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Institute for Theoretical Physics, Goethe University Frankfurt, Frankfurt am Main, Germany

We examine the hypothesis, that short-term synaptic plasticity (STSP) may generate

self-organized motor patterns. We simulated sphere-shaped autonomous robots, within

the LPZRobots simulation package, containing three weights moving along orthogonal

internal rods. The position of a weight is controlled by a single neuron receiving excitatory

input from the sensor, measuring its actual position, and inhibitory inputs from the other

two neurons. The inhibitory connections are transiently plastic, following physiologically

inspired STSP-rules. We find that a wide palette of motion patterns are generated through

the interaction of STSP, robot, and environment (closed-loop configuration), including

various forward meandering and circular motions, together with chaotic trajectories. The

observed locomotion is robust with respect to additional interactions with obstacles. In

the chaotic phase the robot is seemingly engaged in actively exploring its environment.

We believe that our results constitute a concept of proof that transient synaptic plasticity,

as described by STSP, may potentially be important for the generation of motor

commands and for the emergence of complex locomotion patterns, adapting seamlessly

also to unexpected environmental feedback. We observe spontaneous and collision

induced mode switchings, finding in addition, that locomotion may follow transiently

limit cycles which are otherwise unstable. Regular locomotion corresponds to stable limit

cycles in the sensorimotor loop, which may be characterized in turn by arbitrary angles

of propagation. This degeneracy is, in our analysis, one of the drivings for the chaotic

wandering observed for selected parameter settings, which is induced by the smooth

diffusion of the angle of propagation.

Keywords: closed-loop robots, short-term synaptic plasticity, limit cycles, sensorimotor loop, self-organized

locomotion, compliant robot

1. INTRODUCTION

It has been argued (Pfeifer et al., 2007; Aguilar et al., 2016) that “robophysics,” defined as the
pursuit of the discovery of biologically inspired principles of self generated motion, may constitute
a promising road for eventually achieving life-like locomotor abilities. Distinct principles such
as predictive information (Ay et al., 2008), surprise minimization (Friston, 2011), chaos control
(Steingrube et al., 2010), empowerment (Salge et al., 2014), homeokinesis (Der and Martius, 2012),
cheap design (Montúfar et al., 2015), and curiosity (Frank et al., 2014) have been studied in this
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context. Behavior, resulting from guided self organization
(Prokopenko, 2009) or autonomous adaption (Chiel and Beer,
1997), may be generated in addition through suitable synaptic
(Der and Martius, 2015; Der, 2016) and intrinsic (Sándor et al.,
2015) plasticity rules.

Here we point out, that complex dynamics may be generated
through a transient plasticity mechanism widely present in the
brain. Short-term synaptic plasticity (STSP) (Fioravante and
Regehr, 2011; Regehr, 2012) is an activity induced transient
modulation of the synaptic efficiency, which may lead either to
facilitating or to depressing behavior lasting from a few hundred
to a few thousand milliseconds. STSP has been argued, besides
others, to be relevant or causal for working memory (Barak
and Tsodyks, 2014), for the facilitation of time sequences of
alternating neural populations (Carrillo-Reid et al., 2015), for
motor control in general (Nadim and Manor, 2000), and for the
sculpting of rhythmic motor patterns (Jia and Parker, 2016) in
particular. Plasticity mechanisms similar to STSP have also been
shown to allow for stable gaits (Toutounji and Pasemann, 2014)
in neural networks which are distinctively simpler than the ones
used conventionally for bio-inspired controllers (Schilling et al.,
2013).

In this study we use the LPZRobots physics simulation
package (Der and Martius, 2012) for the investigation of the
spherical three-axis robot illustrated in Figure 1. This robot
is driven exclusively by STSP, with locomotion coming to a
stillstand both in the absence of synaptic plasticity and when
the feedback from the environment is cut off, e.g., when the
gravitational constant is set to zero. We find a surprisingly large
palette of self-organized motion primitives, which includes a
chaotic phase. The locomotion observed is flexible, in all modes,
readjusting seamlessly to disturbances like the collision of the
robot with obstacles.

The capability of STSP to have a large impact on locomotion
can be traced back in our analysis to the destabilizing
effect short-term synaptic plasticity may have on attracting
states of the controlling network, inducing attractor-to-attractor
transitions within timescales of the order of a few hundred
milliseconds. We corroborate this findings by short-circuiting

FIGURE 1 | Left: A snapshot of the spherical robot from the LPZRobots simulation environment (Martius et al., 2013). The three weights (red, green, and

blue) can move along the respective rods without interference. Right: A sketch of the robot with the three perpendicular rods together with the three weights of mass

m. The red vertical dashed lines show the actual position x
(a)
i

and a putative target position x
(t)
i

of the red weight along its rod. A damped spring with spring constant k

and damping γ then pulls the weight toward the target position, which is given in turn by the output of a controlling neuron (compare Figure 2).

the sensori-motor loop, viz by taking out the environment.
Transitions between distinct limit cycles within the full
sensori-motor loop are found in addition in the chaotic mode.

2. MATERIALS AND METHODS

2.1. Tsodyks-Markram Model with Full
Depletion
The way neurotransmitters are released through the synaptic
cleft may change transiently upon repeated presynaptic activity
(Tsodyks and Markram, 1997), both for excitatory (Wang
et al., 2006) and for inhibitory (Gupta et al., 2000) synapses.
Physiologically this is, on the one side due to an increase of the
Ca-concentration u ∈ [1,Umax] within the presynaptic bulge,
facilitating the release of the respective neurotransmitter, and, on
the other side, due to the decrease of the number ϕ ∈ [0, 1] of
available vesicles of neurotransmitters. We use here with

u̇ =
U(y)− u

Tu
, U(y) = 1+ (Umax − 1)y

ϕ̇ =
8(u, y)− ϕ

Tϕ

, 8(u, y) = 1−
uy

Umax

(1)

a modified version of the original Tsodyks-Markram model
(Tsodyks and Markram, 1997; Hennig, 2013), in which the the
Ca-concentration u and the number of vesicles ϕ of a given
synapse relax to target values U = U(y) and 8 = 8(u, y),
determined in turn by the level y ∈ [0, 1] of the presynaptic
activity. A prolonged maximal presynaptic activity y ≡ 1 would
lead with ϕ → 0 to a full depletion of the reservoir of vesicles.

The dynamics of the full depletion model (1) is determined
by the relaxation time constants Tu and Tϕ , and by the maximal
level Umax of the Ca concentration. For Umax = 1 a monotone
depression is present, whereas Umax > 1 initially generates
facilitation by a fast calcium influx, being annulled later on by the
depletion of neurotransmitters. Overall, the synaptic efficiency
is proportional to uϕ, viz to the number of vesicles and to the
release probability (which in turn is assumed to be proportional
to u).We use Tu = 300ms andTϕ = 600ms, together with either
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FIGURE 2 | Left: Sketch of the sensorimotor loop of the three-axis spherical robot illustrated in Figure 1. The three weights i = 1,2, 3 with masses m are

each controlled by a single neuron. The excitatory input w0(x
(a)
i

+ pR)/(2pR) of neuron i is proportional to the proprio-sensory measurement of the actual position

x
(a)
i

∈ [−R,R] of the i-th mass (p ∈ [0,1]). The neuron also receives inhibitory inputs −z0ϕjujy(xj ) from the other two neurons (j 6= i). The output y(xi ) of the i-th neuron

determines via x
(t)
i

= pR[2y(xi )− 1] the target position of the i-th mass. Right: A network of (three) neurons having the identical topology as the one of the three-axis

spherical robot, but with the feedback of the environment short-cut by identifying the actual position x
(a)
i

with the target position x
(t)
i
.

Umax = 1 or Umax = 4. These values are within the typical range
of what is physiologically observed (Gupta et al., 2000; Wang
et al., 2006).

2.2. The Robot
The movement of robot illustrated in Figure 1 is induced by
the relative gravitational pull of the three weights, together with
the rolling friction and angular momentum conservation. The
individual neurons i = 1, 2, 3 aremodeled as rate-encoding leaky
integrators,

ẋi = −Ŵxi +
w0

2pR

(

x
(a)
i + pR

)

− z0
∑

j 6=i

ujϕjy (xj),

y(xj) =
1

1+ exp(−axj)
, (2)

where xi and y(xi) are the respective membrane potentials and
firing rates. Ŵ is the relaxation rate, R the diameter of the robot,

p ∈ [0, 1] a rescaling factor, x
(a)
i ∈ [−R,R] the sensory reading

of the actual position of the weight on the rod, w0 > 0 the
weight of excitatory input and z0 > 0 the magnitude of the inter-
neural inhibitory connections. We note that the variables of the
STSP, uj and ϕj, as described by Equation (1), depend only on
the presynaptic activity and can hence be attributed altogether to
the presynaptic neuron. For the slope of the sigmoidal a = 0.4
has been selected. The weight of the excitatory input w0 is not
modulated here by short-term synaptic plasticity, corresponding
to a direct sensory reading.

We selected with p = 1/2 a reduced range for the target

position x
(t)
i ,

x
(t)
i = pR

[

2y(xi)− 1
]

, x
(t)
i ∈ [−pR, pR]. (3)

This choice allows to avoid dynamic overshooting of the weight
when accelerated from its actual to the target position. The force
accelerating the weight is calculated by the LPZRobots package

by simulating a damped spring:

mẍ
(a)
i = −k(x

(a)
i − x

(t)
i )− γ

d(x
(a)
i − x

(t)
i )

dt
+ Fi, x

(a)
i → x

(t)
i ,

(4)
where k is the spring constant and γ the damping. Centrifugal
and other induced forces, Fi, act additionally in Equation (4) on
the individual weights. The complete setup of the three-neuron
network is illustrated in Figure 2.

2.3. Simulation parameters
The LPZRobots simulation environment (Der andMartius, 2012)
is an interactive simulator based on the ODE (Open Dynamic
Engine) (Smith, 2005). LPZRobots contains rigid body dynamics
in terms of a library of basic primitive objects, such as spheres
and cuboids, as well as a variety of joints, sensors and surface
materials.

We used roughness = 0.8, slip = 0.01, hardness = 40 and
elasiticity = 0.5 for the collision and friction properties together
with friction = 0.3 (the rolling friction coefficient), gravity =
−9.81 (the gravitational constant) and noise = 0 (for the global
noise level). All parameters are in SI units. For the stepsize of the
physical simulation simstepsize = 0.001 was used (corresponding
to a millisecond). With controlinterval = 1 one ensures that the
controller, viz Equation (2), is updated as often as the physics of
the environment.

The robot itself has a diameter of 2R = 0.5, a mass offM = 1
and a motorpowerfactor = 120. The parameters for the damped
oscillator (Equation 4) are m = 1, k = m ∗ motorpowerfactor

and γ = 2
√
k ∗m (critical damping). The relaxation rate for

the membrane potential entering Equation (2) has been set to
Ŵ = 20, retaining the bare excitatory and inhibitory weights, w0

and z0, as free simulation parameters.

3. RESULTS

3.1. Emergent Limit-Cycle Locomotion
In Figure 3we present the stability regions for the various regular
movement patterns found, with respective close-ups given in
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FIGURE 3 | Phase diagram for Umax = 1 in the parameter plane of excitatory (w0) and inhibitory (z0) synaptic weights. On the top the different types of

identified regular motion patterns are illustrated, tagged respectively with black triangles in the respective regions of stability (shaded areas). Close-up trajectories are

given in Figure 4; for a comparison see also Supplementary Video 1. Examples of two parameter settings, (200, 360) and (210, 400), for which chaotic behavior is

observed are indicated by black filled circles (at the tip of the respective arrows).

T1 T2 C1

S1 S2 S3

FIGURE 4 | A close-up of the trajectories in the plane of locomotion,

for the parameters (w0, z0) tagged as black triangles in the phase

diagram presented in Figure 3. T1: (280,650), T2: (230,415), C1:

(190,600), S1: (250,530), S2: (240,380), S3: (220,470).

Figure 4. The results are for Umax = 1 (depressing short-term
synaptic plasticity without Ca dynamics) and for the parameters
specified in Section 2.3. They are obtained by adiabatically
continuing stable states along a grid until stability is lost. Without
STSP only a globally attracting fixpoint corresponding to a
motionless robot is present. We note that regular motion arises
for a wide range of bare excitatory (w0) and inhibitory (z0)
synaptic weights. z0 needs however to be larger than w0.

All motion patterns observed are self-organized. There is no
objective function (Gros, 2014), such as a maximal velocity,
to be optimized. This implies that the quantitative features
of the individual motion patterns change smoothly within
their respective stability regions, and that one can identify
the observed regular movement patters as stable limit cycles
in the sensorimotor loop (Sándor et al., 2015). Fast switching
between motion primitives would be possible by a putative
overarching controller, since more than one limit cycle may
be stable for given synaptic weights w0 and z0. Interactions
between robots or with external obstacles might also lead to the
automatic selection of another coexisting mode (see for instance
Supplementary Video 1).

It is evident that the body plan of the robot examined here
tends to produce meandering motion pattern. T1 and T2 are

sun- and star-like movements with small (T1) and large (T2)

processing angles (compare Figure 4; “T” stands for torus in
phase space). There is, in addition, a (nearly pure) circular

motion, C1, and three types of forward snake-like meandering
motion patters, S1, S2, and S3. From these S3 partly overlaps with

itself. These modes are characterized by distinct motion patterns
of the three weights, as shown in Figure 5, as measured by their
positions along their respective rods. The differences between
the distinct modes are in part qualitative, in terms of the time
sequences in which the three neurons are subsequently active,
and in part only quantitative. The difference between T1 and S1
is, in this respect, that the up-times of the two active neurons
are symmetric for S1, but not for T1. A spontaneous symmetry
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FIGURE 5 | The positions x
(a)
i

of the three weights as a function of time, compare Figure 1, along the corresponding rods. The modes and parameters are

identical to the ones presented in Figure 4. Time is measured in units of 2 s.

breaking can be furthermore observed in case of T1, S1, S2, S3,
for which two weights always have alternating dynamics, the
third one showing a qualitatively different behavior. In contrast
to that, the time-series of the C1 and T2 modes reveals the
symmetrical but phase shifted oscillation of the three weights.
Note that the positions of the weights may overshoot the interval

[−pR, pR] for the target positions x
(t)
i , both due to inertia and due

to the additional gravitational pull. Motion patterns similar to the
ones shown in Figure 4 have been observed in a self-organized
two-wheeled robot in the frozen mode (Der and Martius, 2013).

3.2. Chaotic Modes Allowing for
Explorative Behavior
The dynamics of the robot takes place in a phase space combining
the internal variables, of both body and controller, with the
ones of the environment. The stability regions of the individual
limit cycles presented in Figure 3 will therefore be bounded,
generically, by a suitable bifurcation, such as a supercritical Hopf
bifurcation or a fold bifurcation of limit cycles (Gros, 2015;
Sándor et al., 2015). Alternatively, a transition to chaos may
occur. It is on the other side also possible that chaotic attractors
emerge from previously unstable manifolds and that the stability
region of chaotic and stable manifolds overlap.

Close to a chaotic phase long transients may occur, which
makes it difficult to study systematically the exact extend of
the chaotic region. In Figure 3 we have indicated however a
few representative combinations of parameters, for which stable
chaos is observed both in the limit of long simulations times and
for a wide range of stepsizes of the ODE simulator. No regular

motion patterns can be observed in the screenshots presented in
Figure 6. We have also evaluated the long-time behavior of the
square of the covered real-space distance,

d2(τ ) = 〈
(

x(t + τ )− x(t)
)2〉t . (5)

We found diffusive transport d ∼
√

τ for the chaotic mode and
ballistic transport d ∼ τ for the forward meandering modes S1,
S2, and S3. Both as expected.

It has been observed, that chaotic locomotion of an embodied
system may be considered as a basic explorative behavior, both
of the environment and of the own motor pattern (Steingrube
et al., 2010; Shim and Husbands, 2012). As a test of this
hypothesis we have set our three-rod robot into a restricted
playground containing movable objects in the form of blocks,
which can be pushed, to a certain extend, over the ground. A
screenshot is presented in Figure 6. One can observe, that the
robot stays for a while close to the object, bumping around,
and retracting in part a trajectory having a shape similar to
the one generated by a C1 limit cycle. This is possible, as
the set of parameters (w0, z0) = (210, 400) considered is
located close to but outside the C1-stability region. The C1
limit cycle is hence only weakly unstable in the chaotic phase.
The active exploration of the environment, occurring here
when bumping into obstacles, gives the robot hence access to
otherwise unstable locomotion options. The overall behavior
may be interpreted alternatively in terms of non-representational
sensorimotor knowledge (Buhrmann and Di Paolo, 2014). For a
longer simulation see the Supplementary Videos.
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FIGURE 6 | Screenshots of the sphere robot in a chaotic mode; Umax = 1 and (w0, z0) = (210, 400). The blue lines retrace the past trajectory. The short-time

motion of the robot is close to the one of the S2 mode, which is here an unstable attractor (compare Figure 4). Left: In open space. Right: In a closed environment

allowing for the interaction with movable objects (yellow blocks). The circular sections correspond to unstable C1 limit cycles. A close-up to the dynamics and a longer

simulation in the maze can be seen in Supplementary Videos 2, 3 respectively.

In themovie presented in the SupplementaryMaterial one can
observe, furthermore, that the robot is pushing the blocks around
in a seemingly “playful” manner (see Supplementary Video 3).
A remarkable behavior, in our view, considering that the
sphere robot disposes of a mere total of three controlling
neurons. We note, that this complex behavior results from the
interplay of the autonomous dynamics, as resulting from the
inter-neural short-term synaptic plasticity, with environmental
feedback.

3.3. Embodiment Shaping the Intrinsic
Dynamics
One can consider the controlling 3-neuron network in isolation

by identifying the sensory reading x
(a)
i for the actual position

of the weight along the rod with the respective target position

x
(t)
i , viz by setting x

(a)
i = x

(t)
i in Equation (2). The resulting

network contains a self-excitatory coupling w0 together with
all-to-all inhibition with a bare synaptic strength z0. The
short-term synaptic plasticity then induces an autonomous
activity, as illustrated in Figure 7, which is topologically
equivalent to the C1 mode. This equivalence becomes even more
pronounced when suspending the robot in air, which can be
achieved in turn by simply removing gravity from the physics
simulation (bottom time-series in Figure 7). One can hence
consider the C1 mode as the driver for the observed physical
motion.

The isolated 3-neuron network has, however, only a single
stable limit cycle. Numerically integrating the isolated network
for parameters settings (w0, z0) corresponding to the six modes
of Figure 5, as well as for chaotic states, we find always an
identical sequential activation of the three neurons illustrated in
Figure 7, with only slight changes in the overall shape. It is hence
clear, that the other modes T1, T2, S1, S2, and S3, as well as
the chaotic behavior, do result from the closed-loop feedback of

the environment. The interaction of the environment with the
intrinsic dynamics then results in the emergence of alternative
types of locomotion.

3.4. Stability with Respect to Noise
We present in Figure 8 an analysis of the stability of the various
modes found, with respect to noise in the sensory readings,
where the level of the noise is given by the relative standard

deviation σ of the sensory readings x
(a)
i . Comparing with the

phase diagram, as presented in Figure 3, one notices that first
modes to disappear, T1 and S3, are the ones with small stability
regions in the phase diagram. Ramping up the noise level the
T1 and S3 modes turn respectively, above their corresponding
critical noise levels, into C1 and S1 modes. The other modes,
including the chaotic phase, are in contrast very stable with
respect to noise.

3.5. Autonomous Mode Switching
We present in Figure 9 the phase diagram obtained when using
Umax = 4 for the maximal Ca-level entering Equation (1).
Within the range of (w0, z0) scanned we find four out of the six
modes observed for Umax = 1 (compare Figure 3). The range
of inhibitory weights z0 for which stable locomotion is found is
rescaled down, in addition, with respect to the Umax = 1 case.
Interestingly we found a chaotic state at (180, 80) which lies just
inside the stability region of the C1 mode.

We did let the robot evolve within the borders of a simple
maze, as shown in Figure 10 and Supplementary Video 4. Most
of the time the robot is in the chaotic state, which is the dominant
mode for the parameters used, namely (w0, z0) = (180, 80)
and Umax = 4. Intermittently, after colliding with a wall, the
robot switches to the coexisting C1 mode. The radius of the
stable C1 limit cycle in real-world coordinates is however so
large, for (w0, z0) = (180, 80), that it does not fit into the maze.
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FIGURE 7 | Time series of the target positions x
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for Umax = 1 and (w0, z0) = (190,600), which correspond to the C1 mode shown in Figures 4, 5. Top:

For a numerical simulation of the isolated network obtained when setting x
(a)
i

= x
(t)
i

in Equation (2). Bottom: For the 3-rod robot suspended in air (with the gravity

constant g set to zero). Note that both time-series are very similar but not identical.
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FIGURE 10 | The trace of the robot in a maze for a simulation time of 83 (left) and 1000 (right) min, respectively. The robot may remain stuck occasionally in

corners, but not forever. The parameters are Umax = 4 and (w0, z0) = (180,80), corresponding to the chaotic mode indicated by the arrow in Figure 9. Bumping

against the wall the robot sometimes turns up in the C1 mode, which is a coexisting stable limit cycle. The radius of the C1 mode is however, in this case, so large,

that it does not fit as a whole into the maze. Also note that the chaotic mode is locally akin to the here unstable S2 mode, and that it changes the overall direction only

on a relatively large scale.

The robot hence continues exploring. We have obtained similar
results when using a Umax = 1 chaotic mode.

A screenshot of a trajectory in open space is presented
in Figure 11. One notices, that the Umax = 4 and
(w0, z0) = (180, 80) chaotic mode wanders around aimlessly in
much smother manner, than the Umax = 1 chaotic mode shown
in Figure 6. This is the result of topologically different attractor
structures, as seen in the phase space of internal variables (see the
Supplementary Materials). Different types of chaos are indeed
known to exist (Wernecke et al., 2016).

The autonomous mode switching observed for the regular
motion primitives can also be seen in Supplementary Video 1.
For a detailed discussion of the possible switching scenarios see
the Supplementary Materials.

3.6. Switching between Degenerate
Unstable Limit Cycles
In Figure 12 we compare for the two chaotic modes, realized
for Umax = 1 and for Umax = 4 respectively, the
time series for the positions of the weights along the
rods. One observes, that the movements of the weight is
qualitatively similar, on short time scales, to an S2 mode
(compare Figure 5, see also Supplementary Video 3). It is
interesting, in this context, that the S2 mode has two types of
degeneracies.

• Continuous. The S2 mode may propagate in any direction.
There is hence a continuous manifold of attractors in the
combined phase of controller, body and environment. Outside
the actual region of stability this manifold contains either
unstable limit cycles or limit cycle relicts (Gros, 2009).

• Discrete. There is a spontaneous symmetry breaking in the
S2 mode, with two weights having identical but phase shifted
movement patterns along their respective rods, which are
qualitatively different to the trajectory of the third weight (see
Figure 5).

For the Umax = 4 chaotic mode we did not observe discrete
mode switching, in above sense, which however occurs frequently
for the Umax = 1 mode (see Figure 12). The chaotic meandering
observed for theUmax = 4 chaotic mode, as evident in Figure 11,
is hence a consequence of a smooth diffusion of the angle of
propagation on the manifold of unstable S2 limit cycles (or limit
cycle relicts Linkerhand and Gros, 2013). In the phase space of
the neural activity (as shown in Supplementary Figure 5), the
trajectory corresponds to a chaotic phase diffusion along a limit
cycle (Wernecke et al., 2016). This process is determinstic and
not due to numerical errors, as we have checked by systematically
reducting the stepsize used for the numerical integration. Noise
is absent.

4. CONCLUSIONS

We have shown here, that a robot controlled by only a very
limited number of neurons, three in our case, may show
complex behavior which may be interpreted as explorative or
playful. This is possible when locomotion results from self-
organizing processes in the sensorimotor loop. The driving
control dynamics, for which we have considered here short-
term synaptic plasticity, then adapts itself seemingless to the
physical requirements. No central controller is needed to detect
an external object (Rai et al., 2014), or to switch direction
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FIGURE 11 | Screenshot of the sphere robot in a chaotic mode for Umax = 4 and (w0, z0) = (180,80), indicated by the arrow in Figure 9. The blue line

retraces the past trajectory. Note that the chaotic wandering is substantially smoother than the one observed for the Umax = 1 case (compare Figure 6).

-pR

0

pR
Umax=1

-pR

0

pR

time [10s]

Umax=4

FIGURE 12 | As a function of time the positions of the three weights, compare Figure 1, along the corresponding rods. Top: For the Umax = 1 chaotic

mode with (w0, z0) = (210,400) shown in Figure 6. Bottom: For the Umax = 4 chaotic mode (w0, z0) = (180,80) shown in Figure 11. Both modes are locally akin to

an S2 mode, albeit with substantial fluctuations (e.g., compare the bottom curvatures of the green line for Umax = 4, see also Figure 5). Note that phase slips do

occur for the case of Umax = 1, but not for Umax = 4.

when colliding with it. Stable and unstable limit cycles, together
with chaotic attractors, arise in the phase space of internal
(control and robot body) variables. These attractors form
continua in the space of physical location and overall propagation
direction, with the chaotic locomotion transitioning between
unstable limit cycles. Transitions may either be between different
types of regular locomotion, bounded circular or propagation
meandering modes, or between the directions of unstable
propagating limit cycles.

We note that the formation of a continuum of attractors
is possible, whenever internal and external variables can be
separated, such that internal variables span an independent
subset of the phase space of the dynamical system. Here,
the position of the robot (on the ground plane, in the
absence of obstacles) acts as an external variable, all the
other variables being independent of it. The limit cycles and
chaotic attractors, living in the subspace of internal variables,
exist thus for all position vectors, generating a continuous
degeneracy of locomotion modes. The interactions with other
robots and obstacles then results in a transient breakdown
of this degeneracy, which is restored instantaneously with the
termination of physical contact. Within this context, higher
order control mechanisms would correspond to an external-
variable dependent feedback, shaping the attractors either

intermittently or slowly (with respect to the internal dynamics),
thus leading possibly to the emergence of transiently stable
attractors.

Our result, that the three-rod robot switches spontaneously
between a continuous set of attractors, in the chaotic state, can be
seen as a realization of chaotic wandering (Tsuda, 2001), which
has been argued in turn to occur in the brain in the form of self-
organized instabilities (Friston et al., 2012), viz as transient-state
dynamics (Gros, 2007). There is furthermore a close relation to
the concept of attractor metadynamics (Gros et al., 2014), which
denotes the either induced or spontaneous switching between
attracting sets.

The here simulated robot is furthermore compliant both on
the level of control and actuators, showing a highly flexible
response. The actuators are implemented by specifying a target
position for a limb, here a moving weight on a rod. The force
acting on the weight then results from the interplay between
the internal driving, provided by a damped spring (between
the actual and the target position), with the physical restoring
forces acting on the weights, which in turn depend on the
body dynamics determined by the interaction with the ground,
obstacles and other robots (Floreano et al., 2014).

The isolated controlling network (realized in the limit of
infinitely strong actuators) can be interpreted in addition
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as a central pattern generator (Steingrube et al., 2010),
having a single intrinsic limit-cycle attractor. The open-
loop control incorporates however the feedback of the
environment through the induced forces. We find here,
that the resulting embodiment (Cangelosi et al., 2015) does
morph the driving dynamics of the central pattern generator
not only quantitatively, but also qualitatively, giving rise to
a vast array of modes which differ in part topologically from
the dynamics of the underlying central pattern generator. We
believe that this dynamical systems approach of the locomotion
of simple robots has not been fully exploited yet, having many
interesting features and applications in store for the field of
neurorobotics.
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