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It has often been stated that for a neuronal system to become a cognitive one, it has to be

large enough. In contrast, we argue that a basic property of a cognitive system, namely

the ability to plan ahead, can already be fulfilled by small neuronal systems. As a proof

of concept, we propose an artificial neural network, termed reaCog, that, first, is able to

deal with a specific domain of behavior (six-legged-walking). Second, we show how a

minor expansion of this system enables the system to plan ahead and deploy existing

behavioral elements in novel contexts in order to solve current problems. To this end, the

system invents new solutions that are not possible for the reactive network. Rather these

solutions result from new combinations of given memory elements. This faculty does

not rely on a dedicated system being more or less independent of the reactive basis,

but results from exploitation of the reactive basis by recruiting the lower-level control

structures in a way that motor planning becomes possible as an internal simulation relying

on internal representation being grounded in embodied experiences.

Keywords: reactive system, cognitive system; internal model, motor planning, internal simulation, neural

networks, attention

INTRODUCTION

Over the last years more and more findings in neuroscience have shown that higher level cognitive
capabilities cannot be detached from the functioning of lower level sensorimotor control systems
(van Duijn et al., 2006; Barsalou, 2008) which is the core idea of embodied cognition as a field. It is
assumed that cognition recruits the underlying sensorimotor systems (Anderson, 2010). Intensively
studied examples controlled by such sensorimotor, or reactive, systems are insects. Already a lot is
known about their structure and properties of their sensorimotor systems (Menzel et al., 2007;
Cruse et al., 2009) which allows to build well performing biologically inspired systems (Pfeifer
et al., 2007; Ijspeert, 2014). But it is still unclear if all the crucial properties are understood that
are required to form the basis for a cognitive system. Do the known principles allow to leverage the
sensorimotor control systems toward cognition?

A basic problem concerns what, after all, is meant by the term “cognition.” Definitions cover
various ideas, reaching from Maturana and Varela (1981) “life is cognition” (which would include
even bacteria to be cognitive systems), Engel et al. (2013) who note that “cognition is action.” Other
authors avoid the problem of a short definition, which almost inevitably includes comparatively
simple systems, by listing a collection of phenomena to characterize cognitive systems (e.g.,
Khlentzos and Schalley, 2007; Menzel et al., 2007). The most important faculties generally agreed
as to characterize a cognitive system are attention, awareness, emotion, learning, specific aspects
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of memory, language as well as thinking, reasoning, planning
ahead, decision making, volition, Theory of Mind or even
subjective feelings and consciousness (for another list proposed
by Langley et al. (2009, see Discussion). In this article, we will not
enter this discussion but focus on basic properties discussed by
several authors as to be crucial for a cognitive system, namely the
ability to invent new behaviors and the ability to plan ahead the
latter being required to test the feasibility of the new invention.

Lower level behaviors, often termed reactive or automatic,
controlled by “reactive systems,” require procedural elements
ensuring survival and allowing for basic behavioral abilities,
e.g., locomotion, feeding, object avoidance. The combination
of such controllers may also be suited to guide seemingly
more complex behaviors (e.g., navigation). These controllers
constitute the procedural memory of the system. Exploiting the
loop through the world (Brooks, 1989) even a “hard-wired”
memory system allows for adaptation to changing environments
as will be illustrated in the second section (Reactive Walker). In
reactive systemsmany of these procedures (or “action-perception
circuits,” Pulvermüller and Garagnani, 2014) can be active at
the same time, but they may also compete amongst each other
for controlling the system (Brooks, 1989). Therefore, a crucial
ability for each behaving system—including reactive systems—
is the ability to select one among different possible actions. This
architecture is inspired by earlier authors as Arbib (1998), Brooks
(1991b), and Minsky (1986).

Reactive systems, by definition, do not belong to the field of
cognition. However, many authors (e.g., Newell, 1994; Anderson,
2010; Glenberg and Gallese, 2012) argue that cognition in all
known systems is strongly based on and is intimately connected
with a functional reactive system. Even more, as proposed by
Barsalou (2008) and others, reactive (or behavior-based) systems
having internal states (as introduced in the second section,
Reactive Walker) plus being embodied are basic requirements
for a system to become a cognitive one. As already noted briefly
above, there is indeed strong support showing that neuronal
elements forming cognitive properties are tightly intertwined
with the reactive system itself and a functional separation is not
possible. For example, planning of a movement is interpreted in
this view as a mental enactment of the movement (Jeannerod,
2001; Hesslow, 2002). This view is supported as brain regions that
formerly were assumed as being highly specialized, for example
the motor area, are also activated during language processing
or perception (Feldman and Narayanan, 2004; Buccino et al.,
2005; Pulvermüller, 2005; Jeannerod, 2006; Pulvermüller and
Garagnani, 2014). More generally, Gallese and Lakoff state that
“a key aspect of human cognition is. the adaptation of sensory-
motor brain mechanisms to serve new roles in reason and
language, while retaining their original function as well.” (Gallese
and Lakoff, 2005, p. 456). This is supported by behavioral
research showing that behavioral and cognitive processes are
functionally related insofar as both processes seem to apply the
same structuring principles and seem to have access to memory
in a structurally similar way (e.g., Jeannerod and Decety, 1995;
Cross et al., 2006; Barsalou, 2008; Barsalou et al., 2012).

What distinguishes a reactive system from a cognitive one?
A key feature that might be suited for a distinction between

reactive, or behavior-based, systems, and cognitive systems is
that the former are restricted to apply their procedural memory
elements (or internal representations, or internal models) only in
the context in which the latter have been acquired (Wilson, 2008).
For example, a specific movement (e.g., grasping a specific type of
prey) is stored as a (congenital or learned) procedural memory.
The content of this memory element may also be considered as
a model of that movement, which can—in a reactive system—
only be triggered by a specific stimulus, the specific prey. In
contrast, cognitive systems are able to modify their behaviors and
thereby may come up with solutions for a novel task (Glenberg
and Gallese, 2012). A novel task is considered here a task in
which, in the current context, none of the existing procedural
memory elements can be applied to solve the problem, as none
of the available procedures are able to deal with the actual
situation or to predict the resulting consequences. Therefore, to
approach a cognitive level, one has to search for systems that are
creative, i.e., able to alter their procedural memory elements or to
compose them in a new way allowing the system to handle such
a novel tasks. This characterization agrees with the statement of
Limongelli et al. (1995) “cognition is the ability to relate different
unconnected pieces of information in new ways and apply the
resulting knowledge in an adaptive manner.” Taking a broader
view, Anderson (2010), in his massive redeployment hypothesis,
states that “neural reuse” is a fundamental principle not only
applied in evolutionary time scales but also for solving current
problems by a cognitive system. Thus, in this article we will focus
on a system that is able to find solutions for novel tasks.

What are the prerequisites to find a solution to a current
problem? One way to find new solutions is to apply a search
strategy based on simple trial and error. But trial and error is
a risky approach and generally quite slow. As an alternative,
“internal trial-and-error” could be applied. This means that
in addition to the ability to modify the procedures and their
composition, such systems are able to anticipate consequences
of new actions which enables the agent to decide based on
these predictions (Hesslow, 2002). These aspects have already
been captured by McFarland and Bösser (1993) who indeed
define cognition as the faculty to plan ahead. Planning ahead
allows to verify the feasibility of new solutions before execution.
Therefore, planning ahead is the second basic property of our
system. The ability to predict requires internal models, or internal
representations.

Because our system is characterized here as to search for new
solutions by exploiting the already existing memories (or internal
models) in a flexible way, i.e., not only in a specific context,
but in different contextual situations, an organizational scheme
is required that allows for compositionality and modulation of
specific parameters. In the third section (Motor Planning) we will
provide a simple solution for this problem.

Following the view proposed by Barsalou (2008), Glenberg
and Gallese (2012) and others, our approach is to start with
a non-trivial reactive system that is then equipped with the
ability to plan ahead. To this end, we will consider a system
with a complex enough body (i.e., having a considerable
number of extra degrees of freedom), but an arguably
simple controller, which—in order to comply with biological
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constraints—is based on elements forming an artificial neural
network.

Using a system able to control autonomous behavior and
using a complex, non-trivial body, we follow a whole-systems
approach. We take the embodiment approach literally insofar
as our system is constructed in such a way that it is currently
used to control a simulated robot in a dynamical simulation
environment, but will be transferred to a physical robot in a next
step. Thus, we deal with really executable behaviors rather than
with more abstract approaches on a dynamical systems level or
systems that operate on a symbolic level. Application of such
purely high-level approaches may bear the danger that serious
problems occurring at a lower level may be overlooked (Brooks,
1991a; Verschure and Althaus, 2003).

Taken together, we focus on a system that allows for the ability
to plan ahead (McFarland and Bösser, 1993) relying on intersnal
representation (Steels, 2003) that are grounded in embodied
experiences (Gallese and Lakoff, 2005). In this way, we follow the
proposal of Feynman, who stated that we can only understand
a system when we are able to create it (in Hawking, 2001; p.
83). We start with a decentralized, reactive neuronal network
controller (Dürr et al., 2004) for a complex hexapod robot which
is expanded by a holistic body model represented by a “hard-
wired” recurrent neural network (RNN) and used for inverse
kinematics (Schilling et al., 2012). Based on a reactive structure
the robot allows for walking in an unpredictable environment.

We will further enable the robot to cope with situations for
which the reactive system does not offer a solution. In this
case, a “cognitive expansion” shall allow the system to search
for a new solution to this problem. The search space is not
only characterized by the 18◦C of freedom (DoF) of the robot,
but is expanded by the fact that the controller being embodied
heavily depends on the “loop through the world,” i.e., depends
on the unpredictable properties of the environment. Further, the
complexity of the situation is increased as behavioral elements
to be selected show various time dependencies. To cope with
such situations, the system first has to search for a behavioral
element normally not used in the current context. The search
space is large and not continuous. So, gradient descent methods
are not applicable. The search for new solutions is based on (i) a
somatotopic heuristic, (ii) noise applied to part of the cognitive
expansion network as well as (iii) tests for physical feasibility
of the solution proposed, first by internal simulation, second by
performing the behavior in reality. For internal simulation, we
exploit the property of the body model used here, which means
that the same model cannot only be used as an inverse model,
but also as a predictive model. Therefore, this body model can be
used for motor planning applying an internal simulation to test
newly selected behavioral elements.

The results show that the cognitive expansion requires only a
small number of neurons coupled by a quite simple connectivity.
This simple network shows basic properties required for a
cognitive system and can be used as a scaffold for later
introduction of further properties. In addition, capabilities like
showing attention or emotions, might be found as properties
emerging from such an architecture as discussed in Cruse and
Schilling (2013).

The article is structured in the following way. The second
section (Methods and Material) is divided in three parts. In
section Background and Previously Developed Models. Reactive
Walker—the Walknet (Reactive Walker) the simple control
system for a hexapod walker is introduced which is biologically
inspired from studies on the walking of insects. In section
Motor Planning: from Walknet to reaCog (Motor Planning)
the cognitive expansion is presented including an example that
illustrates how the basic reactive system is recruited for planning.
This will be followed by a more detailed explanation of the
control architecture and the experiment setup (section Cognitive
Expansion). Simulation results will be presented, on the one
hand, for an example scenario (section Results) explaining our
approach. On the other hand, a series of simulations shall
demonstrate how the approach deals with disturbed walking.
While there is no similar robotic architecture which applies
behaviors out of context and realizes recruitment as internal
simulation, we will present a brief overview on related work and
discuss differences and implications (section Related Work). In
the Discussion we will analyze the properties of the complete
system, discuss them and briefly turn toward the question as to
how aspects of higher-level phenomena being listed above may
emerge in our system (Discussion and Conclusions).

MATERIALS AND METHODS

Background and Previously Developed
Models. Reactive Walker—The Walknet
Biological Model of Insect Walking
The example we choose as a reactive basis and which will briefly
be explained in the following concerns a hexapod (insect-like)
walking system (see review Schilling et al., 2013b for details).
The task to walk over a non-predictable substrate—possibly
cluttered with obstacles of varying size and holes—is by no
means a trivial one. The walker has six legs each equipped with
three joints. Therefore, the controller has to deal with 18◦C of
freedom (DoF). As body position in space is defined by only six
DoFs (three for position in space, three for orientation) there
are 12 DoFs free to be decided upon by the controller which
means that the controller has to make these 12 (respectively 18)
decisions in a sensible way at any moment of time while dealing
with an unpredictable environment. As a first step, the walker
is only using tactile sensors situated in the legs (and possibly
the antennae Schütz and Dürr, 2011) measuring contact with
external objects, and with proprioceptors measuring position,
torques and velocities of joints.

The walking system to be described in the following is based
on behavioral (and to some extent neurophysiological) studies on
insects, in particular stick insects (Schilling et al., 2013b). At first,
we briefly describe the essentials of the earlier version, Walknet,
and will then introduce expansions.

Experiments on the walking stick insect have shown that the
neuronal system is organized in a decentralized way (Wendler,
1968; Bässler, 1983; Cruse, 1990). Derived from these results,
a model has been proposed in which each leg is attributed a
separate controller (Dürr et al., 2004; for a review Schilling
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FIGURE 1 | General architecture of the reactive controller Walknet. The

complete system consists of one controller for each leg (LF/RF left/right front

leg, LM/RM left/right middle leg, LH/RH left/right hind leg). Coordination rules

(1,2,3) act between neighboring legs, prolonging, or shortening the stance

phase. Each leg controller contains several modules, a Swing-net and a

Stance-net, to control swing and stance movement, respectively. In Figure 2,

the shaded section is depicted in more detail.

et al., 2013b). Figure 1 sketches the approximate anatomical
arrangement of the controllers and the numbering of the legs.
These single leg controllers are assumed to be situated in the
thoracic ganglia (for a review see Bässler and Büschges, 1998).
Figure 2 shows details of the controllers as used in Walknet
for the left middle leg (LM_leg) and the left hind leg (LH_leg).
A single leg controller mainly consists of several movement
primitives that reflect the leg movement consisting of two
phases. These are the stance movement, during which the leg
maintains ground contact and is retracted to propel the body
forward, while supporting the weight of the body, and the swing
movement where the leg is lifted off the ground and moved
in the direction of walking, to touch down at the location
where the next stance should begin. The movement primitives
controlling stance and swing are realized in the leg controller
(Figure 2) as several modules, or procedures, each containing
artificial neurons forming a local, in general, recurrent neural
network (RNN). These modules might receive direct sensory
input and provide output signals that can be used for driving
motor elements. The two most important procedural elements
in our example are the Swing-net, responsible for controlling
a swing movement, and the Stance-net controlling a stance
movement (Figure 2, for swing: see Dürr et al., 2004; Schumm
and Cruse, 2006, for stance: Schmitz et al., 2008; Schilling et al.,
2012). The end positions used during forward walking are
stored in the procedures for the swing and stance movement,
i.e., the Swing-net and Stance-net respectively (in Figure 2

they are part of the gray rounded boxes called Swing-net and
Stance-net. Swing is triggered when the stance-end-position
is reached, Stance movement is triggered by ground
contact).

Following Maes (1990) the overall activation of a procedural
element is controlled by a motivation unit (represented by
yellow circles in the Figures) that gates to what extent the
corresponding procedural element contributes to the control of
the leg. In the network, these units forming rate coded, non-
spiking neurons with leaky integrator, i.e., low pass, dynamics.
They have a piecewise linear activation function (from 0 to 1)
and control the strength of the output of the corresponding
procedure (in a multiplicative way). Here we deal with a very
simple motivation unit network that, initially, consists of just two
units, the motivation units for the two procedural elements used
in forward walking, Swing-net and Stance-net. Each motivation
unit is reinforcing itself (not shown in Figure 2) and at the same
time inhibiting the other motivation unit, forming a winner-take-
all (WTA) net and allowing only one behavior to be active at
any given time (Figure 2). Secondly, sensory signals control the
behavior selection by influencing the motivation units and thus
initiate behavioral transitions. When the leg touches the ground
toward the end of a swing movement, the ground contact causes
switching to stance movement by activating the motivation unit
Stance. Correspondingly, during forward walking, reaching a
given posterior position activates the motivation unit Swing. As
an extension, we introduced backward walking. In this case,
new swing and stance procedures are introduced including their
motivation units (Figure 3). Swing_toBack behavior stores the
target for the swing movement to the back. As for forward
walking, a memory element is required representing the stance
end position (for details see Schilling et al. (2013a) and
explanation of the Stance movement below).

Furthermore, a leg controller must also take into account the
interaction with the other legs. Part of these interactions are
mediated directly by the body and through the environment,
making explicit computations superfluous (see, e.g., the local
positive velocity feedback approach Schmitz et al., 2008). While
the physical coupling through the environment is important, it is
not sufficient. In addition, the controllers of neighboring legs are
coupled via a small number of channels transmitting information
concerning the actual state of that leg (e.g., swing, stance) or its
position (i.e., values of joint angles). These coordination rules
were derived from behavioral experiments on walking sticks
(Cruse, 1990). In Figure 1 the channels are numbered 1–3. These
coordination rules influence the length of the stance movement
by influencing the transition from stance to swing movement,
i.e., they change the value of the PEP. In Figure 2 only one
connection is shown, influence # 1, which suppresses the start of a
swing movement of the anterior leg during the swing movement
of the posterior leg (for details see Schilling et al., 2013b).

Beyond the motivation units that are directly controlling a
procedural element, there are also motivation units (Figure 3,
yellow circles) that are arranged to form some kind of
hierarchical structure. Units which belong to the procedural nets
controlling the left middle leg show positive connections to a
motivation unit termed Leg_LM and this is correspondingly
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FIGURE 2 | Interactions between two leg controllers, left middle leg and left hind leg. This figure details the shaded area of Figure 1. The left side indicates

the interaction with the environment mediated through the body. Each leg controller contains several modules: a Swing-net and a Stance-net to control swing and

stance movement, respectively, each equipped with a motivation unit (depicted by yellow circles). Connections with an arrow indicate positive (“excitatory”) influences,

connections ending with a T-shaped ending indicate negative (“inhibitory”) influences. On the right, one sub-module (Swing-net) is shown in more detail, as it is

implemented as a neural network (numbers refer to weights). Target angles serve as an input to the neural network and are stored in the component. Each of the three

neural units inside the Swing-net controls the movement of one leg joint. Only one coordination influence is shown in the diagram. In this case, coordination influence

1 (see Figure 1) is acting between the hind and the middle leg. While the hind leg is in swing, the posterior extreme position (PEP) of the anterior leg is shifted

backwards and therefore the stance movement is prolonged (1-PEP). For further details see Schilling et al. (2013b).

the case for all six legs (only two legs are depicted in
Figure 3). These six “leg units” are in turn connected to a unit
termed “walk” in Figure 3. This unit serves the function of
arousing all units possibly required when the behavior “walk” is
activated.

In the case considered here, the motivation unit network,
a recurrent neural network, can adopt different stable states,
or attractors, forming different overlapping ensembles. For
example, all “leg” units and “walk” are activated during backward
walking and during forward walking, but only one of the two
units termed “forward” and “backward” and only 12 of the 24
end position memories are active in either case. The network is
therefore best described as forming a heterarchical structure (for
details see Schilling et al., 2013a). Such an “internal state” adopted
by the network protects the system to respond to inappropriate
sensory input. For instance, as a lower-level example, depending
on whether a leg is in swing state, or in stance state, a given
sensory input can be treated differently: stimulation of a specific
sense organ (not depicted in Figures 2–3, but see Schilling
et al., 2013b) leads to a levator reflex when in swing, but not
during stance. In other words, the motivation unit network can
be considered to act as a top-down attention controller. On

higher levels, further internal states could be distinguished, as for
example walking, standing still or feeding (for a more detailed
discussion on how such a heterarchical network can be structured
and learned see Cruse and Schilling, 2010).

The heterarchical structure sketched in Figure 3 comprises
a simple realization of neural reuse as proposed in
Anderson’s massive redeployment hypothesis (Anderson,
2010) as specific procedures are used in different behavioral
contexts.

The system as described so far is a slightly expanded version
of the earlier Walknet that represents a typical case of an
embodied controller (1st order embodiment, c.f. Metzinger,
2006, 2014): Kinematic and dynamic simulations as well as
tests on robots have shown that this network can control
walking at different velocities, producing different insect gaits
including the continuous transitions between the so called
wave gait, tetrapod gait and the tripod gait, negotiating curves
(Kindermann, 2002), climbing over obstacles (Kindermann,
2002; Dürr et al., 2004), and over very large gaps (Bläsing,
2006), and coping with leg loss (Schilling et al., 2007). Thus,
Walknet exhibits a free gait controller where the gaits emerge
from a strictly decentralized architecture. Application of this

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2017 | Volume 11 | Article 3

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Schilling and Cruse ReaCog, a Minimal Cognitive Controller

FIGURE 3 | The extended Walknet. Compared to the version shown in Figure 2, the ability to walk backwards has been introduced (not all details are shown

here.). Each procedural element is equipped with a motivation unit (yellow circle). In addition, the coordination influences (only rule # 1 is depicted) can now be

modulated by a motivation unit (yellow circle, coordination Rule # 1). Further motivation units are introduced (red connections and units) being arranged in a

heterarchy—again only a fraction of the network is shown (see also Figure 2).

decentralized approach allows for a dramatic simplification of the
computation by exploiting the loop through the world (including
the own body). For example, trajectories of swing movements

are not explicitly given, but result from the cooperation between
the Swing-net and the “loop through the world,” i.e., the sensor
readings describing the current position of the leg joints. This
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structure allows for immediate adaptation of swing trajectories
to unpredictable disturbances. Similarly, the spatio-temporal
patterns of leg movement (“gaits”) are not explicitly specified
but result from decentralized local coordination rules and the
coupling of the legs via the substrate (see review Schilling et al.,
2013b). This network has been tested in dynamic simulation
(Schilling et al., 2013a,b) and applied to the robot Hector
(Schneider et al., 2011; Paskarbeit et al., 2015). As will be shown
in section Motor Planning: from Walknet to reaCog (Motor
Planning), this modular structure is a crucial condition to allow
recombination of procedural elements as required by a cognitive
system.

Walknet with a Body Model
The control of the stance movement is a complex task which
requires the coordination of multiple legs and joints. While
local embodied approaches can deal with quite complex walking
scenarios and disturbances (Schmitz et al., 2008), a purely
embodied approach relying on the coupling through the body
itself and local leg controllers has shown to become insufficient in
other cases (Schilling et al., 2012). For example, stick insects are
able to negotiate curves which can be very tight (Dürr, 2005; Dürr
and Ebeling, 2005). In the case of curve walking, the different
legs are producing quite different movements and are taking over
different roles as there is, for example, a differentiation between
inner and outer legs. To better cope with such problems, we
apply an internal model of the body for the control of the stance
movement (Schilling et al., 2012).

Body models are used for three different purposes [for a
recent, comprehensive review see Morasso et al. (2015)]. First,
inverse models have been applied (e.g., Wolpert and Kawato,
1998) to compute motor commands for given goal positions
of an end-effector. The second task concerns the ability to
predict the position of the end-effector when motor commands
are known but not yet executed (Wolpert and Flanagan, 2001;
Webb, 2004). In this case the body model is used as a forward
model, for instance to overcome sensory delays. Third, even

simple animals as insects use a high number of sensors, for
example to measure joint positions or load. In order to exploit
this redundancy (e.g., to improve inexact or even missing sensor
data), the different sensory inputs have to be fused which
requires a body model (Makin et al, 2008). Used for visual
perception, the body model, mirroring the observed movement,
is strongly related to mirror systems as found in animals
(Rizzolatti et al., 1996) and in humans (Rizzolatti, 2005), and
might be linked to the understanding of others (Loula et al.,
2005).

Whereas, in other approaches usually an individual model has
been required for each task and each behavioral element (Wolpert
and Kawato, 1998), we use one simple holistic recurrent neural
network that can cope with all three tasks. The body model used
copes with the at least 18◦C of freedom of the insect body (six legs
of 3◦C of freedom each).

The complexity of the six-legged walker is distributed in the
body model into interacting submodels (see Figure 4, Schilling
and Cruse, 2007). On the lowest level, each leg is represented as
a detailed model of all the leg segments and connecting joints
[Figure 4B, right; for details see (Schilling, 2011; Schilling et al.,
2012)]. These leg models are integrated on a higher level in a
model of the central body, where each leg is only represented
by a vector pointing from the body segment toward the tip of
the leg (Figure 4B, left; for details see Schilling and Cruse, 2012;
Schilling et al., 2013a). As this network is based on the principle
of pattern completion, any input vector given to the network—
may it correspond to the input required for a forward model,
an inverse model, or a sensor fusion model—provides an output
that, after relaxation, leads to a coherent body state. This means
that in any case the kinematics represent a geometrically correct
body position. Next, we will explain how this body model can be
integrated into the architecture of Walknet.

Figure 5 illustrates how the body model is integrated into
the network. As depicted in this figure, the internal body model
comprises an independent system, which may receive sensory
input and/or motor commands. In turn, it provides sensory

FIGURE 4 | The body model. (A) illustrates how the body model (black) represents the body of the robot (gray). (B) The Mean of Multiple Computation (MMC) body

model for the six-legged walker is divided into two layers. The lower layer contains six networks, each representing one leg (for details see Schilling et al., 2012). The

upper layer represents the body and the six legs, which are only represented by bold vectors pointing toward the tip of each leg as shown in (B), left. On this level the

leg is described with reference to the respective body segment. Both layers are connected via the shared leg vectors (marked by the double-lined vectors of the left

front leg) and are implemented as recurrent neural networks.
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FIGURE 5 | The first step to reaCog: Walknet expanded by an internal body model. Only a part of Walknet as shown in Figures 1, 2 is depicted (the left

middle leg). During normal behavior, the Internal Body Model (upper left) serves perception. The body provides proprioceptive input (e.g., joint angles from the legs)

that is integrated within the body model to form a coherent sensory experience. With the switch in position 1, the network represents a reactive controller. If the

system runs into a problem, the switch is flipped from position 1 to position 2 and the motor control (double-lined arrows entering the switch on the right) is routed not

to the body anymore, but instead to the body model (dashed double line). This circuit is used for internal simulation and predicts the sensory consequences of the

action. The body model is now driven by the motor commands predicting the sensory consequences instead of integrating them. For further explanations see text.

signals or motor commands to the reactive structure Walknet.
The body model can be used for controlling the motor output
of the stance behavior in complex walking scenarios. In this case
it is part of the reactive controller (in Figure 5 the switch has
to take position 1). Using the body model as an inverse model,
movement of the legs during stance can easily be controlled
by applying the passive motion paradigm (Mussa-Ivaldi et al.,
1988). Like a simulated puppet, the internally simulated body is
pulled by its head in the direction of desired body movement
(Figure 5, sensory input). As a consequence, the stance legs of
the puppet follow that movement in an appropriate way and the
changes of the simulated joint angles can be used as commands
to control the actual joints. Therefore, if such a body model is
given, that represents the kinematical constraints of the real body,
we obtain an easy solution of the inverse kinematic problem, i.e.,
for the question how the joints of legs standing on the ground
have to be moved in concert to propel the body (for details and
application for the control of curve walking see Schilling et al.,
2012, 2013a).

In the next section we will introduce a fundamental expansion
termed “cognitive expansion.” The complete network, as we
will argue, shows how cognitive properties can emerge from a
system heavily relying on reactive structures, why we will call this
network reaCog.

Motor Planning: from Walknet to Reacog
The General Idea
To be able to implement the faculty to plan ahead, the neuronal
system has to be equipped with a representation of parts of the
environment (Schilling and Cruse, 2008; Marques and Holland,
2009). As it has been argued that, as seen from the brain’s point
of view, the body is the most important part of the environment
(Cruse, 2003), a neural representation of the own body is the first
step to take. Later, this body model of course has to be extended
to include aspects of the environment as are tools extending the
body, objects to be handled or an environment to interact with,
for example obstacles to be climbed over or to be circumvented.

As mentioned the body model introduced in the previous
section can be also used for prediction. Therefore, the body
model will be applied to allow the system for being capable of
planning ahead through internal simulation.

The basic idea that will be detailed in this section is simple.
In short, we will apply the following two-step procedure. If a
problem occurs, which means that the ongoing behavior cannot
be continued when using only the existing reactive controller, the
behavior will be interrupted. The system will then try to come
up with new behaviors by recombining the existing procedural
elements in a new way, i.e., not envisaged in the current context.
A procedural element is characterized by a section of the network
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that can be controlled by a motivation unit (as shown in Figure 3,
red and yellow circles). The properties of the new combination
will then be tested by using the internal body model instead of
the real body, the former now exploiting its faculty to serve as a
forwardmodel. If the new combination turns out to be successful,
it will be applied to control the behavior. If not, the system will
search for another new combination.

For better illustration, we will use the following example:
Imagine the case that one—say the left hind leg—has been
moved far to the rear and now receives the signal to start
a swing movement, i.e., to lift the leg off the ground. If
the two neighboring legs—the left middle leg and the other,
right, hind leg—accidentally are positioned far to the front,
lifting the left hind leg might lead the body falling to the rear
(Figures 6A,B).

Interruption of Behavior
To avoid tumbling over backwards, the system must be able to
detect that it is running into trouble. Therefore, one or several
systems are necessary that are able to detect that there is a
problem.While there are different biologically plausible solutions
(e.g., using load sensors as found in the insects), we chose as
a simple approach a stability sensor which is activated in case
the leg would be lifted,. In the example scenario this detector

becomes activated immediately after the motivation unit swing of
the hind left leg becomes activated, i.e., before the animal would
fall backwards onto the lifted leg.

If a problem has been detected by any detector the system
must (i) interrupt the ongoing behavior and (ii) be able to
change from the state “perform behavior” to the state “simulate
behavior.” To this end, we have introduced a switch as shown in
Figure 5. By moving the switch from position 1 to position 2,
the output of the leg controller—which is normally (position 1
of the switch) routed to the motor output to influence the body—
is now instead routed directly to the body model. Thereby the
position of the real body is kept fixed, i.e., the ongoing behavior
is interrupted (Hesslow, 2002) is providing a biological account
for this decoupling which has also been found in insects (Bläsing
and Cruse, 2004), but the internal body model can perform the
movements determined by the reactive controller. As in the case
of activelymoving the body, the output signals of the bodymodel,
in particular the angular values describing the position of the
leg joints, are given to the reactive procedures. In this way the
loop is closed and the system can internally simulate the behavior
by moving the body model instead of the real body. Note that
modules of the reactive procedures as are Swing-net and Stance-
net are still active as is the case in Walknet. 2.2.3 Coming up with
a new solution.

FIGURE 6 | A problem and a possible solution. (A) shows a posture in which the animal would fall over when trying to lift the left hind leg (dashed red arrow),

because the anterior, middle, leg and the other hind leg are too far to the front. The result is depicted in (B). However, the problem detector detects a problem before

the left hind leg is actually lifted, the cognitive system should start searching for a solution through mental simulation (C). The system might come up with the idea to

perform a backward swing with its left middle leg and afterwards proceed walking. After successful testing in simulation (C), the plan can be executed in reality (D),

i.e., first swinging the middle leg backwards and then swinging the hind leg to the front while continuing normal walking.
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This switch given, it appears of course not very interesting to
simulate exactly the behavior which has just led to the problem.
Instead, it is necessary to test new, currently not available
solutions. Therefore, the signal from the problem detectors is not
only used to move the switch, but also to start the search for a
new solution. To allow for this faculty, reaCog requires a further
fundamental expansion.

The main idea is that for internal simulation a new behavioral
element has to be selected. This new behavioral element may
be selected also from procedures not belonging to the current
context. How is this solved by reaCog? In Figure 7, the upper,
left part (i.e., without SAL net, WTA net, and RTB net) shows a

simplified version of the network as presented in Figure 5. The
expansion depicted at the right side enables the system finding
“new solutions” and then testing their qualification to solve the
problem. This expansion—that we will call “cognitive expansion”
or, as will be motivated in Section Discussion and Conclusions),
“attention system”—contains three additional layers, a spreading
activation layer (SAL, red circles), a winner-take-all layer (WTA,
green circles) and a remember-tested-behavior (RTB, blue circles)
layer with identical number of units each. In addition, there is a
small network termed Global Phases (lower part of Figure 7).

At the bottom, Global Phases, the structure is illustrated
that organizes the temporal sequence of finding a behavior as

FIGURE 7 | ReaCog: Walknet plus cognitive expansion. This figure shows an extension of the Walknet structure presented in Figure 5. The motivation unit

structure (yellow, e.g., Swing, Swing_toFront) is replicated on the right side, termed attention system, in three ways. There is a Spreading-Activation-Layer (SAL, red

circles), the WTA layer (green circles), and the remember-tested-behavior (RTB units, blue circles) layer. The problem detector (red and yellow, the latter for the internal

model) not only activates the switch, but also the spreading activation layer (SAL; red arrows) The activated spreading activation layer units activate their partner units

in the WTA network. The winner of the WTA is activating the corresponding motivation unit (dashed black arrows) and the corresponding motor program will be carried

out using internal simulation. Note that the connections within the WTA layer are not completely depicted.
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a solution to a novel problem. Additional units (gray circles)
show temporal properties and are used to organize the switching
between stages as explained in the text. Units “count” represent a
specific time delay.

Cognitive Expansion
In the following we will explain the function of the cognitive
expansion as depicted in Figure 7. The goal of the cognitive
expansion network is to search for a new procedural element
that allows for a solution of the current problem. The first step
is to look for behavioral elements existing in the memory, which
are, however, not activated in the current context. As will be
explained, only such procedural elements can be selected that
can be activated by a motivation unit. Second, the possible
contribution of this additional memory element will be tested by
internal simulation.

How is this done? The units of the SAL (Figure 7, red
circles) receive input frommorphologically neighboring problem
detectors (in Figure 7, one example is depicted by a bold, red
circle). Neighboring units are connected by positive weights. In
this way, an activation arising from a problem detector is spread
over the SAL roughly corresponding to a circular wave starting
at the position of the unit excited by the problem detector.
Further, there is noise added to the units of the spreading
activation layer. The middle layer is representing a winner-take-
all network. The units of the WTA layer (Figure 7, green circles)
are activated by the corresponding partner units in the SAL
layer. In addition, already active behavioral elements, i.e., their
active motivation units, are inhibiting their counterparts in the
WTA-layer (Figure 7, black solid line with T-shaped end). In this
way, currently active behaviors are prevented from being selected
for testing in internal simulation. Through the winner-take-all
process the units are inhibiting each other in a way that only one
unit remains active when the network settles. For the third, the
right hand layer, there is again a one-to-one connection to the
WTA-layer. These RTB units (Figure 7, blue circles) store which
of the WTA units have already been tested in an earlier internal
simulation run.

The different procedural elements of Walknet and their
motivation units are anatomically arranged in a way that this
arrangement coarsely reflects the morphological ordering of
the legs (Figure 1, left). Consequently, the motivation units of
neighboring legs as well as the partner units of the Spreading
Activation layer (SAL) and of the winner-take-all (WTA) layer
are neighboring, too, and thus form some kind of somatotopical
map. Thus, the problem detector is not only signaling the
problem, but in addition also carries some information where the
problem occurred. In this way, the search for a new behavior is
not purely random, but follows some heuristics,—there is some
probability that a solution may be found morphologically near
the cause of the problem—which may accelerate the searching
process.

What is the functional role of these three additional layers
forming an expansion that we will call “cognitive expansion” or,
as will be motivated later in the discussion (Section Discussion
and Conclusions), “attention system”? Assume that in our
example (Figure 5) the problem detector situated in the left hind
leg has been activated (Figure 7, bold red arrow, starting at the
left). As noted earlier, this signal moves the switch from position 1
to position 2 to route the motor output to the body model instead
of the body itself. Thereby the ongoing behavior is interrupted. In
addition this signal activates one (or several) neighboring units of
the Spreading Activation layer. Figure 8 illustrates the sequential
activation of WTA layer, and RTB layer.

The winning WTA unit activates its motivation unit and as
a consequence, the corresponding—new—procedural element.
After the WTA net has made its decision and has activated the
motivation unit of a procedure normally not used in the actual
context, simulation using the internal body model will be started
to test the contribution of this new procedure. Note that therefore
a problem detector is also required inside the internal model
which functions in the same way, i.e., it observes static stability
of the (internally simulated) body (Figure 7, bold yellow arrows).

If during the internal simulation no problem detector becomes
active, the procedure appears to be a suitable solution for the
given problem. Thus, the solution is found following a search

FIGURE 8 | Illustration of the sequential changes of activation of SAL, WTA, and RTB units. When a problem occurs, the problem detector, on the one hand

stops the execution of current behavior (not shown). On the other hand, it induces activity in the spreading activation layer (SAL, red) which indicates where the

problem occurred. The activation is spreading vertically in the SAL. Each SAL unit excites its corresponding WTA unit. Importantly, currently active motivation units

(yellow) inhibit the WTA units (green units). The WTA units compete among each other producing one winning unit which in turn activates the corresponding motivation

unit and behavior. The units in the RTB layer (blue) represent which behavior has been active once during the simulation process and will inhibit a future activation

during the WTA selection process.
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driven by a heuristic including noise (given to the SAL units).
As a next step, this solution is tested for being mechanically
appropriate. In this case the switch is set back to position 1 and
the corresponding behavior will then be applied in reality. By
setting back the switch the real body will provide the sensory
input. As the winning WTA unit is still active (thus representing
a short term memory), the newly selected procedure will be
executed. If, however, already during the internal simulation this
“new solution” has proven not to be a solution—defined by a
problem detector of the internal model becoming active—the
search for a solution will be continued further. To this end, the
internal model will be reset to the current state of the body. Then,
the SAL net will continue the spreading of its activations and a
new behavior will be selected by the WTA-net. In this way the
procedure will be repeated until a solution is found.

When the new solution is tested in reality, there are still two
possibilities to be considered. If the realization of the proposed
solution is successful, behavior continues. However, the solution
may also turn out not to be realizable. This might for example
happen because the body model does not simulate the physical
properties of the body (and the environment) well enough. In this
case a—possibly different—problem detector will be activated by
starting again a new search procedure, with the internal body
model being reset to the current real state of the body as given
through the sensors.

In the remainder of this section, the structure that controls
the temporal sequences sketched above is explained in detail. As
indicated in the lower part of Figure 7, the complete procedure is
controlled by five specificmotivation units, Beh, SAL,WTA, SIM,
and Test forming the center of the Global Phases network. These
units are coupled via mutual inhibition (not depicted in Figure 7)
and in part by transient, i.e., high-pass like, units (Figure 7, gray
units and connections in the lower part).

During normal, i.e., reactively controlled walking the
motivation unit “Beh” is active, thereby inhibiting the other
four motivation units. If a problem is detected, the problem
detector is activated which in turn inhibits the ongoing behavior
(motivation unit “Beh”) and activates the “SAL” motivation
unit. In addition, the switch is moved to bypass the physical
body (the switch might be realized by further mutually coupled
motivation units, not shown in Figure 7) and the current
forward movement of the robot is inhibited for some time
that corresponds to duration of about one step of the leg (i.e.,
100 iterations). This allows sufficient time to test movements
before starting to continue forward walking. After a given time
required for sensible spreading of activations (e.g., two iterations,
triggered by the “Delay” unit shown in gray in Figure 7), the
SAL motivation unit is inhibited and the WTA motivation
unit is activated instead. The relaxation of the WTA net may
require a variable number of iterations. A simple solution is
to introduce one unit observing the convergence of the WTA-
network (“Relax”). This unit is activated as soon as the first unit
of the WTA layer has reached a given threshold, representing the
winning unit.

Only after a winner is detected (“Relax” in Figure 7), the
“WTA” motivation unit is inhibited and the simulation is started
(motivation unit “SIM”). If, after a given time of internal

simulation (we use 400 iterations which equals 4 s or about three
to four step cycles), no problem occurred, the motivation unit
“Test” will be activated instead to start the real behavior. If
during the test of the real behavior the problem occurs again
or a new problem is detected (in contrast to the situation
during simulation), the behavior is inhibited and the “SAL”
motivation unit is activated again. If however the behavioral test
is successful, too, the motivation unit “Beh” is activated (and the
motivation unit “Test” inhibited) to allow continuation of the
normal behavior. In contrast, if during simulation a problem is
detected, the simulation is interrupted (motivation unit “SIM” is
inhibited) and instead the motivation unit “SAL” is excited again
to search for a new “idea.” The temporal order of activation of
the different motivation units of the Global Phases network is
controlled by dedicated connections running in parallel to the
mutual inhibitory connections (Figure 7, gray) of all these units,

Importantly, each internal simulation has to start from the real
situation, i.e., the situation that led to the problem. Therefore, the
internal body model as well as the control system have to be reset
to this state before a new internal simulation is started. This reset
is triggered during the “SAL” stage. As the body did not actively
move during internal simulation, the current posture and sensor
readings can be used to reset the internal body model. It takes
the reactive part of the control system only a couple (one or two)
iterations to converge to the original state. It turned out that the
internal state does not have to be stored explicitly.

The complete procedure controlled by the Global Phase
network corresponds to what has been termed “incubation” and
“verification” (Helie and Sun, 2010), and is similar to the “note-
assess-guide” strategy or “metacognitive loop” as introduced by
Anderson et al. (2006). In a mathematical analysis applied for
example to logic reasoning systems the latter authors could show
that introduction of such a strategy indeed improves the behavior
of the complete system. The complete period, during which the
body is fixed and the body model is used for internal simulation,
may correspond to what Redish (2016), referring to Tolman, has
termed “vicarious trial an error.”

RESULTS

Simulation Results for the Example
Scenario
In this section, we will show a dynamic simulation of the reaCog
system. The example illustrates the faculty of reaCog to find new
solutions to a current problem using its capabilities for planning
ahead. (In this study there is no physical robot used yet, but
it is represented by a dynamic simulation.). Figure 6 shows an
awkward posture. This configuration can become problematic as
the left hind leg is already very far to the back and cannot move
further back. Therefore, in this situation the left hind leg has to
produce a swing movement. If the position of the left middle leg
and right hind leg are positioned very far to the front, lifting the
left hind leg can lead to instability, because the center of mass
is placed quite far to the rear, between the hind legs. A sensible
solution in our paradigm (Figure 6) might be the activation of
the Swing_toBack module of the left middle leg: A backward step
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of the anterior middle leg might allow this leg to take over the
body weight, and—as a consequence—afterwards allow lifting of
the left hind leg. Thereby, continuation of walking may become
possible.

In normal walking the reactive part of the controller is not
ending up in such a strange posture. Therefore, we had to
introduce an external disturbance to make the system tumble.
To this end, the placements of the left middle leg and right
hind leg will be changed in a way that during swing movement
the target position is pushed further to the front (by a third
of a step length). Such a strong change might occur in insects
when climbing over irregular ground. When there is no foothold,
the insects are starting searching movements to the anterior in
order to find a foothold (Dürr and Krause, 2001; Bläsing and
Cruse, 2004; Schütz and Dürr, 2011) which can be quite far to
the front. This does not pose a problem for the stick insect as
stability is strongly supported through the ability to attach the
feet to the ground. As the robot cannot use this method, he
has to find another solution (for example the one sketched in
Figure 6).

In the following, with help from Figures 9, 10, we will
explain how the system deals with this intervention. Figure 9

(middle panel) shows a footfall pattern which illustrates the swing
movements of the legs over time. A leg which is in swing phase is
marked as a black (or red) bar. For the medium velocity chosen a
gait is emerging that can be seen in the stepping pattern in the left
part of the figure. From a tripod-like starting posture the robot
converges more toward a fast tetrapod-like gait (at about 500
iterations). The lower part of Figure 9 shows still images of the
dynamic simulation (see Supplementary Material Videos 1, 2),
whereas the upper part provides a top view of the robots’
(or internal models’) configuration. The upper part shows four
specific snapshots of the posture of the walker (top view) facing
to the right. Only legs in stance phase, i.e., legs which support
stability are depicted.

For the same run, Figure 10 illustrates the position of each
leg over time. The position is plotted on the ordinate showing
the movement of the leg (green lines, swing movements during
forward walking are pointing upwards; stance movements are
going into the opposite direction).

The jumps in the position of the legs are due to the switching
from the real robot to the internal model required to reset
the internal model. Colors are used as in Figure 9. For further
explanations see text.

FIGURE 9 | Solving the problem illustrated in Figure 6: Foot fall patterns. The middle panel shows the footfall pattern of the hexapod over time (black/red bars

indicate swing movement of the leg). The upper panel shows some critical configurations of the robot (or, during internal simulation, the configuration of the internal

model). The robot is walking from left to right. In three cases, the left hind leg is shown as a dashed line indicating that it is supposed to start a swing movement. The

lower panel illustrates the behavior by screen shots taken from the Supplementary Material Videos 1, 2. The robot starts with a tripod-like leg configuration and

converges to a fast tetrapod gait. The problem is detected at (#2). The section highlighted red represents an unsuccessful internal simulation [ending in an unstable

configuration again as shown in (#3)]. The second internal simulation, highlighted green [starting at (#3)], turns out to be successful and solves the problem (backswing

of the left middle leg, depicted by red bars, (#4) shows the new posture before the start of the forward swing movement of the left hind leg). Highlighted blue is the

application of this solution to the robot (starting at (#5) which shows the robot posture at the beginning of the backward swing movement of the left middle leg). This

final test is successful, too, and the robot continues to walk (
⊗

indicates center of mass).
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FIGURE 10 | Solving the problem: Position of the individual legs over time. Green lines show the position of each leg over time—positive values are toward the

front of the walker. Ordinate is given in cm with the origin fixed to the COM of the robot. The blue dashed lines indicate the average extreme positions: The Anterior

Extreme Position (AEP) is the target position for the swing movement and is fixed during forward walking. The Posterior Extreme Position (PEP) indicates the position

at which a leg controller initiates a swing movement on average and switches from stance to swing (note that the coordination rules act on the PEP and shift the PEP

forward or rearward to organize the overall behavior which is not shown in the figure). Shortly after the left middle and right hind leg performed swing movements that

point very far to the front of the working range (#1), the walker becomes unstable (#2) when trying to lift the left hind leg. Therefore, internal simulations are started

(highlighted in green and red) during which motor commands are routed to the internal body model, the leg positions of which are shown. First (highlighted red), an

unsuccessful behavior is tested: a stance movement which has initially no effect as the agent is stopped. But when the agent accelerates again (after 100 iterations)

the problem is still present and the agent becomes instable (#3). As a second trial, a backward swing movement of the middle left leg is tested via internal simulation

(green highlighted area; the swing movement in the unusual direction is plotted in red). Afterwards (#5) the solution found is tested on the real robot (highlighted in

blue) showing that walking continues successfully.

As mentioned, we forced the robot into an awkward posture
in such a way that the swing movement of the left middle and
right hind leg moved very far to the front of their working
range, i.e., beyond their normal AEP. Next, the left hind leg
marked by a dashed line in Figure 9 is supposed to start a swing
movement. The center of mass would then not be supported
anymore by the left middle leg and right hind leg [Figures 9, 10
(2), after 580 iterations]. Therefore, the system would tumble
backwards.

As a consequence, the problem detector is activated, which
stops the overall movement of the robot and triggers the cognitive
expansion which then starts motor planning. In the example
shown in Figures 9, 10 the robot first selects a stance movement
in the left hind leg (due to the somatotopical neighborhood, see
Figure 7, in SAL layer). This stance movement is then applied in
internal simulation.

As a result, an unsuccessful internal simulation can be
observed (highlighted in red) (2)–(3), which is interrupted when
the left hind leg should be lifted, because this action would again
lead to an instable configuration of the internal body model [see
upper panel, (3)]. Note that during the time highlighted in red
(and green, see below) the robot is not moving. Only the internal
model is used to provide predictions of the movements.

As a consequence, a second iteration of the cognitive
expansion is invoked (this section is highlighted green, as it turns
out to be successful): First, activation is further spread in the SAL
layer. Second, a behavior is selected in the WTA layer which has
not yet been tested. And third, the behavior is applied as internal
simulation.

For this second internal simulation, the internal body model
and control system have to be reset initially. To this end, it turned
out to be sufficient to update, first, the internal model with the
values from the real robot structures (this is the starting condition
required for the internal simulations; see Figure 10, at the border
of the red and green section, the position of the leg in the internal
model jumps back to the original position of the robot leg).
Second, as the control system is behavior-based it depends on the
sensor state represented by the current position of the robot. This
state can be enforced onto the control system so that the system
converges back to its behavioral state.

In the simulation run shown, the behavior selected next is a
backward swing movement of the left middle leg (depicted in
Figure 10 by a red line for the position of the left middle leg;
correspondingly, in Figure 9 the swing movement backwards is
shown as a red bar). As illustrated in the parts highlighted in
green, again the forward movement of the body is interrupted for
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some time. During this time the newly selected behavior is tested
by internal simulation. When the system starts to accelerate
again, the left middle leg now being placed further to the rear
helps to support the robot. When the left hind leg starts to swing,
the left middle leg is ready to take over and to support the body
(shown in Figure 9 in the upper panel in the body posture at #4 at
around 800 iterations). The internal simulation runs further for
a given time (here we used additional 300 iterations) in order to
guarantee that normal walking can be continued.

When the internal simulation was successful the behavior
selected (which is still stored in the WTA layer) will be applied
on the (simulated) physical system (see #5 and blue area in
Figures 9, 10). This part is still regarded as a test of the behavior.
This test is necessary because internal simulation and robot can
of course lead to slightly different results which over time might
accumulate. For example, in Figure 9 the behavior of the right
middle leg differs between internal simulation and testing the
behavior on the robot. The right middle leg is very close to
its posterior extreme position and on the verge of starting a
swing movement. In both cases, the robot is standing still and
not supposed to move further forward. But in the case of the
robot (highlighted blue), a small passive movement would be
sufficient to initiate a swing movement. Nonetheless, as can be
seen from the footfall pattern, the application on the robot is
also successful and the system converges to a stable gait pattern.
This stresses the robustness of the underlying control approach
and highlights how important it is that planning and control are
tightly intertwined. In the blue area and beyond, Figure 10 shows
the movements of the leg of the real robot. Immediately after the
new behavior has been induced, one can observe how the phases
of the individual leg controllers are rearranged. For example,
the right front leg is forced to make an early swing movement
after the right middle leg has finished its swing movement (see
Schilling et al., 2013b). But already after a very short time, a single
step of the robot, a stable tetrapod-like gait emerges (as can be
seen in Figure 9).

The example illustrates the faculty of reaCog to activate
behavioral elements out of context in order to find a solution
to a current problem. As illustrated, the system (reaCog plus
robot) manifests an impressive stable behavior, although various
deviations from normal walking behavior can be observed during
the complete process.

Simulation Series on Disturbed Walking
For a more quantitative evaluation of the performance of the
reaCog architecture we performed two additional series of
simulations to illustrate the contributions of the different parts of
the system. On the one hand, there is the underlying reactive and
biological inspired control system (based on Walknet Schilling
et al., 2013a). On the other hand, when running into stability
problems the cognitive expansion has been introduced which can
take over in order to reconfigure the posture in a way that allows
to continue stable walking.

Following the approach presented above in detail, we again
used the repositioning of a leg during swing movement which
means that, for a selected swing movement, the target position
is shifted to the front. This represents a quite natural example

disturbance as the insects are often climbing through twigs
that do not provide many footholds. As a consequence, insects
perform searching movements that may shift the end position of
the swing movements further to the front.

As a first series of simulations, after a randomly chosen point
in time (during the first 10 s of walking) one leg is selected
randomly for which the next swing movement is shifted to
the front (about 5 cm which equals a third of a complete step
length). In this way, different legs are affected in different walking
situations. We ran 100 different simulations, therefore each leg
was targeted multiple times and in the different stages of the
10 s of walking. As a result, when only one leg is targeted the
reactive control system showed to be sufficient and the walker
never got unstable independent of which leg was shifted. For
all simulations, walking continued for at least 5 more seconds
after the disturbance. In most cases, already after one subsequent
step the control system has established again a stable walking
pattern. Only for an early change in a front leg this requires
two stepping cycles. Stability is accomplished mainly through
compensating the leg shift. While the shifting of the target
position would prolong the next step for the respective leg, the
local coordination influences force the leg into an earlier lift-
off in order to compensate. Detailed results are provided as
Supplemental Data 1 in SupplementaryMaterial which show for
each of the different legs (front, middle, and hind leg) a single run
as an example. As can also be seen in the data, the walking pattern
emerges quite early in the first or the second step.

As a more severe disturbance, we performed a series of
simulations in which two legs were targeted. Again, after a
randomly chosen point in time (during the first 10 s of walking)
two legs are selected randomly for which the next swing
movement is shifted to the front (about 5 cm which equals a
third of a complete step length). We performed 100 simulation
runs with all kind of combinations between legs multiple times.
As already discussed for the example shown above (Section
Simulation Results for the Example Scenario), in this case
the reactive biologically inspired control system may run into
unstable situations that require to stop the walking behavior to
avoid that the robot would topple over. In the following we
provide results on for how many cases the system struggled with
stability and how the cognitive expansion was able to deal with
those situations. Overall, there are eight instable situations which
were caused by a disturbance of a middle and the diagonal hind
leg (a case as described in detail above, Section Simulation Results
for the Example Scenario). For these eight simulation runs the
cognitive expansion had to take over and has found a solution in
all instances. The system always became instable when the other
(non-disturbed) hind leg tried to initiate a swing movement.
Interestingly, different solutions have been found. On the one
hand, a rearrangement of the legs could be observed in a way
that one leg was moved backwards and unload the non-disturbed
hind leg which afterwards was able to initiate a swing movement.
This was accomplished either through moving backwards the
anterior middle leg or the contra lateral hind leg. On the other
hand, we observed two cases in which the slowing down of the
walking speed of the complete system was already sufficient to
solve the problem as during the slowing down a swing movement
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could be terminated which provided enough support for the
walker.

These results show that the cognitive expansion is able to
find different suitable solutions. Note, that the solution disrupts
the coordination pattern of all the legs. Only together with the
reactive system and the coordination rules the system is able
to select a movement which enables stable ongoing walking. In
some instances the system discarded solutions which we, on a
first guess, would have assessed as possible solutions, but which
later-on run into conflicts.

RELATED WORK

In this section, we will compare reaCog as a system with related
recent approaches in order to point out differences. While
there are many approaches toward cognitive systems and many
proposals concerning cognitive architectures, we will concentrate
on models that, like reaCog, consider a whole systems approach.
First, we will deal with cognitive architectures in general. Second,
we will briefly present relevant literature concerning comparable
approaches in robotics, because a crucial property of reaCog is
that it uses an embodied control structure to run a robot.

Models of Cognitive Systems
Models of cognitive systems generally address selected aspects
of cognition and often focus on specific findings from cognitive
experiments (e.g., with respect to memory, attention, spatial
imagery; review see Langley et al. (2009), Wintermute (2012).
Duch et al. (2008) introduced a distinction between different
cognitive architectures. First, these authors identified symbolic
approaches. As an example, the original SOAR (State, Operator,
and Result; Laird, 2008) has to be noted, a rule-based
system in which knowledge is encoded in production rules
that allow to state information or derive new knowledge
through application of the rules. Second, emergent approaches
follow a general bottom-up approach and often start from
a connectionist representation. As one example, following a
bottom-up approach, Verschure et al. (2003) introduced the
DAC (Distributed Adaptive Control) series of robot architectures
(Verschure et al., 2003; Verschure and Althaus, 2003). These
authors initiated a sequence of experiments in simulation and
in real implementation. Verschure started from a reflex-like
system and introduced higher levels of control on top of the
existing ones which modulated the lower levels and which were
subsequently in charge on longer timespans (also introducing
memory into the system) and were integrating additional sensory
information. The experiments showed that the robots became
more adapted to their environment exploiting visual cues for
orienting and navigation etc., (Verschure et al., 2003). Many
other approaches in emergent systems concentrate on perception,
for example, the Neurally Organized Mobile Adaptive Device
(NOMAD) which is based on Edelman (1993) Neural Darwinism
approach and demonstrates pattern recognition in amobile robot
platform (Krichmar and Snook, 2002). Recently, this has gained
broader support in the area of autonomous mental development
(Weng et al., 2001) and has established the field of developmental
robotics (Cangelosi and Schlesinger, 2015). A particular focus in

such architectures concerning learning is currently not covered
in reaCog. In general, as pointed out by Langley et al. (2009),
these kinds of approaches have not yet demonstrated the broad
functionality associated with cognitive architectures (and—as
in addition mentioned by Duch et al. (2008)—many of such
models are not realized and are often not detailed enough to
be implemented as a cognitive system). ReaCog realizes such an
emergent system but with focus on a complex behaving system
that, in particular, aims at higher cognitive abilities currently
not reached by such emergent systems. The third type concerns
hybrid approaches which try to bring together the advantages
of the other two paradigms, for example ACT-R (Adaptive
Components of Thought-Rational, Anderson, 2003). The, in
our view, most impressive and comprehensive model of such a
cognitive system is presented by the CLARION system (review
see Sun et al., 2005; Helie and Sun, 2010) being applied to creative
problem solving. This system is detailed enough so that it can be
implemented computationally. Applying the so called Explicit-
Implicit Interaction (EII) theory and being implemented in the
CLARION framework, this system can deal with a number of
quantitatively and qualitatively known human data, by far more
than can be simulated by our approach as reaCog, in contrast,
does not deal with symbolic/verbal information. Apart from this
aspect, the basic difference is that the EII/CLARION system
comprises a hybrid system as it consists of two modules, the
explicit knowledge module and the implicit knowledge module.
Whereas, the latter contains knowledge that is not “consciously
accessible” in principle, the explicit network contains knowledge
that may be accessible. Information may be redundantly stored
in both subsystems. Mutual coupling between both modules
allows for mutual support when looking for a solution to a
problem. In our approach, instead of using representational
differences for implicit and explicit knowledge to cope with the
different accessibility, we use only one type of representation,
that, however, can be differently activated, either being in the
reactive mode or in the “attended” mode. In our case, the localist
information (motivational units) and the distributed information
(procedural networks) are not separated into two modules, but
form a common, decentralized structure. In this way, the reaCog
system realizes the idea of recruitment as the same clusters are
used in motor tasks and cognitive tasks. Whereas, we need an
explicit attention system, as given in the spreading activation and
winner-take-all layer, in the CLARION model decisions result
from the recurrent network finding an attractor state.

Many models of cognition take, quite in contrast to our
approach, as a starting point the anatomy of the human brain. A
prominent example is the GNOSIS project (Taylor and Zwaan,
2009). It deals with comparatively fine-grained assumptions
on functional properties of brain modules, relying on imaging
studies as well as on specific neurophysiological data. While
GNOSIS concentrates mainly on perceptual, in particular visual
input, the motor aspect is somewhat underrepresented. GNOSIS
shows the ability to find new solutions to a problem, including
the introduction of intermediate goals. Although an attention
system is applied, this is used for controlling perception, not
for supporting the search, as is the case in reaCog. Related to
this, the search procedure—termed non-linguistic reasoning—in
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GNOSIS appears to be less open as the corresponding network is
tailored to the actual problem to avoid a too large search space. In
our approach, using the attention system, the complete memory
can be used as substrate for finding a solution.4.2 Cognitive
Robotic Approaches

The approaches introduced in the previous section are not
embodied and it appears difficult to envision how they could
be embodied (Duch et al., 2008). Following the basic idea of
embodied cognition (Brooks, 1989; Barsalou, 2008; Barsalou
et al., 2012) embodiment is assumed as being necessary for any
cognitive system. Our approach toward a minimal cognitive
system is based on this core assumption. Robotic approaches
have been proposed as ideal tools for research on cognition
as the focus cannot narrowed down to a singular cognitive
phenomenon, but it is required to put a unified system into the
full context of different control processes and in interaction with
the environment (Pezzulo et al., 2012).

ReaCog as a system is clearly embodied. The procedures
cannot by themselves instantiate the behavior, but require a body.
The body is a constitutive part of the computational system,
because the sensory feedback from the body is crucially required
to activate the procedural memories in the appropriate way. The
overall behavior emerges from the interaction between controller,
body and environment. In the following, we will review relevant
embodied robotic approaches.

Today, many robotic approaches deal with the task of learning
behaviors. In particular, behaviors should be adaptive. This
means, a learned behavior should be transferable to similar
movements and applicable in a broader context. Deep learning
approaches have proven quite successful in such tasks e.g., Lenz
et al. (2015), but many require large datasets for learning. Only
recently Levine et al. (2015) presented a powerful reinforcement
learning approach in this area. In this approach, the robot
uses trial-and-error during online learning to explore possible
behaviors. This allows the robot to quickly learn control policies
for manipulation skills and has shown to be effective for quite
difficult manipulation tasks. When using deep learning methods
it is generally difficult to access the learned model. In contrast
to reaCog such internal models are therefore not well suited
for recruitment in higher-level tasks and planning ahead. In
particular, there is no explicit internal body model which could
be recruited. Rather, only implicit models are learned and have to
be completely acquired anew for every single behavior.

In the following, two exciting robotic examples tightly related
to our approach will be addressed in more detail. The approach
by Cully et al. (2015) aims at solving similar tasks as reaCog for a
hexapod robot. It also applies as a general mechanism the idea
of trial-and-error learning when the robot encounters a novel
situation. In their case these new situations are walking up a
slope or losing a leg. There are some differences compared to
reaCog. Most notably, the testing of novel behaviors is done on
the real robot. This is possible as the trial-and-error method is
not applying discrete behaviors. Instead, central to the approach
by Cully et al. (2015) is the idea of a behavioral parametrization
which allows to characterize the currently experienced situation
in a continuous, low dimensional space. A complete mapping
toward optimal behaviors has been constructed in advance offline

(Mouret and Clune, 2015). This pre-computed behaviors are
exploited when a new situation or problem is encountered. As
the behavioral space is continuous, the pre-computed behavior
can be used to adapt for finding a new behavior. Further, there is
no explicit bodymodel that is shared between different behaviors.
Instead, the memory approximates an incomplete body model,
as it contains only a limited range of those movements which
are geometrically possible. In contrast, reaCog, using its internal
body model, allows to exploit all geometrically possible solutions
and is not constraint to search in a continuous space, as illustrated
by our example case, where a single leg is selected to perform
completely out of context.

While there is only a small number of robotic approaches
dealing with explicit internal simulation, most of these are
using very simple robotic architectures with only a very small
number of degrees of freedom [for example see Svensson et al.
(2009) or Chersi et al. (2013)]. It should further be mentioned
that predictive models are also used to anticipate the visual
effects of the robot’s movements (e.g., Hoffmann, 2007; Möller
and Schenck, 2008). With respect to reaCog the most similar
approach has been pursued by Bongard et al. (2006). These
authors use a four-legged, eight DoFs robot which, through
motor babbling—i.e., randomly selected motor commands—
learns the relation between motor output and the sensory
consequences. This information is used to distinguish between
a limited number of given hypotheses concerning the possible
structure of the body. Finding the best fitting solution, one body
model is selected. After the body model has been learned, in
a second step the robot learns to move. To this end, the body
model was used to perform different simulated behaviors and
was only used as a forward model. Based on a reward given
by an external supervisor and an optimizing algorithm, the best
controller (sequence of moving the eight joints) was then realized
to run the robot. Continuous learning allows the robot to register
changes in the body morphology and to update its body model
correspondingly. As themost important difference, Bongard et al.
(2006) distinguish between the reactive system and the internal
predictive body model. The central idea of their approach is
that both are learned in distinct phases one after another. In
reaCog the bodymodel is part of the reactive system and required
for the control of behavior. This allows different controllers
driving the same body part and using the same body model for
different functions (e.g., using a limb as a leg or as a gripper,
Schilling et al., 2013a, Figure 10). In addition, different from
our approach, Bongard et al. (2006) do not use artificial neural
networks (ANN) for the body model and for the controller, but
an explicit representation because application of ANN would
make it “difficult to assess the correctness of the model” (Bongard
et al., 2006, p. 1119). ReaCog deals with a much more complex
structure as it deals with 18 DoFs instead of the only eight
DoFs used by Bongard et al. (2006) which makes an explicit
representation even more problematic.

Different from their approach, we do not consider how the
body model and the basic controllers will be learned, but take
both as given (or “innate”). While the notion of innate body
representations is controversial (de Vignemont, 2010), there is
at least a general consensus about that there is some form
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of innate body model (often referred to as the body schema)
reflecting general structural and dynamic properties of the body
(Carruthers, 2008) which is shaped and develops further during
maturation. This aspect is captured by our body model that
encodes general structural relations of the body in service
for motor control, but may adapt to developmental changes.
While currently only kinematic properties are applied, dynamic
influences can be integrated in the model as has been shown in
Schilling (2009).

A further important difference concerns the structure of
the memory. Whereas, in Bongard’s approach one monolithic
controller is learned to deal with eight DoFs and producing
one specific behavior, in reaCog the controller consists of
modularized procedural memories. This memory architecture
allows for selection between different states and therefore
between different behaviors.

DISCUSSION AND CONCLUSION

A network termed reaCog has been proposed that is based
on the reactive controller Walknet equipped with decentrally
organized behavioral modules, or procedures, all connected to
motivation units, and a body model. The motivation units form a
network that represents a heterarchical architecture allowing for
the realization of various internal states. These states result from
parallel activation of elements as well as competitive selection
between elements.

The body model can be used as an inverse model for
controlling motor output, as a forward model for internal
simulation of behavior, and it can be exploited to improve
erroneous sensor data (“sensor fusion”). Whereas, the reactive
part uses the ability of the body model to function as an
inverse model, the cognitive expansion exploits the internal
body model to be used as a forward model and thereby as a
tool for internal simulation of behavior. Internal simulation is
used for finding a new solution for a problem detected by a
problem detector. To this end, a three-layered network has been
introduced that selects a new, currently not used module of
the procedural memory, the contribution of which will then be
tested through internal simulation. If this simulation turns out
to be successful, i.e., shows a solution for the current problem,
the corresponding behavior will be executed in reality. Thus,
motor planning is possible using an extremely small expansion,
a network consisting of essentially six units plus three parallel
layers of units connected in a simple way.

In reaCog, there is no explicit, separate planner as used
in hybrid systems. Rather, the ability to plan ahead relies on
exploiting the reactive basis by operating on it much like a
parasite operates on its host, that is, by only controlling the
functioning of the reactive part. In other words, the cognitive
expansion does not represent a separate planner, but organizes
the activity of the reactive part, which is, during planning, not
connected with the motor output.

Thus, constitutive elements of reaCog are (1) embodiment, (2)
a decentralized organization of various procedures arranged in
a heterarchical architecture, (3) a holistic body model allowing

for pattern completion that is used in reactive behavior and can
be recruited for planning ahead, and (4) a small network, called
cognitive expansion, that enables the otherwise reactive system
to become—in the sense of McFarland and Bösser (1993)—
a cognitive one. We are not aware of any other neuronal
approach that covers all these properties. Although the network
represents a simple architecture, in the following we will argue
that properties often attributed to “higher” brains can be found
in reaCog, too, thereby approaching the question concerning the
basic neuronal requirements of such higher level phenomena.

Before entering into this discussion, one important aspect
missing in the current version of reaCog has to be noted. There
is long term memory represented by the procedures in the form
of “species memory” (Fuster, 1995). There is short term memory
as a new solution is stored until the corresponding behavior
is executed. There is however no faculty yet to transform the
content of this short term memory into a long term memory.
The ability to store such a newly acquired procedure as a long
term memory would of course be an advantageous property.
To gain this capability, the sensory situation accompanying
the occurrence of a “problem” should be able to directly elicit
activation of the procedure found to solve the problem.

When discussing the properties of a network like reaCog,
a crucial aspect concerns the notion of emergence. The
rational behind searching for emergent properties is the
assumption that many “higher level” properties are not based
on dedicated neuronal systems specifically responsible for the
respective properties. Rather, emergent properties arise from the
cooperation of lower-level elements and are characterized as to
require levels of description other than those used to describe
the properties of the elements. In the remainder, such emergent
properties will, where appropriate, be related to the requirements
posed by Langley et al. (2009) supporting the idea that reaCog
provides a minimal functional description for some of those
requirements.

According to Langley et al. (2009), a cognitive system should
show the following properties: (1) Storing motor skills and
covering the continuum from fully reactive, closed-loop behavior
to (automatic) open-loop behavior; (2) Emergent properties
resulting from the cooperation between different independent
modules; (3) Long term memory and short term memory; (4)
Attention to select sensory input; (5) Decisions on the lower
level and “choice” on the higher level; (6) Predictions of possible
actions; (7) Problem solving and planning of actions in the
world; (8) Recognition and categorization of sensory input; (9)
Remembering and episodicmemory; (10) Application of symbols
and reasoning; (11) To support reasoning, relationships between
beliefs have to be realized; (12) Interaction and communication,
including representation of verbal symbols; (13) Reflection and
explanation (metareasoning); (14) Confronting the interactions
between body and mind.

Requirements (1) and (2) are properties of Walknet. Above,
we already argued that requirements (3), (6), and (7) can be found
in reaCog, too. Belowwewill argue that also requirements (4) and
(5) are fulfilled, but not aspects (8)–(14).

As the cognitive expansion of the reactive network allows
the complete system—using psychological terms to describe
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its function—to “focus” or “concentrate” or “attend” on a
specific behavior, we have already earlier termed this expansion
“attention system” supporting Langley et al.’s issue (4). Its ability
to focus on specific memory elements may correspond to what
sometimes has been termed “spot light” (Baars and Franklin,
2007) referring to the observation that the content of only one
memory element becomes aware at a given moment in time.
Recall, that selection of a specific procedure via theWTA network
of the attention system does not mean that the other procedures
are suppressed. The cognitive expansion network does not
prohibit parallel activation of procedures. This requirement is in
line with current developments in the area of cognitive systems
research as pointed out by Duch et al. (2008). Inspired by the
way how brains are organized, these authors propose, first, that
cognitive systems in the future should incorporate a mechanism
to focus attention, which is realized in reaCog through simple
local competition as realized in theWTA structures. And second,
that a neural network-like spreading activation mechanism is
required in order to broaden search and follow associations,
which is given in the spreading activation layer.

The fifth aspect of Langley et al. (2009) is concerned with
action selection on lower levels and “choice” of behavior on
a higher level. Action selection is indeed a crucial property
of the network. On a lower level, within a given behavioral
context—in our case walking—specific procedures compete via
local WTA connections. For instance, a leg controller has to
decide when to perform swing or stance movements. On an
intermediate level, a decision can be made between, for example,
forward walking and backward walking. On an even higher level,
reaCog, exploiting the cognitive expansion, can select one specific
behavioral element to be activated in addition to the currently
active units. Therefore, Langley et al.’s requirement (5) is covered,
too.

Thus, reaCog shows action selection not only on the reactive
level, but also on the cognitive level, whereby the decisions based
on internal simulation (or imagined action, “mental” action, or
“probehandeln” according to Freud (1911) are not determined
strictly by the sensorily given situation. Even if an external
observer had the ability to monitor the internal states of the
agent controlled by reaCog, the behavior of the agent could
not be predicted by this observer. This is the case because,
due to the noise in the SAL network, there is a stochastic
element contributing to the decision. On the other hand, the
final decision is not purely random, because the proposals made
by the attention system are tested for feasibility via the internal
simulation and are to some extent guided by the somatotopic
structure of the SAL network. The proposal is further tested
by performing the behavior in reality. In this way, this process
of finding a new solution may be viewed as to be based on
a Darwinian procedure, starting with an, in part, stochastic
“mutation,” followed by a selection testing the proposal for
“fitness.”

It has been stated that in a cognitive system, in order to
address memory elements out of context (“global availability,”
e.g., Dehaene and Changeux, 2011), these elements have
to be represented independently, i.e., not embedded in
reactive structures. In reaCog, procedures are not represented

independently, but are always represented within their context.
Nonetheless, the functioning of the cognitive expansion allows
to integrate them in another context. In other words, in
reaCog, the procedures are globally available. Therefore, global
availability may not require procedures being stored independent
of any context (or “amodally”). Thus, reaCog represents a
concrete architecture showing how global availability might be
established in a neural system without requiring independent
representation.

There is a group of related terms addressing a fundamental
principle of brains. These are the “massive redeployment
hypothesis” (Anderson, 2010), the “neural recycling theory”
(Dehaene, 2005), the “shared circuits model” of Hurley (2008)
and Gallese’s “neural exploitation” (Gallese and Lakoff, 2005),
summarized by Anderson (2010) by the term “neural reuse.”
Neural reuse means that a system is able to exploit existing
components that do something useful to support a new task,
either in the evolutionary time frame or by learning (Anderson,
2010, p. 250). In other words, neural reuse states that existing
elements are used for other purposes. ReaCog models neural
reuse of two kinds as listed by Anderson. One type, already
applied in the current version of reaCog, corresponds to the use
of the same procedural elements for both motor control and
planning. Here reuse corresponds to the case of having been
installed in evolutionary time scales. The second type addressable
in reaCog concerns the reuse of procedural elements as a result
of learning the integration of a given procedure in a new context
as described above, which is, in reaCog, currently only given in
the form of short term memory. But the ability to transfer this
information into long term memory is a major focus for future
work.

Although the structure of reaCog is far away from any
morphological similarity to mammalian brains, functionally
reaCog shows some similarity and may, therefore, in spite
of its simplicity, be considered as a scaffold helpful for the
understanding of properties of higher brains. To this end,
taking a more abstract view, one might ask whether higher
level properties characterized by using psychological terminology
might be attributed to reaCog. As noted earlier, in reaCog
emergent properties can already be observed at lower levels (e.g.,
production of different gaits) but they can also be found at higher
levels, thereby supporting Langley et al.’s second requirement.
Above, we had already used one such higher level term, attention.
It has been argued (Cruse and Schilling, 2013, 2015) that further
emergent properties as are intentions and emotions might be
attributed to a system as reaCog, too, at least on the functional
level. When adding some further procedures, reaCog might even
be equipped with basic aspects required for Access Consciousness
as well as Reflexive Consciousness (Cruse and Schilling, 2013,
2015).

Taken together, Langley et al.’s (Langley et al., 2009)
requirements for cognitive systems (1)–(7) are well covered by
reaCog. To conclude, we will briefly address the remaining
issues (some of which have already been mentioned above): The
capability to categorize sensory input, [Langley et al.’s issue (8)]
is not given in reaCog as we focus mainly on the motor aspects.
As mentioned, learning will be the focus of future work and
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will address episodic memory (9). Other aspects would require
further extension: Langley et al.’s issues (10)–(12) refer to the
ability to use (verbal) symbols, a property not given in reaCog.
However, a way has been sketched how this might be possible (for
a first step toward this property see (Schilling and Spranger, 2010;
Cruse and Schilling, 2013; Schilling and Narayanan, 2013), based
on ideas of Steels and Belpaeme (2005) and Narayanan (1999).

Langley et al.’s issue (13) concerns Reflection and explanation.
This property is not realized in reaCog and may also depend on
the ability to apply symbolic knowledge. Issue (14), the property
of cognitive systems to “confront the interactions between
body and mind” addresses the property of having phenomenal
experience, and is not found in reaCog, too (for a discussion of
this matter see Cruse and Schilling, 2013, 2015). In summary,
a number of emergent properties can be observed in reaCog,
including Langley et al.’s issues (1)–(7). Issues (8)–(13) require
further expansions.

In this article we focus on the situation that there is a problem
which requires immediate solution and as a consequence,
immediate internal simulation. As in our situation the body
model is needed for simulation, the former cannot be used for
controlling other behaviors at the same time. In other words,
the body position has to be kept constant during internal
simulation. In the following we briefly mention three cases which
do not comply with this situation. In the first case internal
simulation is not required. In this simple case the network is
equipped with reactive procedures that allow for unspecific,
general responses in case a problem detector is activated. An
ubiquitous example is given by freezing behavior without active
search for a solution, hoping that the problem will disappear
on its own. Another example might be a procedure that allows
emitting a general alarm signal that activates conspecifics. As
a second case, one might think of situations that allow to
postpone the search for a solution. In this case the normal
behavior can be continued until a situation is given that allows
to use the internal model without getting into conflict with
current behavior. This case would at least require a short term
memory to store the problem situation so that this could later
be reactivated to start internal simulation, an expansion not yet
implemented in the current version of reaCog. As a third, more
complex case there might be a network that is able to control
any behavior and at the same time, run an internal simulation.
Whereas, for the second case a comparatively simple expansion
of reaCog would suffice, the latter case appears to be much more
demanding. It might, for example, require a second internal

model plus the corresponding circuit to control both models
independently.

The term “cognition” as used here, is based on the simple
definition proposed by McFarland and Bösser (1993), i.e., the
faculty of being able to plan ahead. This faculty is achieved
here by using a reactive system plus introduction of a “cognitive
expansion.” As discussed above, such a system appears to be
suited to form a basis on which further emergent properties may
be realized, properties that are often listed as being required for
a system termed cognitive as are Langley et al’s requirements
(8)–(14), for example. If this view is correct, these properties
need not necessarily be explicitly included in such a definition,
but appear to result from a system based on reactive structures
plus the critical capability of planning ahead, underlining the
power of McFarland and Bösser (1993) clear-cut definition of
cognition.
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