal, of excellent quality for prosthetic control. The elec-
trode band was placed around the forearm, about 5 cm below

4http://www.interlinkelectronics.com
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Ravindra and Castellini Comparison of three HMIs for the disabled

FIGURE 1 | HMI devices used: (A) customized arrangement of FSR housed in a semi-rigid bracelet; (B) ten sEMG electrodes arranged on a strip of
bio-compatible self-adhesive tape; (C) ultrasound transducer fixed to a custom-made cradle.

the elbow; no muscle targeting was enforced in order to keep the
electrode positioning as simple as possible. This choice has already
been proved effective for hand prosthetic control (Castellini et al.,
2009; Castellini and van der Smagt, 2013). Each such electrode can
be bought at a price between 150 and 300 EUR in Europe.

2.1.3. Ultrasound imaging
Ultrasound images of the forearm were gathered using a General
Electric Logiq-e portable ultrasound machine5 equipped with a
12L-RS linear transducer. Movement of the probe with respect to
the subject’s skin was avoided using a custom-built plastic cradle
obtained via rapid prototyping – see Figure 1C. The machine was
configured to an ultrasound frequency of 12 Hz, edge enhance-
ment on, focus point at a depth of 1.3 cm and minimum depth
of field, resulting in a frame rate of 38 Hz. For a deeper descrip-
tion of this setup, please refer to Sierra González and Castellini
(2013).

2.1.4. Finger-force sensor
The Finger-Force Linear Sensor (FFLS, see Kõiva et al., 2012)
was used to gather the applied finger forces. The FFLS is a
customized arrangement of six strain gage sensors, ergonomi-
cally designed to fit the positions of fingers while the palm is
stretched. It employs four KD60-100N industrial strain gage sen-
sors by ME-Meßsysteme GmbH6 to measure finger flexion and
extension forces of the index, ring, middle, and little fingers,
and one RFS® 150XY-100-8-3 dual axis strain gage sensor by
Honigmann GmbH7 to measure the flexion/extension and abduc-
tion/adduction forces of the thumb. The sensors have <0.1%
linearity error and 0.1% drift over 30 min. The FFLS guarantees
therefore a repeatable linear behavior in a high range of force
(100 N in all directions) and reaches an overall accuracy of+0.35%
over nominal measurement range.

2.2. EXPERIMENT DESCRIPTION
An experiment was designed to compare the accuracy and stabil-
ity of the finger-force prediction obtained by a state-of-the-art

5http://www.gehealthcare.com
6http://www.me-systeme.de
7http://www.honigmann.de

machine-learning method using the three kinds of signals
provided by each HMI. In an initial round of data collection, we
measured the maximal forces that each subject could apply at each
of the 6 DOFs considered (namely flexion of the little, ring, middle,
and index finger plus thumb adduction and flexion). The choice of
these six DOFs of the human hand is motivated by the fact that one
of the most dexterous self-powered hand prostheses in the world
at the time of the experiment, namely the i-LIMB Ultra Revolution,
has exactly those active six DOF available; and it is reflected in the
configuration of the FFLS, which can measure the forces applied
for each of these DOFs.

In the ideal case, data should have been collected with all three
devices strapped to the forearm at the same time. However, such
an arrangement would have seriously hampered the comfort of
the subjects. We rather did a pairwise comparison of the FSR with
sEMG and US. This pairwise comparison was done by dividing
the data collection into two phases. In the first phase, the sEMG
band and the FSR bracelet were affixed to the right forearm of the
subject (Figure 2A); whereas in the second phase, the sEMG band
was replaced by the ultrasound probe (Figure 2B). The ground
truth was collected by strapping the fingertips on the sensors of
the FFLS.

In both phases, the same visual stimuli were administered to the
subjects: a 3D hand model of a human hand, flexing the fingers,
plus a colored bar denoting the required level of force. A further set
of colored bars denoting the force actually applied by the subjects
helped ensure that the subjects would exert the required amounts
of force to their best. The two phases were identical in terms of the
actions that were required by the subject. Each phase comprised
ten repetitions, each repetition consisting of a single-finger flexion
for each DOF. During repetitions 1–5, the subjects were required
to flex their fingers at 80% maximum force level; the subject was
then given a break of 5 min, followed by repetitions 6–10, at 15%
of maximum force. This split provided an indication of how the
prediction accuracy would behave in a high-force as well as in a
low-force scenario.

Ten able-bodied subjects volunteered for the experiment. The
entire experimental procedure was conveyed to them in oral and
written form, following which their consent was taken in writing.
The experiment was approved by the Ethical Committee of DLR.
The subjects were seated comfortably on an adjustable office chair
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FIGURE 2 | Experimental setup comprising HMIs on the forearm and the finger tips on the FFLS. (A) FSR bracelet and sEMG band; (B) FSR bracelet and
US transducer applied to the forearm.

for the entire duration. They were given the option to pause or
stop the experiment at any point of time.

2.3. DATA PROCESSING AND FORCE PREDICTION
Data obtained from the sEMG, FSR, and FFLS were collected at
50 Hz using a standard analogic-to-digital conversion card. The
sEMG signals were filtered by a 1st order low-pass butterworth fil-
ter with cutoff frequency at 1 Hz. A gradual drift was observed in
the FSR signals, which was remedied by applying a 3rd order high-
pass Butterworth filter with cutoff frequency at 0.5 Hz. The filtered
signals obtained from the sEMG electrodes and FSRs were directly
used, without any further feature extraction phase. The US images
were grabbed from the VGA output (at 38 Hz) of the US machine
using a standard PCI-bus frame grabber; from each image, 543
local visual features were extracted, denoting the changes in the
local levels of gray of each image. For a thorough description of
the feature extraction procedure, please refer to Sierra González
and Castellini (2013).

Following the approach tested in the same paper, we applied
Ridge Regression to the visual features in order to predict the finger
forces. Ridge Regression (Hoerl and Kennard, 1970) is a regular-
ized variant of least-squares regression, building a linear model
of the forces of the form f(x)=wTx, where x denotes the visual
features extracted from each image, and w is a weighting vector,
which can be calculated in closed form from a set of (sample,
target) pairs (the training set ) previously collected. In particular,
if X denotes the training set (as an n× 543 matrix, where n is
the number of samples in the training set), and y is a vector col-
lecting the n target (force) values for each collected sample, then
w= (XTX+λI )−1XTy. (The regularization coefficient λ was set
at the standard value of 1.)

For sEMG and FSR data, a linear approach is not sufficient
(Castellini and Ravindra, 2014; Gijsberts et al., 2014), therefore
we employed a non-linear extension to Ridge Regression called
Random Fourier Features (Rahimi and Recht, 2008). The models
obtained by this approach have the form f(x)=wTφ(x), where
φ is a non-linear mapping from the input space (the sEMG or
FSR values) to a higher- (but finite-) dimensional feature space,
where linear regression is more likely to succeed. The mapping
φ is actually a finite approximation of the well-known radial-
basis-function kernel; but, as opposed to what happens, e.g., with
Support Vector Machines (Boser et al., 1992), where the kernel is
known but the mapping is not, leading to an infinite-dimensional

feature space, in this case φ can be explicitly (and computa-
tionally lightly) evaluated. The finiteness of the induced kernel
keeps the approach bounded in space and permits the mapping
to simply be “plugged in” into the Ridge Regression formula:
w= (φ(X)Tφ(X)+λI )−1φ(X)Ty. More details about the theory
of this method when applied to sEMG can be found in Gijsberts
et al. (2014).

The prediction accuracy of each machine-learning method
(Ridge Regression and Random Fourier Features in turn) was eval-
uated by following the realistic scenario first described in Sierra
González and Castellini (2013): to build a training set, only data
collected during the application of maximal and minimal forces
were considered; fivefold cross-validation was done for each sub-
ject, by training on four out of five repetitions and testing on the
remaining repetition. In the case of Random Fourier Features, the
hyperparameter σ was found by grid-search while the number of
features to be evaluated, D, was set at the computationally feasible
value of 300. Training sets were built, in turn, using either the FFLS
force data (the “ideal” ground truth) and the stimulus values – a
harder but more realistic choice, since amputees cannot provide
any consistent ground truth using sensors. The prediction accu-
racy of each machine-learning method applied to either regression
problem (with forces or stimulus as ground truth) was evaluated by
calculating the Root Mean-Squared-Error between the predicted
force values and the ground truth obtained from the FFLS sen-
sor, normalized over the target signal range (nRMSE). Notice that
this problem represents a hard challenge for any machine-learning
method whatsoever: in the most difficult setting, the system is
trained on stimulus values but still tested on real force data.

Lastly, two prediction scenarios were considered, one to ascer-
tain the accuracy obtained by each HMI in general, and another
one to test the stability over time of each HMI. For the first
scenario, the above cross-validation procedure was used; for the
second, we trained on data collected during the first repetition,
and subsequently tested on the second, third, fourth, and fifth rep-
etition separately. As the repetitions were always collected in the
same chronological order, this would give us an indication of how
well the prediction could carry on over time.

3. RESULTS
3.1. PREDICTION ACCURACY
Figures 3 and 4 show the prediction accuracy obtained by each
HMI on each degree of freedom considered (little, ring, middle,
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FIGURE 3 | Prediction accuracy (nRMSE) obtained by each HMI for each
degree of freedom considered, during the high-forces experiment
(stimulus at 80% of the maximum voluntary contractions). (A) Error
obtained when the FFLS data are used as ground truth; (B) error obtained

when the stimulus is used as ground truth. The legend denotes, in turn,
sEMG (EMG), the two FSR sessions (FSR1, FSR2) and ultrasound imaging
(US). Bars and stems denote average nRMSE values across ten subjects,
plus/minus one standard error of the mean.

FIGURE 4 | Prediction accuracy (nRMSE) obtained by each HMI for each
degree of freedom considered, during the low-forces experiment
(stimulus at 15% of the maximum voluntary contractions). (A) Error
obtained when the FFLS data are used as ground truth; (B) error obtained

when the stimulus is used as ground truth. The legend denotes, in turn,
sEMG (EMG), the two FSR sessions (FSR1, FSR2) and ultrasound imaging
(US). Bars and stems denote average nRMSE values across ten subjects,
plus/minus one standard error of the mean.

and index finger flexion, thumb adduction, and thumb rotation),
in the high- and low-forces experiment, in turn, both when the
FFLS (force) data are used as ground truth (Figures 3A and 4A)
and when the stimulus values are used to this purpose (Figures 3B
and 4B).

In the graphs, FSR1 and FSR2 denote the two identical experi-
ments performed with FSR, the first time together with sEMG and
the second with US. Almost no statistically significant difference
in performance is observed (Student’s two-tailed t -test p-value
always larger than 0.05, except for one single case). This confirms
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that the error values for the FSR obtained in the two experiments
are similar, in turn, confirming that the subjects were induced to
do approximately the same things during the two experiments.
The maximum force exerted averaged over ten subjects and the six
degrees of freedom is 22.6± 2.1 N.

As far as the prediction accuracy is concerned, in the high-
forces case, when the actual forces (FFLS data) are used as ground
truth to train the system (Figure 3A), the error attained by
sEMG and FSR is almost uniformly below 10%, with very few
statistically significant differences. Ultrasound imaging obtains a
rather higher error, in the range 15–20%, always statistically sig-
nificant. In case the stimulus values are used as ground truth
for training (Figure 3B), the situation gets uniformly worse as
expected, but the same pattern can be observed: sEMG and FSR
obtain errors in the range 10–20% (around 20% in the case of
thumb adduction), which corresponds to a maximum error of
approximately 4.3 N, while ultrasound imaging performs over-
all much worse, with errors hovering around 40%, which is

approximately 7.2 N. Again, its performance is always statistically
significantly different in comparison to the worse among the other
approaches.

In the low-forces experiment (Figure 4), the same considera-
tions hold, given the fact that the error becomes uniformly higher.
This is to be expected, since the range of forces in this case is signif-
icantly smaller than in the high-forces case. It should be noted that
though the nRMSE values obtained with sEMG and FSR is high
for some DOFs (20–35% for middle, index, and thumb adduc-
tion/rotation), the minuteness of the 15% force level means that
the error in terms of physical force is approximately 1.2 N.

3.2. STABILITY
Figures 5 and 6 show the prediction errors obtained by FSR and
sEMG on each degree of freedom considered, in the high- and
low-forces experiment, in turn, split across repetitions #2, #3, #4,
and #5. Training was done on the first repetition only. Testing was
done on the FFLS ground truth only, to obtain a clearer picture.

FIGURE 5 | Prediction accuracy (nRMSE) obtained by FSR (A) and sEMG
(B) for each degree of freedom considered, during the high-forces
experiment (stimulus at 80% of the maximum voluntary contractions);

the system was trained on the first repetition; the graph shows the error
obtained while testing on repetitions #2, #3, #4, and #5. The FFLS data are
used as ground truth.

FIGURE 6 | Prediction accuracy (nRMSE) obtained by FSR (A) and sEMG
(B) for each degree of freedom considered, during the low-forces
experiment (stimulus at 15% of the maximum voluntary contractions);

the system was trained on the first repetition; the graph shows the error
obtained while testing on repetitions #2, #3, #4, and #5. FFLS data are
used as ground truth.
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From the figures, a clear trend up is evident in the case of
sEMG, all the more in the case of the low-forces experiment. In
fact, the slope of a linear fit (averaged over the six degrees of
freedom) turns out to be 0.0002± 0.0014 and −0.0008± 0.0004
for FSR, and 0.0079± 0.0005 and 0.0092± 0.0105 for sEMG. This
confirms that FSR enjoys a better stability in time with respect
to sEMG.

4. DISCUSSION
The experiment described in this paper is a comparative analy-
sis among HMIs for the disabled. Particular care was taken to
ensure that the three HMIs under examination were tested in the
very same conditions. Since it was infeasible to have the subjects
wear the sEMG electrodes, the pressure sensing bracelet and the
ultrasound imaging probe all at the same time, we rather tested
the HMIs in two pairs, checking later on that the common one
(namely, the tactile bracelet) would obtain comparable results in
the two experiments.

The experimental results show that, overall, all three HMIs can
be in principle used in a realistic setting – that is, using an incre-
mental, real-time machine-learning method, in principle trained
without the usage of sensors for ground truth, and using a very
short training procedure (on minimal and maximal forces only).
All three HMIs can potentially enforce simultaneous and propor-
tional control over fingers of a multi-fingered prosthesis. A more
detailed discussion of the results follows.

4.1. PREDICTION ACCURACY
Ultrasound imaging provided a surprisingly unsatisfactory per-
formance. According to Figures 3 and 4, the nRMSE achieved by
ultrasound imaging in the most difficult settings (that is, when
training on the stimulus as ground truth) hovers around 40%
both in the high- and low-forces experiment. This is a surpris-
ingly high value if compared to previous work (Sierra González
and Castellini, 2013). It must be noted, however, that in that work,
the cross-validation was done by random shuffling of all sam-
ples gathered in one series of finger-force repetitions; this is of
great aid to any machine-learning method, since it represents a
uniform sampling of the whole probability distribution of the
data. As opposed to that, in this experiment the cross-validation
is performed repetition-wise, that is, by training on four out of
five repetitions, and then testing on the remaining repetition.
It can therefore be the case that the ultrasound visual features
extracted from each repetition slightly differ from one another
(due to probe shift or different levels of muscle activation and
shifting from one repetition to the next one). In an initial round of
experiments on the same data set performed using random shuf-
fling in cross-validation, error values similar to those obtained in
Sierra González and Castellini (2013) have appeared, confirming
the above claim.

Surface electromyography and pressure sensing, on the other
hand, perform better. In the same hard setting, both sEMG and
pressure sensing achieve errors in the range 10–20% at high-force
level, in line with existing literature (for example, Castellini and
Ravindra, 2014; Gijsberts et al., 2014). Though the accuracy, in
terms of nRMSE, deteriorates at low-force level, it maps onto

a force error of just 1.2 N. A direct comparison between these
two HMIs, performed using Student’s t -test, reveals very few
significant differences in performance.

4.2. STABILITY OVER TIME
It is well-known (Merletti et al., 2011a) that the sEMG signal suf-
fers from non-trivial substantial changes over time during stress
conditions; this is due to electrode displacement, muscular fatigue,
and the formation of sweat at the interface between the elec-
trodes and the skin. An HMI based upon pressure sensing, on
the other hand, should not suffer from this problem, as the fore-
arm deformations induced by the underlying muscular activity
should still reflect the actual activations. Our stability analysis
confirms this claim, showing that (consider now Figures 5 and
6) the prediction error achieved by sEMG rapidly degrades over
time in both settings, going from 7–11 to 8–14% in the high-
forces case and from 7–15 to 8–20% in the low-forces one. This is
an ominous problem, already highlighted and studied in previous
work (Gijsberts et al., 2014); the solution that we proposed and
positively tested in that paper was that of enforcing an incremen-
tal learning system, so that whenever required, prediction errors
could be amended by inserting new knowledge in the existing
models. (This is as well the main motivation for using, in this
very work, Ridge Regression with and without Random Fourier
Features.)

As opposed to this degradation suffered by sEMG, the pre-
diction obtained by pressure sensing remains stable at 4–10 and
6–14%. This result is in line with former literature (Yungher et al.,
2011) and provides an indication that pressure sensing might be a
viable companion to (or even a substitute of) sEMG, when stability
over time is an issue. Notice that high-resolution tactile sensing, an
approach very closely related to ours, is already being investigated
as a means of intent detection for the disabled (Radmand et al.,
2014).

4.3. PHYSIOLOGICAL CONSIDERATIONS
Due to the mainly applicative focus of this work, the analysis
presented in this paper neglects almost all physiological aspects
of machine-learning-based intent detection/prosthetic control; in
particular, no physical data have been recorded for the subjects
(e.g., the forearm girdle and length, the muscle fitness, etc.), and
the analysis has been performed by finding the optimal machine-
learning hyperparamters either by referring to previous literature
or by extensive (grid-) search (see Subsection 3 again). In other
words, each model found (and the associated prediction accuracy)
is the optimal one for the related subject and dataset, irrespective
of her/his physical condition and anatomical features. This is nowa-
days a standard procedure in rehabilitation robotics, since the aim
is that of providing the best precision and effectiveness to any
human subject who needs to use the system. With this aim in
mind, we have adopted the “realistic setting” detailed in Sierra
González and Castellini (2013), in which the machines are trained
on minimal and maximal stimulus values only, since amputees
cannot produce force ground truth nor precisely follow graded
stimuli. It is, however, worth to stress once again that the perfor-
mance testing has been done on the full range of forces, including the
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intermediate ones. This means that the prediction performance is
the one, which would be obtained on average, on the full range of
required forces.

Notice, moreover, that disabled subjects usually have abnormal
physical/psychophysical parameters with respect to the healthy
population; for example, Parkinson patients present a higher
amount of non-voluntary muscle activation than control sub-
jects (Torres et al., 2011). In the case of transradial amputees,
who are the focus population of this research, the stump can
hardly be related to the intact human forearm, especially when
the amputation is proximal (Watson et al., 2010), a neuroma is
formed and, after the operation, muscles attach to the stump
ending, the neuroma itself or the bone stump. This abnormal
reorganization almost prevents the detection of standard muscle
activity patterns in such patients; nevertheless, in most studies
in which amputees have tested systems such as the one that we
have presented here, it was clear that enough information was
still present to reach remarkable levels of control, sometimes to
the level of single fingers (Tenore et al., 2009). To ensure a reliable
prediction, machine-learning methods require repeatable and dis-
tinct patterns corresponding to the desired activations, potentially
irrespective of their physiological meaning.

4.4. WEARABILITY AND COST
A few qualitative considerations on the wearability and costs of
the three examined HMIs follow. Ultrasound imaging is, as yet,
not wearable. To the best of our knowledge, neither B-mode ultra-
sound interface has so far been realized that can be embedded into
a prosthetic socket nor any array of ultrasound transducers has
been built, that can be embedded in a flexible structure (e.g., a
Lycra sock or glove) to be worn on the skin. The only attempt we
are aware of so far is represented by Guo et al. (2013), where one
single transducer was affixed to a subject’s forearm, this way realiz-
ing a very preliminary form of wearable A-mode ultrasonography.
It must be noted, however, that a really fully wearable US system
calls for a quite radical advancement in the technology, since the
electronics required to form the beam of ultrasound waves is much
more complex than that required for gathering a set of voltages.
In addition to this, the long-term effects of ultrasound waves on
the human tissues are still unknown, which would require a clin-
ical trial (Castellini, 2014). As opposed to this, the wearability of
the sEMG and pressure sensing devices has already been shown in
a number of works: sEMG is in use in the clinics, the electrodes
being embedded in the plastic cast, which support the hand pros-
thesis; the pressure sensing bracelet that we used here weighs about
65 g and requires no preparation at all (Castellini and Ravindra,
2014).

As far the costs are concerned: cheap as it has become in
recent times with respect to the past years (a hand-held ultra-
sound machine can, at the time of writing, be purchased for about
8.000 USD), this kind of hardware remains prohibitively expen-
sive to be shipped along with a hand prosthesis, constituting a
relevant fraction of the price of the hand itself (hovering around
25.000 EUR). Each sEMG electrode of the kind that we used here
is in the range of 150–300 EUR a piece, which makes our array
significantly cheaper than an ultrasound device; it must be noted
that, probably, even cheaper arrays of sEMG electrodes can be

Table 1 | Qualitative summary of the characteristics of each HMI,

denoted as bad/poor/average/good/excellent.

Error Stability Wearability Cost

High

forces

Low

forces

High

forces

Low

forces

sEMG Good Good Poor Poor Excellent Poor

Pressure Good Good Good Good Excellent Excellent

Ultrasound Bad Bad – – Bad Bad

purchased, but in that case, a further signal processing phase (rec-
tification, filtering) must take place before the signal is available
to the machine-learning method, raising the cost of the whole
approach. The pressure sensing bracelet, in turn, cost an estimated
50 EUR as it employs force-sensing resistors, which can be bought
for <5 EUR apiece (Castellini and Ravindra, 2014).

4.5. PERSPECTIVES
To summarize, Table 1 shows a qualitative comparison of the
three HMIs (surface electromyography, pressure sensing, and
ultrasound imaging) considered from the four points of view
that we described above: prediction accuracy, stability over time,
wearability, and cost.

From this comparison, pressure sensing is favored, as it provides
the best accuracy (comparable to that of surface electromyogra-
phy), but it also keeps a remarkably stable prediction over time (as
opposed to sEMG). It is also cheaper than sEMG, while maintain-
ing full wearability. This does not mean, of course, that pressure
sensing is a definitive replacement for sEMG and/or ultrasound.
We speculate that this novel HMI will suffer from a number of
disturbances once it is used in a real-life application; in particular,
its signal will change as the patient swings the forearm (due to
the acceleration of the forearm against the sensors harness) and,
which is more worrisome, as (s)he lies the forearm on a surface.
These problems will need to be countered; one possibility is to fuse
this signal with that obtained from sEMG, which will be much less
influenced by such artifacts.

The weak performance of ultrasound imaging in this experi-
ment, together with its low scores as far as cost and wearability are
concerned, pose serious doubts on its use as a competitor HMI.
Nevertheless, as we had previously claimed (Sierra González and
Castellini, 2013), ultrasound images provide an extremely rich set
of information about the status of the forearm; in order to fully
exploit it, it could be useful to employ more advanced image pro-
cessing techniques. If such a technique can be found, ultrasound
imaging could still be employed as a virtual-reality HMI in a clinic,
in order to rehabilitate, e.g., amputees and stroke patients.

5. CONCLUSION
Inspired by the recent trend in the rehabilitation robotics commu-
nity, in this paper we have compared three HMIs for control of
multi-fingered prosthetic hands. Surface electromyography, pres-
sure sensing, and ultrasoundimaging were tested on ten intact
subjects engaged in a simple, repetitive application of single-
finger-force patterns; a state-of-the-art machine-learning method
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was then used to predict the forces using the signals gathered from
the HMIs. Our experimental results indicate that pressure sens-
ing represents a cheaper alternative to sEMG, enforcing prediction
accuracy comparable to sEMG, better stability in time, and the
same wearability as this more traditional HMI.
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