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Neurorobots enable researchers to study how behaviors are produced by neural

mechanisms in an uncertain, noisy, real-world environment. To investigate how the

somatosensory system processes noisy, real-world touch inputs, we introduce a

neurorobot called CARL-SJR, which has a full-body tactile sensory area. The design

of CARL-SJR is such that it encourages people to communicate with it through gentle

touch. CARL-SJR provides feedback to users by displaying bright colors on its surface.

In the present study, we show that CARL-SJR is capable of learning associations

between conditioned stimuli (CS; a color pattern on its surface) and unconditioned

stimuli (US; a preferred touch pattern) by applying a spiking neural network (SNN) with

neurobiologically inspired plasticity. Specifically, we modeled the primary somatosensory

cortex, prefrontal cortex, striatum, and the insular cortex, which is important for hedonic

touch, to process noisy data generated directly from CARL-SJR’s tactile sensory area. To

facilitate learning, we applied dopamine-modulated Spike Timing Dependent Plasticity

(STDP) to our simulated prefrontal cortex, striatum, and insular cortex. To cope with

noisy, varying inputs, the SNN was tuned to produce traveling waves of activity that

carried spatiotemporal information. Despite the noisy tactile sensors, spike trains, and

variations in subject hand swipes, the learning was quite robust. Further, insular cortex

activities in the incremental pathway of dopaminergic reward system allowed us to control

CARL-SJR’s preference for touch direction without heavily pre-processed inputs. The

emerged behaviors we found in this model match animal’s behaviors wherein they prefer

touch in particular areas and directions. Thus, the results in this paper could serve as an

explanation on the underlying neural mechanisms for developing tactile preferences and

hedonic touch.
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Introduction

Humans and other animals respond preferentially to different types of touches. For example
most cats prefer to be petted from head to tail rather than the other way around. Although,
tactile sensing is an active area of robotics research, which takes inspiration from biology and
neuroscience, most tactile robots have been developed to sense the borders and shapes of

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://dx.doi.org/10.3389/fnbot.2015.00006
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tingshuc@uci.edu
http://dx.doi.org/10.3389/fnbot.2015.00006
http://journal.frontiersin.org/article/10.3389/fnbot.2015.00006/abstract
http://loop.frontiersin.org/people/177247/overview
http://loop.frontiersin.org/people/473/overview


Chou et al. Tactile preference in simulated insula

objects (Pearson et al., 2011; Evans et al., 2012; Schroeder
and Hartmann, 2012) or for grasping and detecting surfaces
(Bologna et al., 2011, 2013; Spigler et al., 2012). The present
paper introduces a tactile neurorobot that has a surface designed
for petting. The robot has the ability to signal its preferences
through coloration of its surface and auditory signals. We will
use this neurorobot to explore neural mechanisms of learning in
uncertain, real-world environments.

In a set of mutual reinforcement learning experiments, we
demonstrate that a user can pair colors on the robot’s surface with
hand sweeps in preferred directions across the robot’s surface.
The spatiotemporal nature of tactile stimuli, as well as the noisy
sensors and environments, in which they operate, make the
perception of touch a complex problem. To address these issues,
we introduce a biologically spiking neural network, which learns
through a novel dopaminergic spike timing dependent plasticity
mechanism. Specifically, the robot has built-in tactile preferences
and a user must learn these preferences, as well as reward the
robot by touching the robot in its preferred ways. Auditory tones
were used to signal pleasure and disappointment. In this way,
the robot can learn the association between a color and a gentle
touch.

Because the neurorobot’s main sensory modality was touch,
we developed a neurobiologically plausible model of tactile
sensing. Mammals have two tactile pathways; one which is fast
and delivers fine touch resolution, and another which is slower
with coarser resolution that delivers hedonic or value-laden
touch information. It is this latter touch pathway that we will
explore in the present experiments. In animals, sophisticated
cutaneousmechanoreceptors in the skin are capable of perceiving
temperature, indentation, stretch, vibration, and movement
(Abraira and Ginty, 2013). Unlike primary visual cortex for visual
information, primary somatosensory cortex (S1) is not the only
first order cortical region processing tactile information from
thalamus (TH). Insular cortex (IC), which was thought to be
higher hierarchical cortical region receiving tactile information
from secondary somatosensory cortex (S2) (Felleman and
Van Essen, 1991), also processes tactile information ascending
directly from posterior ventromedial thalamus (VMpo) in
macaque (Sewards and Sewards, 2002) and human (Craig
et al., 1994). The parallel pathways to insular cortex in
mammals imply that a single piece of tactile information could
be heterogeneously processed in different regions and then
integrated in insular cortex. For instance, a gentle touch detected
by mechanoreceptors with C-fiber and Aβ-fiber triggers spike
trains going through TH→IC and TH→S1→S2→IC pathways,
respectively. The spike trains invoke pleasant sensation, which
is correlated with insular activity (Morrison et al., 2011a,b). The
pleasant sensation could be a state of emotional representation
in anterior insular cortex (AIC) as a result of integrating tactile
information along posterior insular (pIC), mid-insular (mIC)
and anterior insular (AIC) (Craig, 2002, 2009). In the present
study, we are interested in the neural mechanism for integrating
tactile information in this area because the unconscious element
of the pleasant sensation might link to the dopamine system
(Schultz, 2006) and therefore defines innate preferences or values
(Krichmar and Rohrbein, 2013).

To explore learning mechanisms for hedonic touch, we
constructed a spiking neural network (SNN) model of the
posterior insular cortex (pIC), somatosensory cortex, and the
areas necessary for value-based learning. The neural dynamics
in the model of pIC accounted for: (1) the robot’s tactile
preferences, (2) processing real-world tactile inputs withminimal
pre-processing, (3) demonstrating that wave propagation is a
viable means to generating precise spike timing in the face of
noise, and (4) learning associations between neutral stimuli and
hedonic touch.

Because hedonic touch requires a caresser and a caressee,
we developed a human robot interaction study that required
mutual reinforcement learning. To achieve these goals, we
built a robot, named CARL-SJR (Cognitive Anteater Robotics
Laboratory—Spike Judgment Robot), with a large tactile sensory
area and a surface capable of displaying bright colors. CARL-
SJR’s behavior was controlled by the dual-pathway model (Brown
et al., 1999; Tan and Bullock, 2008; Chorley and Seth, 2011),
whichminimizes prediction error signaled by dopamine (Schultz,
2006).

Materials and Methods

CARL-SJR Neurorobot
The sensory encoding and learning experiments were conducted
with a novel robot named CARL-SJR. CARL-SJR is autonomous,
mobile, self-contained, and capable of tactile sensing and
interaction (see Figure 1). To give the robot a sense of touch,
we incorporated an array of trackballs, which are typically found
in cellphones and other devices. The trackball array can signal
the direction and velocity of tactile stimuli. The robot’s unique
form factor encourages users to rub or pet its surface. The robot
has LEDs co-located at each trackball, which can display a wide
range of colors in response to touch. CARL-SJR has a large tactile
sensory area and the ability to display bright colors on its shell
(see Figure 1A). CARL-SJR’s shell has a 9-by-8 matrix of true
color LEDs. Any animated color pattern can be programmed to
display on its shell. The shell also has a 9-by-8matrix of trackballs,
which are used for sensing tactile input. The trackballs form a
coordinate system with the upper left trackball mapped to the
origin (0, 0), and the downward right trackball mapped to the
maximum coordinates (8, 6) (see Figure 1B). A trackball can
detect a touch event in four directions (i.e., up, down, left, and
right). Assuming a trackball rolls in the left direction, a sequence
of touch events will be generated as shown by the timeline in
Figure 1C. In this example, the majority of touch events are
in the left direction accompanied by noise in other directions.
The current version of CARL-SJR mounted the tactile shell on
an iRobot Create platform. A computer, which communicated
with CARL-SJR over Bluetooth, executed the neural model,
collected trackball data, controlled the LEDs on the shell, and
controlled the motors and speakers on the iRobot Create. More
details on the robot hardware can be found at Bucci et al.
(2014).

CARL-SJR displayed color patterns as output, and took hand
movements as input. The display patterns could be a solid color,
mixed, or animated. Figure 1D shows an example of an animated
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FIGURE 1 | CARL-SJR is an interactive, tactile neurorobot. (A)

Photograph of CARL-SJR. The shell has a 9-by-8 matrix of trackballs each

collocated with red, green, and blue color LEDs. Any animated color pattern

is possible. (B) The 9-by-8 matrix of trackballs forms the coordinate system

of CARL-SJR. The most up left trackball is mapped to the origin (0, 0) while

the most down right trackball is mapped to the coordinates (8, 6). (C) A

trackball can detect a touch event in four directions. Assuming a trackball

rolls in the left direction, a sequence of touch events will be generated as

shown by the timeline. The majority of touch events will be left events with

events in other directions due to sensor noise. (D) An example of an

animated color pattern. The yellow pattern moves downward in 800 ms. (E)

An example of a typical touch pattern. The hand moves downward. Usually

4 ∼ 7 trackballs are touched simultaneously. (F) Schematic of the spiking

neural network architecture that controlled CARL-SJR’s behavior.

color pattern. The yellow pattern moves downward in 800ms.
Hand movements across the shell triggered touch events in the
matrix of trackballs. Figure 1E shows a typical touch pattern.
The hand moves downward. Usually 4∼ 7 trackballs are touched
simultaneously.

Spiking Neural Network Model
To support the present mutual reinforcement learning
experiments, we built a spiking neural network (SNN) model
using the large scale SNN simulator CARLsim to recognize tactile
sensory input, and to control CARL-SJR’s behavior (Nageswaran
et al., 2009; Richert et al., 2011; Carlson et al., 2014). CARLsim
was written in C/C++/CUDA and designed to leverage the
parallel computing power of GPUs. The present SNN model had
13,000 neurons and 200,000 synapses and could run four times
faster than real time. However, the model was slowed down to
match the real time robotic application.

The SNN was designed to be biologically plausible and
simulated somatosensory pathways, as well as neurally inspired
learning. To support learning, we implemented a variation
of the dual-pathway model (Brown et al., 1999; Tan and
Bullock, 2008; Chorley and Seth, 2011), which minimizes
prediction error signaled by dopamine (Schultz, 2006). In the
present experiments, the Conditioned Stimulus (CS) was a color
pattern displayed on CARL-SJR’s surface, and the Unconditioned
Stimulus (US) was a touch pattern initiated by the user sweeping
his or her hand across CARL-SJR’s surface. The decremental
(dopamine) pathway for the CS (see PFC→STR→DA in
Figure 1F) decreased DA neurons’ activity through inhibitory
projections. In contrast, the incremental (dopamine) pathway for

the US (see TH→pIC→DA in Figure 1F) increased spikes of
dopaminergic neurons. The complementary pathways converge
on a group of DA neurons and control the DA response.
Phasic neural activity in the incremental pathway for US
might change the balance of excitation and inhibition, thus
triggering a DA burst, which in turn signals striatum (STR)
and PFC→STR synapses through dopaminergic projections. The
decremental pathway is able to learn the timing of US and
then increases inhibitory force on DA neurons for restoring
the balance. The neural activities in prefrontal cortex (PFC)
and striatum are crucial for learning the timing of US. Chorley
and Seth’s model incorporated pre-generated polychronous
groups (Izhikevich, 2006) for precisely timed spikes in PFC.
However, polychronous groups are a theoretical prediction
and, to the best of our knowledge, have not been shown
empirically. Moreover, it would be difficult to show repeatability
of this precise timing in a computational model having noisy
and uncertain inputs. Rather than relying on precisely timed
polychrony or synfire chains, we used wavelike neural activity
for propagating information through the simulated brain regions.
These waves of neural activity have empirical support and do
not require precisely timed spike sequences (Rubino et al.,
2006; Benucci et al., 2007; Ferezou et al., 2007; Han et al.,
2008; Wu et al., 2008; Lubenov and Siapas, 2009; Sato et al.,
2012).

Spiking Neuron Model
CARLsim incorporated a phenomenological model of a spiking
neuron proposed by Izhikevich (2003). The dynamics of each
neuron is governed by the following equations:
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v̇ = 0.04v2 + 5v+ 140− u+ I (1)

u̇ = a
(

bv− u
)

(2)

The variable v is the membrane potential of a neuron and the
variable u is an abstract membrane recovery current. The variable
I is the input current (i.e., the current flow into a neuron). A
neuron emits a spike if its membrane potential is higher than 30
mv and then resets according to the following equation:

if v ≥ 30, then

{

v = c
u = u+ d

(3)

Both excitatory regular spiking (RS) neurons and inhibitory fast
spiking (FS) neurons were used in the model. For RS neurons, we
set a = 0.02, b = 0.2, c = −65.0, and d = 8.0. For FS neurons,
we set a = 0.1, b = 0.2, c = −65.0, and d = 2.0. For more
biologically realistic dynamics, a conductance synapse model was
used to calculate the input current for each neuron (Izhikevich
and Edelman, 2008). The equation is:

I = gAMPA (0− v) + gNMDA

[

−80−v
60

]2

1+
[

−80−v
60

]2
(0− v)

+ gGABAA (−70− v) + gGABAB (−90− v) (4)

where v is again the membrane potential and g is the total
conductance for ion channels created by different receptors
(i.e., AMPA, NMDA, GABAA, GABAB). The conductance g is
increased by the amount of synaptic weight w upon the arrival
of a spike and decays along time as described by the equations
below:

gi, k =

N
∑

j

wjkδ(t − tpre, j), i ∈ {AMPA, NMDA, GABAA, GABAB}

(5)

ġi, k = −
gi, k

τi
i ∈ {AMPA, NMDA, GABAA, GABAB} (6)

where N is the number of pre-synaptic neurons and wjk is the
weight of the synapse connecting pre-synaptic neuron j and post-
synaptic neuron k. δ is the Dirac delta function. t is the current
time (i.e., current simulation time step when we approximate the
continuous function in discrete time steps) and tpre, j is the arrival
time of the last spike from neuron j. The decay constant τi was set
to 5, 100, 6, and 150ms for different receptors AMPA, NMDA,
GABAA, and GABAB, respectively.

STDP, DA-STDP and DA-PSF
Spike timing dependent plasticity (STDP) (Caporale and Dan,
2008; Markram et al., 2011) was applied to excitatory and
inhibitory synapses in the computational model. In our model,
excitatory STDP and inhibitory STDP were used to develop and
stabilize wavelike neural activity in the PFC area (see Section
Wave Propagation in PFC). The synaptic weights were governed
by the following equations:

ẇexc = A+e
tpre−tpost

τ+ δ(t − tpost)− A−e
tpost−tpre

τ− δ(t − tpre) (7)

ẇinh = B+H+
(∣

∣tpost − tpre
∣

∣

)

δ
(

t − tpre
)

+ B+H+
(∣

∣tpost − tpre
∣

∣

)

δ
(

t − tpost
)

− B−H−
(
∣

∣tpost − tpre
∣

∣

)

δ
(

t − tpre
)

− B−H−
(
∣

∣tpost − tpre
∣

∣

)

δ
(

t − tpost
)

(8)

H+ (x) =

{

1, if 0 < x ≤ λ

0, otherwise
, H− (x) =

{

1, if λ < x ≤ γ

0, otherwise

(9)

The variable wexc is an excitatory synaptic weight. tpre is the
arrival time of last pre-synaptic spikes while tpost is the time
of post-synaptic spikes. δ is again the Dirac delta function. We
set the E-STDP parameters A+/A− and τ+/τ− to 0.1/0.07 and
20/40ms respectively. The variable winh is an inhibitory synaptic
weight. The I-STDP were modeled as a piecewise linear Mexican
hat function as was described in Srinivasa and Jiang (2013). The
value of |tpre-tpost|determines LTP or LTD. λ and γ define the
ranges of inhibitory LTP and LTD.We set the I-STDP parameters
B+/B− and λ/γ to 0.1/0.06 and 4/20ms.

Dopamine modulated spike timing dependent plasticity
(DA-STDP) served as the underlying neural mechanism for
reinforcement learning and solving the distal reward problem
(Izhikevich, 2007). Both the incremental and decremental
pathways for CS receive dopamine signals (see Figure 1F) and
their synapses are subject to DA-STDP. In this form, the E-STDP
function does not directly change synaptic weights, but instead
modulates weights through an eligibility trace. The change of
eligibility trace c, dopamine value d, and excitatory synaptic
weight wexc are described by the following equations:

ċ = −c/τc + A+e
tpre−tpost

τ+ δ(t − tpost)

− A−e
tpost−tpre

τ− δ(t − tpre) (10)

ḋ = −d/τd + dasynδ(t − tpre) (11)

ẇexc = cd (12)

The excitatory synaptic weight wexc is scaled by variable d, which
is the dopamine concentration of the target neural group (i.e.,
the post neural group projected by dopaminergic synapses). The
dopamine value d is increased by dasyn, which is 0.04, for each
spike reaching the target neural group. The value of d ranges from
the baseline value 1.0µM to a peak value 20.0µM. Please note,
both d and c decay over time. The symbol δ represents the Dirac
delta function and is one if there is an action potential at tpre and
zero otherwise. The time constant τc and τd are 1000 and 50ms
as shown in Equations (10) and (11), respectively.

Dopamine modulated post-synaptic facilitation (DA-PSF) is
the phenomenon where excitability of a post-synaptic neural
group is modulated by dopamine (Nicola et al., 2000; Williams
and Castner, 2006). A large portion of medium spiny neurons
in striatum has D1 receptors to allow extra input current. We
modeled this phenomenon as the following equation:

gefc, i = gi
(

0.9+ 0.1d
)

, i ∈ {AMPA, NMDA} (13)
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where d is the dopamine value and gefc is the effective
conductance used for calculating input current by Equation (4).
Note that the minimum gain 1.0 is due to the baseline dopamine
value of 1.0µM.

Network Architecture
The neural architecture for the present study, which is based on
the dual-pathway model (Brown et al., 1999; Tan and Bullock,
2008; Chorley and Seth, 2011), is depicted in Figure 2A. Color
information, from CARL-SJR’s shell, which represents the CS,
is fed into both the decremental and incremental pathways.
The incremental pathway also signals tactile information, which
represents the US. It has been suggested that the incremental
and decremental pathways balance each other out so that after
learning the dopamine signal is suppressed when a reward is
predicted by the CS and arrives at the expected time with a US.

The decremental pathway for the CS goes from the
ActionGenerator (AG), to the prefrontal cortex (PFC), to the
striatum (STR), and then to a pool of dopaminergic neurons
(DA). All connections in the decremental pathway are excitatory,
except for the STR→DA connections, which are inhibitory. The
cortical area AG is used to generate spike trains that encode
color responses. AG has 64 excitatory neurons for four CS input
channels (i.e., red, green, blue, and yellow). Each neuron in

a channel, which has 16 neurons totally, emits a spike if the
corresponding CS input is presented. Figure 2B illustrates more
detailed connections of a channel from AG to PFC to STR.
A pre-synaptic neuron in AG is topographically connected to
a post-synaptic neuron in PFC based on the distance between
neuron locations (see x_dist and y_dist in Figure 2B). The
smaller green circle in Figure 2C defines the Excitatory Forward
Projecting Radius (EFPR), which is the standard deviation of the
Gaussian projection in spatial domain. Specifically, the distance
between two neurons determines the connection probability
(i.e., Gaussian distribution) and conductance delay (i.e., axonal
delay). A channel in PFC has 2048 excitatory neurons and 512
inhibitory neurons. They are connected laterally according to
Excitatory/Inhibitory Lateral Projecting Radius (ELPR/ILPR).
The excitatory/inhibitory radius and synaptic weights were tuned
to exhibit the behavior of traveling waves (Chen et al., 2013). If
a CS input is presented, AG transmits spikes to the left side of
the corresponding channel in PFC. The wide rectangular shape
allows wavelike neural activity to propagate along the long side
with precise timing. The idea behind the wave propagation in
PFC is that the position of a neuron encodes the time relative to
the release of a CS inputs (see SectionWave Propagation in PFC).
PFC and STR are topologically connected according to EFPR as
well. PFC→STR synaptic weights were subject to DA-STDP and

FIGURE 2 | Detailed Spiking Neural Network (SNN) architecture. The

SNN network model includes incremental (dopamine) pathway and

decremental (dopamine) pathway. (A) An overview of network architecture.

The model consists of an Action Generator (AG) group, a sensory experience

(EXP) group, prefrontal cortex (PFC), striatum (STR), an intermediate area

(INT), thalamus (TH), thalamus/somatosensory area (TH:S1:S2), posterior

insular cortex (pIC), mid-insular cortex (mIC), and a group of dopaminergic

neurons (DA). (B) Schematic of the projection patterns in the incremental

pathway from AG to PFC to STR. (C) Schematic of the projection patterns in

the decremental pathway from TH:S1:S2 to pIC.
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sensitive to DA signals. The plastic PFC→STR synapses were
able to learn (or predict) the timing of following US (see Section
PFC-to-STR Synapses Learn to Predict the Timing of US). STR
and DA are randomly connected and STR→DA synaptic weights
were tuned to match the range of excitatory force from the
incremental pathways.

The incremental pathway for the CS goes from AG to
cortical area Expression (EXP), to Intermediate area (INT), and
then to DA with excitatory projections. AG→EXP→INT→DA
are randomly connected. EXP→INT connections are plastic
synapses subject to DA-STDP and representations for CS inputs
(i.e., red, green, blue, and yellow) will form in INT if a color
pattern is reinforced (see Section CARL-SJR’s Behaviors during
Learning Multiple CS-US Pairs). INT→DA synaptic weights
were tuned to match the range of inhibitory force from STR.
INT was also linked to conditioned response (CR) in which
CARL-SJR rotates its body if INT has more than 50 spikes within
50ms.

For the incremental pathway, we implemented both the fast
Aβ and the slower C-fiber tactile pathways. The incremental
pathway for US starts with tactile inputs from touch events
and projects from the parallel thalamus/thalamus:somatosensory
cortex (TH/TH:S1:S2) paths, to the posterior insular cortex (pIC),
to the medial insular cortex (mIC) and then to DA. The TH
and TH:S1:S2 have four US input channels (i.e., up, down, left,
and right). A touch event in Figure 1C is one-to-one mapped
to a spike in the corresponding channel in TH:S1:S2 where 9-
by-8 neurons for each channel match the layout of trackballs.
The spikes going through the TH:S1:S2→pIC pathway represent
tactile information carried by the fast Aβ-fiber. To model fast
spike transmission and acuteness in spatial resolution of this
pathway, we topographically connected TH:S1:S2 and pIC as
shown in Figure 2C without any delay. In contrast, the spikes
going through TH→pIC pathway represent tactile information
carried by the slower C-fiber pathway, where a touch event is
mapped to a period of tonic spikes. We delayed spike generation
in TH by 700ms to simulate the slower conduction speed of
the C-fiber pathway, and fully connected TH to pIC to simulate
poor spatial resolution. Since we hypothesize that a piece of
tactile information is heterogeneously processed through the
parallel paths and then integrated in pIC, the synaptic weights of
TH:S1:S2→pIC and TH→pIC were tuned to fulfill the condition
that neither TH:S1:S2→pIC nor TH→pIC can dominate the
neural activity in pIC. Specifically, the neural activity in pIC was
strong enough to drive neural response in mIC and then DA only
when there was neural activity in both TH:S1:S2 and TH. As a
result, the excitatory force on DA neurons reflects the integration
of the neural activity in pIC. To suppress neural activity in pIC
after mIC is signaled by pIC, we added feedback connections
from mIC to inhibitory neurons in pIC to simulate the effect
of shunting inhibition (Silver, 2010). The mIC is linked to the
unconditioned response (UR), in which CARL-SJR sings a high
tone if mIC has more than 30 spikes within 50ms.

These complementary excitatory and inhibitory pathways
converge on DA neurons. The interaction among STR, INT, and
pIC activities controls DA response. The DA responded with a
burst (see Section Control CARL-SJR’s Tactile Preference through

Insular Cortex Model) when the excitatory force was larger, a
DA dip (see Section Extinguishing Behaviors after Learning)
when the inhibitory force was larger, or spontaneous activity
when excitatory and inhibitory forces were balanced. DA is
connected to STR and INT through dopaminergic projections.
The dopamine values of STR and INT modulate PFC→STR and
EXP→INT synapses by DA-STDP and DA-PSF as indicated in
Figure 2A.

The synaptic weights, including initial, maximum, and
minimum value, were tuned to match the number of pre-
synaptic neurons and to prevent run-away neural dynamics.
The conductance delays were tuned to maintain stable timing
behaviors. The spontaneous firing rates in the cortical regions,
ranging from 0.1 to 0.5Hz (Griffith and Horn, 1966; Koch and
Fuster, 1989), were tuned to support baseline neural activities,
which are essential for STDP or DA-STDP. The complete
network parameters are described in the Supplementary
Materials.

Tactile Inputs
We analyzed the properties of tactile inputs (see Figure 3) to gain
insight into tactile processing. Figure 3A shows raster plots and
heat maps of three tactile inputs: (1) a downward hand sweep on
CARL-SJR’s left side, (2) a downward hand sweep in the middle,
and (3) a rightward hand sweep in themiddle. Since a touch event
(see Figure 1C) was a one-to-one mapping to spikes in TH:S1:S2
area, the raster plots shows touch events as well. We can see the
timing of spikes is irregular and noisy. As for heat maps, they
showwhich trackballs were touched, as well as a somatotopicmap
in TH:S1:S2 area. Because of the curvature of CARL-SJR’s surface,
the trackballs were not aligned along the x-axis butmostly aligned
along the y-axis (see Figure 1B). Thus, it was harder for users
to touch complete rows of trackballs rather than columns of
trackball.

Figure 3B shows distributions for touch duration, touch
speed, number of touch events, and noise level over 1400 touch
movements. The data of upward and downward movements
were grouped in the first row while leftward and rightward
movements were grouped in the second row because CARL-SJR’s
asymmetric trackball distribution affected the user’s tactile inputs.
The (mean, std) of touch durations were (935, 142) and (1,071,
128) ms for vertical and horizontal movement, respectively. The
(mean, std) speeds were (7.3, 1.08) and (6.73, 0.93) inch/second
for vertical and horizontal movement, respectively. The (mean,
std) number of events were (207, 44) and (305, 69) for vertical
and horizontal movement, respectively. The (mean, std) noise
level were (8.31, 3.97%) and (19.72, 5.53%) for vertical and
horizontal movement, respectively, where noise level was defined
by the total number of direction events in an unexpected
direction divided by the number of direction events in an
expected direction. The noise level of horizontal movements
is significantly higher due to CARL-SJR’s curvature along
y-axis.

Experimental Paradigm
The experiment paradigm is shown in Figure 4. A trial lasted 6
s. CARL-SJR initiated a trial by displaying a color on its surface
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FIGURE 3 | Tactile stimulus analysis. (A) Representative spike raster plots

and heatmaps of three tactile inputs to the TH:S1:S2 area. On the left are

raster plots where the x-axis represents times in milliseconds, and the y-axis

represents the neuron number. The top row shows an upward hand sweep

on the left side of CARL-SJR’s shell, the middle row shows an upward hand

sweep in the middle of CARL-SJR’s shell, and bottom row shows a rightward

hand sweep in the middle of CARL-SJR’s shell. The raster plots illustrate how

sensory input leads to irregular and noisy spike activity in TH:S1:S2. On the

right are heatmaps that show the mean neural activity corresponding to the

raster plots. The x and y position in the heat map reflects the somatotopic

organization of the TH:S1:S2 neurons. (B) The distribution of tactile inputs in

contact duration, moving speed, number of events, and noise level (i.e., the

amount of unexpected directional moves divided by the expected directional

moves). The first row shows analysis based on 800 upward and downward

moves while the second row shows analysis based on 600 leftward and

rightward moves. The distributions of vertical and horizontal tactile input are

quite different because locations of trackballs are asymmetric in vertical and

horizontal direction.

(see Sections CARL-SJR’s Behaviors during Learning Multiple
CS-US Pairs and Extinguishing Behaviors after Learning for
experimental details). A CS signal corresponding to the displayed
color was input to the AG at 1.1 s after trial beginning. Effectively,
neural activities were triggered in EXP (i.e., incremental pathway

for CS) and PFC (i.e., decremental pathway) at 1.1 and 1.3 s
respectively. It was the user’s choice to reward CARL-SJR or
not. If the user liked the displayed color, he/she could touch
CARL-SJR within 2 s US window and the US signal (i.e., tactile
input) was delivered to TH and TH:S1:S2, which in turn triggered
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FIGURE 4 | The timing diagram illustrates the experimental setup. Each

trial lasts 6 s, where a CS signal is followed by a 2-s US window. It is a user’s

choice to provide a US signal (i.e., tactile input) or not to CARL-SJR. Tactile

input outside the US window is unrewarded. After the US window has passed,

there is a 2.9-s period before the next trial.

a dopaminergic reward response (see Figure 2A). Tactile input
outside the US window did not activate this reward pathway.
After the US window, there was a 2.9 s stabilizing period
before the next trial. The experiment continued until learning
achieved a desired level (e.g., the probability of CR is higher
than UR).

Results

Control CARL-SJR’s Tactile Preference through
Insular Cortex Model
To characterize the network dynamics in response to sensory
input, we ran a set of simulation experiments to explore the SNN’s
ability to transfer tactile information across different simulated
brain regions. The incremental pathway for US was implemented
by the model of pIC, which exhibited complicated neural
dynamics in response to hand movements. We set TH→pIC
synaptic weights to 0.04 for each channel and ran simulations
with 400 upward movements as inputs to TH:S1:S2 and TH.
Figure 5A illustrates representative neural activities in TH:S1:S2,
TH, pIC, and DA. The raster plots in the first row show the
spikes directly triggered by touch events in the upward direction.
Green boxes indicate the tonic spikes generated by TH in the
upward direction, which arrive at pIC 700ms later because the
conductance speed of C-fibers is slower than Aβ-fibers. Before
the arrival of tonic spikes, pIC is at the state with low excitability.
The spikes from TH:S1:S2 trigger local wavelike neural activity
in pIC (see spikes earlier than green dashed lines in the second
row). After the arrival of tonic spikes from TH, pIC transitions to
a higher excitability state that can trigger global wavelike neural
activities in the pIC (see spikes later than green dashed lines).
Multiple waves may interact with others and may trigger a DA
burst depending on the strength of the instant excitatory force
(see histograms in the third row and first three columns for
comparison). Note that, TH→pIC synaptic weights are crucial to
the excitability of pIC, sustainability of global waves in pIC, and
the probability of DA bursts.

The response of pIC was complex and influenced
dopaminergic activity. Based on the DA response, we classified
neural activities in pIC into five groups: (A1) strong DA burst,

(A2) weak DA burst, (A3) no DA burst due to insufficient instant
activity in pIC, (A4) no DA burst due to no global activity in
pIC. (A5) multiple DA bursts. A gentle hand movement (with
moderate speed) is most likely to trigger a DA burst. If the speed
of a hand movement is too fast (e.g., the touch duration is less
than 700ms), the neural activity in TH:S1:S2 disappears before
tonic spikes from TH tune pIC to excitable state and therefore
pIC is unlikely to trigger a DA burst. On the other hand, if the
speed is too slow, the excitatory force of TH:S1:S2 is too weak to
trigger global waves in pIC even though pIC is tuned to excitable
state by tonic spikes from TH.

We adjusted TH→pIC synaptic weights in different channels
(i.e., up, down, left, and right) to control the probability of a DA
burst linked to CARL-SJR’s tactile preferences. To evaluate the
probability of a DA burst against different TH→pIC synaptic
weights, we ran simulations with 400 upward, 400 downward,
300 leftward, and 300 rightward movements as inputs to TH and
TH:S1:S2. For each direction of inputs, we recorded the total
number of single DA bursts and derived the burst probability (see
Figure 5B). Tomake CARL-SJR prefer rightwardmovements, for
example, we set the TH→pIC synaptic weights in right channel
to 0.04, and the other channels to 0.03. In this case, the probability
of a DA burst was greater than 70% for rightward movements
but less than 20% for other directions. As a result, CARL-SJR
learned faster if the user gives rewards by rightward movements.
Figure 5B also shows how the asymmetric trackball distribution
affects the number of touch events per hand movement. Note
that there are typically more touch events for left and right
movements than up and down movements (see the histograms
at third column in Figure 3B). This can have an effect on CARL-
SJR’s tactile preferences. For example, if we set TH→pIC synaptic
weights to 0.04 for each channel, horizontal movements yield
slightly higher probability of generating a DA burst than vertical
movements (see the black dash line in Figure 5B). Under the
condition that TH→pIC synaptic weights for each channel are
identical, CARL-SJR will prefer horizontal movements. In the
experiments described below, the TH→pIC synaptic weights
were set to 0.04 for the preferred direction, and 0.03 for the non-
preferred direction. Taken together, these simulations showed
that the simulated insular cortex could control dopamine bursts,
which could lead to the shaping of tactile preferences.

Wave Propagation in PFC
A critical requirement for learning is assigning the credit of a
reward to the appropriate stimulus that occurred in the past.
Wave propagation has been suggested to be important for
computing this timing in classical conditioning tasks (Palmer and
Gong, 2014). The idea is that wavelike neural activity in the cortex
might encode timing information related to events.

To investigate if wave propagation was a viable mechanism
for the spatiotemporal learning in the present experiments, we
incorporated this idea into our simulated PFC and demonstrated
traveling waves in a series of simulations (see Figure 6). We
modeled PFC as a long rectangular shape and tuned the
conductance delay of lateral projections for excitatory neurons
to be 15–20ms and inhibitory neurons to be 1ms. During a
development period, we enabled E/I-STDP and delivered spikes
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FIGURE 5 | Range of dopamine (DA) responses to varying input

patterns (A) Five representative examples for DA response to

tactile inputs. (A1) strong DA burst. (A2) weak DA burst. (A3) no DA

burst due to insufficient instantaneous activity at pIC area. (A4) no DA

burst due to no integration of activity at TH and TH:S1:S2 area. (A5)

multiple DA bursts. The first row shows raster plots of TH:S1:S2 and TH

areas. The spikes of TH area are drawn as green shade regions. The

second and third rows show the magnitude of activity at pIC area, which

leads to different DA response. The fourth row shows DA response. (B)

TH→pIC synaptic weights affect DA response. (Left) The probability of a

single DA burst based on synaptic weights and the moving direction of

the tactile input. (Right) The probability of multiple DA bursts. Setting

TH→pIC synaptic weight to 0.04 yields more than 50% of single DA

burst while multiple DA burst is lower than 10%.

to themost left side of PFC every 4 s. After 2000 s of development,
the wave reliably propagated from the left side to the right side of
PFC in 2 s as shown by the raster plot in Figure 6A. The heat
maps further show the location of a wave at a given time period.
After starting the spike activity on the leftmost side of PFC, the
wave reached the rightmost side of PFC at 1900ms. The speed of
waves is quite stable because of the lateral conductance delay. As a
result, a neuron’s location along x-axis encodes time information
with high accuracy and reliability.

Noise might stop wave propagation as well as trigger
unexpected waves. To address this issue, we tested the robustness
of wave propagation under a noisy environment (see Figure 6B).
Since we knew when a wave should arrive the most right side of

PFC, we defined a fail case to be the absence of neural activity of
the most right neurons [i.e., (508, y) ∼ (511, y)] at the expected
time window (i.e., 1950∼ 2050ms).We also defined a ghost wave
case to be any occurrence of neural activity outside the expected
time window. After the development period, the PFC was tested
in 1000 trials where we delivered spikes to the most left neurons,
which were connected to AG (see Figure 2B), and then recorded
the number of fail cases and ghost wave cases. We derived the
fail rate (in percentage) and ghost wave rate against different
magnitudes of noise (inHz) and the height of PFC (in the number
of neurons). The fail rate was under 10% if the height of PFC
was 4 neurons, and was under 40% if the height of PFC was 8
neurons. However, the fail rate was around 80% when the height
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FIGURE 6 | Time course of PFC wave propagating activity. (A) Wave

propagation in PFC area. (Left) The raster plot shows the time duration of the

wave is around 2000ms. (Right) the wave travels along x-axis of the PFC

area and the locations of the wave at three time intervals, 0–100,

1000–1100, and 1800–1900ms are shown from top to bottom, respectively.

(B) The fail rate of a wave and the ghost wave rate based on noise (Hz) and

the height of PFC area (i.e., the number of PFC neurons along y-axis). The

noise level affects the probability of a wave reaching from one end of PFC to

another, and on generating a ghost wave. PFC area is more resistant to noise

if the height is smaller than 12 neurons.

of PFC was more than 12 neurons. The magnitude of noise also
affected ghost wave rate. The ghost wave rate reached 80% when
the height of PFC was 8 neurons and the noise was 0.015Hz.
When the height of PFC was more than 12 PFC neurons, the
ghost wave rates were greater than 100%, whichmeant there were
more than one ghost waves in a trial. Both fail rate and ghost
wave rate will affect learning efficiency of PFC→STR synapses
(see Section PFC-to-STR Synapses Learn to Predict the Timing
of US). Therefore, based on these analyses, we set the height of
PFC to 4 neurons and set the noise to 0.01Hz for stable wave
propagation.

PFC-to-STR Synapses Learn to Predict the
Timing of Us
With the wave propagation mechanism in place, we still required
a means to pair neutral stimuli (e.g., color) with innate value
(e.g., a preferred touch). Therefore, we implemented dopamine
modulated STDP and wave propagation in the network to
associate a CS with a US with precise timing. The main function

of the CS input coming from the PFC and STR in the decremental
pathway is to predict the timing and strength of the ensuing
US and to balance the excitatory and inhibitory forces on the
DA neurons. Figure 7 shows simulation results that explain the
underlying neural mechanisms. For each trial in the simulation,
CS activated the PFC at 0ms and triggered a propagating wave
of activity. A DA burst was activated at 1100ms to simulate
the effect of US. We ran the simulation for 400 trials. The
raster plots and histograms of STR activity for trial 1, trial
100, and trial 400 are shown on the left side of Figures 7A–C,
respectively. The PFC→STR weights were subject to DA-STDP.
The PFC→STR synaptic weights for trial 1, trial 100, and trial
400 are shown on the right side of Figures 7A–C, respectively.
In trial 1, a burst in DA increases dopamine concentration in
STR through dopaminergic projections around 1100ms. Because
the DA-PSF facilitated STR activity, STR neurons were further
activated by pre-synaptic PFC neurons around 1100ms. Since
the CS triggered a wave propagating in PFC, there was always
a small portion of PFC firing at any moment. Thus, the set of
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FIGURE 7 | PFC→STR connection learns the timing of

dopaminergic bursts. (A) Before learning, a DA burst will trigger

transient STR activity through dopamine-modulated post-synaptic

facilitation. The wave traveling at PFC area matches the STR activity

and PFC→STR synaptic weights are reinforced by DA-STDP. The

heatmaps on the right of the figure show the PFC→STR weights at

different points, where the color represents the summation of the

synaptic weights from a PFC neuron to a STR neuron. For instance,

the PFC neuron at (290, 2) has 0.5 as the summation of its

PFC→STR synaptic weights (B) During learning, PFC→STR synaptic

weights get stronger and the traveling wave at PFC area can actively

trigger spikes at STR area, leading to a weaker DA burst. (C) After

learning, PFC→STR synaptic weights reach a maximum strength and

the inhibitory force from STR area to DA area prevents a DA burst.

PFC neurons firing around 1100ms caused their post-synaptic
STR neurons to be potentiated. This neural mechanism led to a
phasic neural activity around 1120ms (due to axonal delay and
latency of conductance based synapses) as shown in Figure 7A.
The higher dopamine concentration not only facilitated firings of
STR neurons but also boosted the PFC→STR synaptic weights
through DA-STDP. This process was repeated trial by trial. Over
time, the set of PFC→STR synapses with the appropriate timing
were strengthened. Comparing the weight maps in Figure 7, a
band of strong weights appeared at the PFC neurons encoding
1100ms (those with x-coordinate from 280 to 300) in Figure 7B

and got stronger and earlier (i.e., shift toward the left) in
Figure 7C. To summarize, these strong synapses led to phasic
neural activity in STR (see STR raster plots and histograms),
which in turn suppressed the DA burst at the precise time
through the decremental pathway (see DA raster plots).

CARL-SJR’s Behaviors during Learning Multiple
CS-US Pairs
The previous sections showed through simulation that the SNN
could (1) encode tactile patterns, (2) encode timing through
propagating waves, and (3) learn associations between neutral
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and value-laden stimuli. In this section, we show how these
mechanisms can be used in real-world human robot interactive
learning experiments.

We conducted the conditioning experiments described in
Section Experimental Paradigm with different pairings of color
and touch. In the first experiment (see Figure 8), we set TH→pIC
synaptic weights to 0.04 and CARL-SJR’s display alternated
between blue, and yellow. The user rubbed CARL-SJR in the
downward direction whenever he/she saw the yellow pattern, and
in the rightward direction when he/she saw the blue pattern.
There were 160 trials for each color pattern, totally 320 trials.
We recorded the DA responses for US and CS every trial and
sampled the PFC→STR synaptic weights every 40 trials. The
colored lines in Figure 8A show the 75th percentile, median,
and 25th percentile of DA response to the CS over 20 trials
(totally 40 trials, 20 trials for each color pattern) while the gray
lines show DA response to US. The trends for CS and US
are clear; DA response shifted from US to CS for both color
patterns as has been observed in empirical studies (Ljungberg
et al., 1992; Schultz, 1998; Pan et al., 2005). Figure 8B shows
the average EXP→INT synaptic weights for each CS (i.e., red,
green, blue, and yellow) during conditioning. Since the user only
reinforced the blue and yellow patterns, the average synaptic
weights directly reflect the user’s preferential conditioning as
shown by the higher values of blue and yellow EXP→INT
weights. The PFC→STR weight maps of trial 40 and trial 320
are shown in Figure 8C. These weight maps, which were driven
by the user conditioning CARL-SJR, exhibit a strong group of
weights associated with the CS with several bands of weights
to a lesser degree. The width of a band indicates the imprecise
timing of the US and the strength of a band indicates the
probability of a US occurrence at the corresponding timing. The
DA response to horizontal movements (i.e., US) decreased faster
than vertical movements due to the stronger weights for the
blue pattern. The weight maps generated by real time tactile
inputs also demonstrated our approach can capture the timing
and strength of US over a wide range and in a noisy, real-world
environment. An interesting behavior is that CARL-SJR slightly
prefers touches in the horizontal, rightward direction. In Section
Control CARL-SJR’s Tactile Preference through Insular Cortex
Model, we showed that CARL-SJR by default prefer horizontal
movements if we set TH→pIC synaptic weights to 0.04 for
all channels. Because of this asymmetry, CARL-SJR shifted DA
response to blue pattern faster than yellow pattern (see the higher
blue median value in Figure 8A and the higher blue line in
Figure 8B) by the default preference. The result here is also
consistent with Section Control CARL-SJR’s Tactile Preference
through Insular Cortex Model.

In a second set of experiments, we focused on the robot’s
behavior in the form of conditioned and unconditioned
responses. For the conditioned response, which was based on
INT activity, CARL-SJR rotated its body. For the unconditioned
response, which was based on mIC activity, CARL-SJR emitted
a high tone. The US was a downward movement, and the CS
was the yellow pattern. We collected data for five runs and
each run contained 120 trials. Each data point in Figure 8D was
calculated as the probability of CR and UR every five trials over

five runs. The trends for CR and UR are clear and consistent
with the DA spikes triggered by CS and US (see Figure 8A).
CARL-SJR learned to exhibit the CR with high probability after
40 trials and also suppressed the UR after around 70 trials. Taken
together, these human-robot interaction experiments show that
the proposed mechanisms can support learning in a real-world,
noisy environment.

Extinguishing Behaviors after Learning
The ability to unlearn prior associations is critical for flexible
behavior. In conditioning paradigms, omitting the US after
learning can lead to extinction of the conditioned response.
After conditioning, we repeated the experiment described in
Section CARL-SJR’s Behaviors during Learning Multiple CS-US
Pairs without presenting the US in an additional 200 trials.
The DA response and CARL-SJR’s behavior were recorded as
well. Figure 9A shows a representative example for a dip of DA
response due to the absence of expected rewards (Ljungberg
et al., 1991). The raster plot of DA spikes shows the phasic
neural activity around 1100ms, which was triggered by CS
via the incremental pathway. At 1300ms, the CS arrived at
PFC and triggered wave propagation. Based on the weight
map developed during learning process, STR neurons exhibited
a phasic neural activity around 2000ms. Since no excitatory
force was present around 2000ms (due to absence of US),
the inhibitory force from STR suppressed DA neurons and
created a 400ms interval without DA spikes. In Figure 9B, we
show the distribution of dip durations in 200 trials. In these
experiments, if there was dip in DA activity longer than 400ms,
CARL-SJR emitted a low tone signaling the omission of an
expected reward. During this experiment we observed CARL-
SJR sang this unhappy low tone in 167 out of 200 trials, which
is 83.5%.

To emulate the in vivo recordings from Ljungberg’s
experiments (Ljungberg et al., 1991), we randomly selected
5 out of 100 DA neurons over 200 trials. This emulated recording
from a small sample of the available pool of dopaminergic
neurons. From these recordings, we composed a raster plot
and a histogram in Figure 9C. The dip duration is roughly
500ms (see light red bar in Figure 9C) and there is no DA
activity for around 100ms (see deep red bar in Figure 9C). These
dip durations closely matches those reported in Ljungberg’s
study.

The DA dips, shown in Figure 9, have been suggested to
promote extinction when the reward associated with the US is
absent. Therefore, we tested extinction behavior in a classical
conditioning paradigm (see Figure 10). After conditioning, we
repeated the experiment without presenting the US. We then
recorded the CR and UR for 5 runs and each run had 200 trials.
We calculated the probability of the CR every 5 trials over 5 runs.
As is indicative of extinction of a behavior, the probability of CR
decayed to zero after 50–60 trials (see blue line in Figure 10).
We also plotted the average EXP→INT synaptic weights for
the yellow pattern (see orange line in Figure 10). The weights
decayed and exhibited fluctuation around a steady level. The
decay was due to dips of dopamine (see Figure 9B) and noisy
spontaneous firing activities in EXP and INT.
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FIGURE 8 | CARL-SJR learned user preferences for color patterns.

(A) The colored lines show the 75th percentile, median, and 25th

percentile of DA response to the CS over 20 trials (totally 40 trials, 20

trials for each color pattern) while the gray lines show DA response to

US. (B) The average INT→EXP synaptic weights over 20 trials (totally

40 trials, 20 trials for each color during conditioning. The user only

reinforced the blue and yellow patterns. (C) The PFC→STR weight

maps of blue and yellow patterns over trial 40 and trial 320. The

interpretation for the heatmap is the same as Figure 7. (D) The

probability of CR and UR every five trials over five runs. The trends for

CR and UR are clear and consistent with the DA spikes triggered by

CS and US in (A).

Discussion

We introduced a tactile neurorobot, called CARL-SJR, which was
capable of sensing noisy, real-world tactile inputs in a highly
uncertain environment and taking tactile inputs with minimal
pre-processing to convert touch events into spiking activity (see
Section Control CARL-SJR’s Tactile Preference through Insular
Cortex Model). A detailed spiking neural network (SNN) model
of somatosensory cortex and the insular cortex, which is known
to be important for hedonic touch, drove CARL-SJR’s behavior.
Learning in the model was driven by a dual pathway model of
dopaminergic learning and the emergence of traveling waves of
neural activity that governed the release of dopamine and the
timing of CS and US (see Sections Wave Propagation in PFC
and PFC-to-STR Synapses Learn to Predict the Timing of US).
CARL-SJR demonstrated the ability to associate multiple CS’s
(i.e., color patterns displayed on its shell) with US’s (i.e., user
hand sweeps across its shell). For example, in Section CARL-SJR’s
Behaviors during LearningMultiple CS-US Pairs, we showed that
the model supported associations between blue-right and yellow-
down during a training session. Moreover, the model was able
to learn despite trial-by-trial variations in CS-US intervals due to
the uncertainties of user inputs.

The human-robot interaction studies with CARL-SJR exhibits
the paradigm of mutual reinforced learning. Specifically, the
robot can learn the user’s preferences through conditioning tasks
while the user can learn the robot’s tactile preference through the
robot’s responses. CARL-SJR’s style of human-robot interaction
may be applications in socially assistive robotics (Scassellati et al.,
2012) or socially affective robots (Breazeal, 2009). Compared to
other social robots, CARL-SJR is somewhat unique in that it
focuses on tactile rather than visual interaction.

CARL-SJR was designed to encourage interaction through
touch. Tactile sensing is an active area of robotics research that
takes inspiration from biology and neuroscience. For example,
inspired by rodents and othermammals with vibrissae, whiskered
robots have been developed to sense the borders and shape of
objects (N’Guyen et al., 2010; Pearson et al., 2011; Evans et al.,
2012; Schroeder and Hartmann, 2012). Fingers and hands have
been developed for humanoid robots to enable grasping and
detecting surfaces (Bologna et al., 2011, 2013; Spigler et al.,
2012; Li et al., 2013). Most of these robots are constructed from
custom-made materials and sensing circuits for touch (Sewards
and Sewards, 2002; Cannata et al., 2008; Maheshwari and Saraf,
2008; Dahiya et al., 2010). Creating an artificial tactile system is
difficult for many reasons. For example, the sensors must cover a
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FIGURE 9 | Network response after learning when the US is omitted.

(A) A representative example for a dip in DA response due to the absence of

expected rewards. The heatmap at the bottom shows the PFC→STR

weights, where the color represents the summation of the synaptic weights

from a PFC neuron to a STR neuron. (B) Distribution of dip durations in 200

trials. The threshold for triggering a low tone is set to 400ms. 83.5% trials

trigger a low tone. (C) The raster plot and histogram of 5 randomly selected

DA neurons over 200 trials when the US is omitted.

FIGURE 10 | Extinction behavior when the US is omitted. The blue line

shows the average CR probability every 5 trials over 5 runs during the

extinction trials. The probability of CR decayed to 0.0 after 50 trials, which is

consistent with animal studies. The orange line shows the average EXP→INT

synaptic weights for the reinforced color pattern. Note that the weights decay

to a baseline level during extinction.

large range and be compliant with the surfaces with which they
interact. Moreover, the spatiotemporal nature of tactile stimuli,
as well as the noisy sensors and environments in which they
operate, make the perception of touch a complex problem. To
provide a large surface that could handle a wide range of user

inputs, we utilized a matrix of trackballs, which are found in
many cellphones, across CARL-SJR’s curved shell. The size, shape,
and resolution was a good fit for the types of social interactions
for which CARL-SJR was designed (Bucci et al., 2014).

Driven by the dual-pathway model, the acquisition and
extinction behaviors of CARL-SJR are consistent with animal
behavioral studies (Rescorla, 1988). Further, the neural activities
in our model are consistent with in vivo neural recordings
as well. First, the robot has built-in tactile preferences. This
matches the animals’ behaviors wherein they prefer social touches
in particular areas and directions. The neural mechanism for
integrating tactile information in pIC area could serve as
an explanation to animals’ innate tactile preferences. Second,
assuming the user knows the tactile preferences in advance or
learns them, the user can try to reward the robot by touching
the robot in its preferred ways. In the present experiments,
the unconditioned response (UR) was mapped to mIC activity
resulting in a high tone signaled by the robot. The high tone was
used as feedback for the user to know that CARL-SJR enjoyed
this touch. Third, the robot can learn the association between a
color and a gentle touch. In the present paper, a color displaying
on the robot’s surface, which was spontaneously generated, was
considered the conditioned stimulus (CS), and a gentle touch
in an innate preferred direction (i.e., unexpected reward) served
as the unconditioned stimulus (US). After learning, the robot
associated the reinforced color, which was facilitated by DA,
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with the future reward, which is a preferred touch. Moreover,
the DA response shifted from US to CS, as has been observed
experimentally (Ljungberg et al., 1992; Schultz, 1998; Pan et al.,
2005). CARL-SJR expressed its conditioned response (CR) when
INT activity was high and signaled the CR with a spinning
motion and bright colors displayed on its surface. Fourth, the
robot was depressed if a gentle touch was expected, but not
given. This occurred as a dip in DA activity when the expected
US was withheld. We mapped the duration of a dip to a low
tone, which sounded unhappy. This behavior was triggered
by a dip of dopamine concentration level (Ljungberg et al.,
1991).

Comparison with Previous Computational
Models
To associate temporally separated events (i.e., CS and US), many
computational models assumed the firing activities of neurons
responding to an earlier event slowly decay and the sustained
firing activities are associated neurons with the ensuing US event
through STDP (Gluck and Thompson, 1987; Drew and Abbott,
2006). Similarly, the slowly decaying eligibility trace (Houk et al.,
1995) has been applied to associate temporally separated events
in dopamine modulated STDP (Izhikevich, 2007). The idea of
slowly decaying eligibility trace was also successfully applied to
rate-based neurons where Soltoggio and Steil used rare neural
correlations to calculate the eligibility trace (Soltoggio and Steil,
2013). This approach was further validated on iCub for classical
and operant conditioning tasks (Soltoggio et al., 2013). Chorley
and Seth later integrated the DA-STDP mechanism into the
dual-pathway model (Chorley and Seth, 2011). Their model
successfully accounted for a wide range of reward-related DA
responses. A different approach to conditioning paradigms is to
incorporate temporally separated events as propagating spiking
waves and associate these events through the spatiotemporal
interaction of these waves (Palmer and Gong, 2014).

Using wave propagation to solve the temporal credit
assignment problem has some interesting features that address
limitations in other neurobiologically plausible reinforcement
learning rules. The early dopamine model of reinforcement
learning was very similar to temporal difference learning
(Montague et al., 1996; Schultz et al., 1997). From empirical data
and computational modeling, dopamine appeared to track the
reward prediction error. However, in the model, the dopamine
signal moved backward in time in successive trials until it
corresponded to the stimulus that was predictive of reward.
This movement of a dopamine signal over time has not been
observed empirically. Others have proposed an eligibility trace
as a means to solve the credit assignment problem (Izhikevich,
2007; Soltoggio and Steil, 2013). However, since the amplitude of
the trace from the time of the CS to the time of the US can be
quite small, it requires many trials to make a strong association.
Moreover, there is little empirical support for a biological process
to support this type of learning that lasts over many seconds. In
contrast, wave propagation has empirical support and does not
have the limitations described above (Rubino et al., 2006; Benucci
et al., 2007; Ferezou et al., 2007; Han et al., 2008; Wu et al., 2008;
Lubenov and Siapas, 2009; Sato et al., 2012). These waves have the

appropriate timescale, are robust to variations in timing, and can
send a strong enough signal to support associative learning in a
plausible number of trials.

Another interesting approach to solving the credit assignment
was proposed by Khamassi et al. (2011), where dopamine
neurons produced a reward prediction error signal in response
to any salient event and affected synaptic plasticity when it
co-occurred with a motor efference property. This would also
address the limitations described above. However, in our present
experiments we do not have a motor efference copy. The CS
is a color display on the robot’s shell and does not produce a
motor action. The motor command is actually from the subject
interacting with the robot. Still, this may be an interesting
approach to implement in future models.

CARL-SJR’s SNN model, which integrated the slow C-fiber
and fast Aβ-fiber tactile pathways to the pIC, Chorley and Seth’s
dual-pathway model, and Palmer’s spiking wave propagation,
demonstrated associative learning in the real-world with a
robot receiving noisy user input. Several prerequisites or neural
behaviors in Chorley’s and Palmer’s work limit their real-
world applications. Palmer’s model successfully shifts the neural
response from US to CS. However, the US could trigger both a
CR and a UR at the same time if the CS is not presented before
US. PFC activity in Chorley and Seth’s model was implemented
with a pre-generated polychronous group (Izhikevich, 2006).
The appearance of consistent polychronous groups in a noisy
environment is difficult. For example, the criteria for re-
occurrence of a polychronous group was set to a low threshold
(i.e., 25% neurons of a group) in Szatmary and Izhikevich (2010).
In this case, only a small portion of neurons showed time-locked
spike patterns. In contrast, when the criteria for re-occurrence
was set to a high threshold (e.g., 100% neurons of a group) as
in Bucci et al. (2014), the polychronous groups were very small,
rarely occurred, and lasted for less than 40ms. In this prior
neurorobot study, these polychronous groups did not match the
PFC activity in Chorley’s model where time-locked cortical spike
patterns sustained for 1 s. Both Chorley’s and our model exhibit
an interesting neural mechanism in which the STR response
was a little bit later than the DA response in early trials (see
Figure 7A) and then shifted backward to match the timing of the
DA response in late trials (see Figure 7C). Whereas Chorley and
Seth did not discuss how the PFC→STR synaptic weights may
affect the learning progress, we showed the PFC→STR weight
maps were indicative of the US timing and this may support
temporal associations.

Our present PFC model incorporated the idea of spiking
wave propagation in Palmer’s model, which made pre-generated
spikes or pre-processing of the CS unnecessary. The location
of a neuron in PFC and the topographical projections to STR
encoded the time relative to the CS in the decremental pathway.
The PFC→STR weight map clearly reflected the learning status
(see Figure 7). The firing rate of our PFC model is consistent
with experimental studies: <0.5Hz in the resting state (Koch
and Fuster, 1989) and 5–40Hz when behaving (Funahashi et al.,
1989). Further, our model has been validated to handle the
uncertainty of CS-US interval within 2 s while Chorley reported
the valid US window to be (500 ± 100ms). We also used
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inhibitory fast spiking neurons to simulate striatal medium
spiny neurons (Humphries et al., 2009). The characteristic
short spiking burst of a FS neuron facilitated learning in the
decremental pathway. The FS neuron transitioned to an excitable
state due to DA-PSF, and activity from a pre-synaptic RS neuron
in PFC triggered a spike train in the post-synaptic FS STR
neuron. This resulted in multiple increases in the synaptic
weights through LTP. This scenario was dependent on increased
dopamine activity.

The model guiding CARL-SJR’s behavior was also unique
in that it implemented the separate and parallel pathways for
transmitting touch information to the cortex, in which fine
touch is well represented in the somatosensory cortex, and
hedonic caressing appears to represented in the insular cortex
(Sewards and Sewards, 2002; Olausson et al., 2010; Morrison
et al., 2011a). The response of the fast Aβ-fiber tactile pathway
is reflected in the fine resolution somatotopic response shown in
Figure 3A. Less is known about insular neuronal activity in
response to touch. However, it has been suggested that the
insular cortex can make predictions of internal states (Singer
et al., 2009; Seth, 2013) and the neural architecture driving
CARL-SJR’s pleasure seeking behavior supports these claims (see
Figure 2).

CARL-SJR’s Limitations
CARL-SJR has several limitations. We developed a PFC wave
with relatively low internal noise (i.e., spontaneous neural
activity). The maximum noise in Figure 6B is 0.015Hz, which
is 10 times smaller than the spontaneous firing activity (i.e.,
white noise) in resting PFC suggested by the experimental study
of Koch and Fuster (1989). The low spontaneous firing activity
extremely slows down the extinction process in the conditioning
task (see Section Extinguishing Behaviors after Learning) because
the probability to decorrelate coupled neurons in PFC and STR is
too low.We left this issue to a future improvement on developing
wave propagation under a typical noise level.

The peak dopamine value in our model is 20µM, which is
much higher than 3µM reported in Izhikevich’s and Chorley’s
models. The range of dopamine value was tuned to result in
adequate learning rates in the neurorobot experiments. We
could lower the dopamine value and keep the observable
learning speed if some compensatory neural mechanisms were
implemented. For example, a replay mechanism for the CS and
US pairings when CARL-SJR “sleeps” (Buzsaki, 1998). However,
to incorporate a true replaymechanismwould require substantial
efforts in building a hippocampus model for offline learning
(Khamassi and Humphries, 2012). A simple approach, which
would be effective in the present architecture, would be to

simulate replay by injecting the CS and US into the model when
CARL-SJR is not actively behaving.

The neural response of mechanoreceptors with C-fiber is
tuned for gentle speeds (Morrison et al., 2011a). We did not
capture this characteristic because the trackballs, as they are
currently designed, cannot detect speed locally (i.e., the number
of touch events is not proportional to the rolling speed of
a trackball). We could calculate the speed of a movement
across multiple trackballs. However, this approach requires

substantial pre-processing and therefore, contradicts our design
choice.

Conclusions

CARL-SJR is a neurorobot whose behavior is guided by a SNN
model of tactile pathways in the cortex, and demonstrates user
defined entraining of a robot through touch. By incorporating
dopamine modulated learning with traveling waves of neural
activity, we have shown a biologically plausible method of
instrumental conditioning. Our SNN model can be easily
extended for robotic applications in reinforcement learning
paradigms. Future directions include dopaminergic projections
to the frontal cortex and implementation of the serotoninergic
(5-HT) system (Krichmar, 2013). DA is linked to rewards and
curiosity-seeking behavior and 5-HT may be linked to risk
aversion and withdrawn behavior (Tops et al., 2009; Boureau
and Dayan, 2011; Siegel and Crockett, 2013). It has also been
suggested that 5-HT plays a role in waiting for a delayed reward
(Miyazaki et al., 2012). By combining the DA and 5-HT systems,
we could make CARL-SJR not only learn through rewards but
also cost. Moreover, following the notion of 5-HT being related
temporal discounting, we could use 5-HT levels to modulate
CARL-SJR’s impulsiveness. These additions would make CARL-
SJR’s behavior more interesting and such a system could have
applications in the fields of socially assistive and socially affective
robotics.
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