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Robots have proven very useful in automating industrial processes. Their rigid compo-
nents and powerful actuators, however, render them unsafe or unfit to work in normal
human environments such as schools or hospitals. Robots made of compliant, softer
materials may offer a valid alternative. Yet, the dynamics of these compliant robots are
much more complicated compared to normal rigid robots of which all components can
be accurately controlled. It is often claimed that, by using the concept of morphological
computation, the dynamical complexity can become a strength. On the one hand, the
use of flexible materials can lead to higher power efficiency and more fluent and robust
motions. On the other hand, using embodiment in a closed-loop controller, part of the
control task itself can be outsourced to the body dynamics. This can significantly simplify
the additional resources required for locomotion control. To this goal, a first step consists
in an exploration of the trade-offs between morphology, efficiency of locomotion, and
the ability of a mechanical body to serve as a computational resource. In this work,
we use a detailed dynamical model of a Mass–Spring–Damper (MSD) network to study
these trade-offs. We first investigate the influence of the network size and compliance on
locomotion quality and energy efficiency by optimizing an external open-loop controller
using evolutionary algorithms. We find that larger networks can lead to more stable gaits
and that the system’s optimal compliance to maximize the traveled distance is directly
linked to the desired frequency of locomotion. In the last set of experiments, the suitability
of MSD bodies for being used in a closed loop is also investigated. Since maximally
efficient actuator signals are clearly related to the natural body dynamics, in a sense, the
body is tailored for the task of contributing to its own control. Using the same simulation
platform, we therefore study how the network states can be successfully used to create
a feedback signal and how its accuracy is linked to the body size.

Keywords: morphological computation, mass–spring networks, morphological control, physical reservoir
computing, soft robotics

1. INTRODUCTION

Since its very early formulation, control theory has tried to automate increasingly complex systems
(Fernández Cara and Zuazua Iriondo, 2003). The first implementations of PID controllers using
feedback to regulate non-linear systems only originated in the first part of the twentieth century and
were improved considerably, in particular with the progress in aerospace. More recently, with the
evolution of the computation power and the advances in machine learning, the focus has evolved
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toward the control of highly compliant systemswithmany degrees
of freedom. Passive compliant robots indeed possess dynamical
properties closer to animal bodies, whose performances can still
not be reached, and show a real advantage for solving complex
tasks in noisy human environments.

However, the framework for a theory allowing a deep under-
standing of such control systems—and hence engineering oppor-
tunities—is still under construction. It is largely believed that the
concept of morphological computation can partly answer this
issue, as it enables more fluent and robust motion control while
providing adapted embodied controllers that use the body itself
as a computational mean (Paul, 2006; Pfeifer and Bongard, 2006).

Nonetheless, the concept of morphological computation does
not have a clear definition as discussed in Müller and Hoff-
mann (2016). In Füchslin et al. (2013), the authors refer to the
first International Conference on Morphological Computation
in Venice in 2007, where it was defined as “any process that
serves a computational purpose, has clearly assignable input and
output states, is programmable (i.e., the behavior can be adapted
by varying a set of parameters) and has a sort of teleological
embedding.” This definition is however rather broad as it also
includes every traditional digital computing means. Hereafter, we
will restrict our definition to any way of increasing efficiency of
computation or control in terms of energy, memory, time, etc. by
outsourcing computational tasks to analogical physical systems.
This interpretation follows the work of Pfeifer and Bongard (2006)
where morphological computation refers to “certain processes are
performed by the body that otherwise would have to be performed
by the brain” or with the experiments conducted in Hauser et al.
(2011). Moreover, it constitutes a fundamental motivation to
embodiment which states that steps toward adaptive intelligence
do not only come from the controller complexity but also from the
interactions with the body and the environment. Broader analysis
about the quantification of morphological computation as well
as the trade-offs with informational computation include Polani
(2011), Zahedi andAy (2013),Haeufle et al. (2014),Hoffmann and
Müller (2014), and Ghazi-Zahedi et al. (2016).

Illustrative applications of morphological computation and
embodiment for locomotion are numerous in biology and
robotics. For instance, Dickinson et al. (2000) provide an analysis
of how animals succeed in efficient locomotion using their mus-
cles not solely as motors but to provide multiple functions varying
from brakes to springs and struts. The passive walker in McGeer
(1990) constitutes an extreme example of an engineered robot
exploiting the same concept. This two-legged physical structure is
able to walk down a slope in a very natural way without any actu-
ation. This work has been extended later in Collins et al. (2005)
to robots with low-power actuators. They show a walking pattern
that looks natural and energy efficient compared to traditional
stiff controlled robots. In other fields of robotics, we can also cite
the works of Iida and Pfeifer (2006) or Degrave et al. (2015), in
which dynamical properties of compliant quadruped robots are
used to provide low power consumption, to reduce controller
computational complexity, and to observe natural transitions
between gaits. Examples that clearly benefit from compliance to
improve moving can also be found, among others, in Cham et al.
(2004) which focuses on hexapod locomotion.

A practical implementation of morphological computation can
be inspired from Reservoir Computing (RC). RC denotes a com-
putational framework that enables the approximation of a broad
range of dynamical behaviors for which a precise model is not
available. RC originates from the domain of recurrent neural net-
works and is mainly based on the theories of Echo State Networks
(ESN) and Liquid State Machines (LSM) as outlined in Lukoše-
vičius and Jaeger (2009). At the time of their introduction, they
offered a solution to the training of Recurrent Neural Networks
(RNN), which was still considered difficult. They avoided having
to train feedback connections and the problems with bifurca-
tions this brings, i.e., the discontinuities in the network outputs
observed for some points in the parameter space, by training
only the synaptic connections of the readout nodes. The core
architecture consists of a randomly connected RNN, the reservoir,
for which the synaptic weights are sampled from some distri-
bution and then globally rescaled to tune the dynamical regime
close to the edge of chaos. RC also resulted in different robotics
applications as learning of inverse kinematics of an iCub robot arm
from a neural reservoir in Reinhart and Steil (2009) or the creation
Central Pattern Generators (CPG) to control human movements
in Wyffels et al. (2014) and hexapod locomotion in Dasgupta et al.
(2015).

As the reservoir network is constituted of randomly connected
non-linear entities, many physical dynamical systems present-
ing sufficiently complex transformations of their inputs provide
similar dynamical properties and can be used as reservoirs. For
instance, it has been demonstrated in Hauser et al. (2012) that
generic types of physical bodies such as Mass–Spring–Damper
(MSD) networks are able to approximate any given time-invariant
filter with fadingmemory and generate adaptive periodic patterns
autonomously when a feedback loop is added. This extension
of RC is generally referred to as Physical Reservoir Computing
(PRC). The expensive step of computing the reservoir transforma-
tion is now outsourced to a physical system’s natural dynamics.
This means that the neuron states will not be explicitly updated
digitally anymore, but this computation is transferred to the body’s
dynamical evolution. Only the readout layer only needs to be
engineered, most often using digital computing.

The main advantage of PRC lies in the parallelism of the
computations in the physical reservoir and, in the case of robotic
locomotion, in the fact that the transformations computed by
the robot body are a natural result of the gait. However, PRC is
essentially a supervised machine learning technique. By contrast,
robotic control is intrinsically a reinforcement learning problem,
in which the optimal desired actuator signals are not known
a priori. In addition, successful reservoir implementations often
require the observation of the reservoir state at many different
points. In robotics, this implies that for each observation point a
sensor needs to be installed.

Numerous applications of PRC have been demonstrated in the
past decade. In robotics, highly compliant robotmodels have been
addressed for example to MSD networks in Hauser et al. (2011)
(simulation only), tensegrity structures in Caluwaerts et al. (2014)
or a real soft robotic platform inspired by an octopus arm in
Nakajima et al. (2014, 2015). Closed-loop control of quadruped
robot exploiting a spine made with soft material as a reservoir can
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be found in Zhao et al. (2013). Simulations or implementations
of PRC outside robotics include water ripples in Fernando and
Sojakka (2003), electro-optical devices in Larger et al. (2012), or
pure optical devices in Brunner et al. (2013) and Vandoorne et al.
(2014).

This paper presents two main research objectives. First, we
design a small scalable simulation setup to provide empirical
compliance studies on the locomotion of MSD networks. To
our knowledge, such an analysis does not yet exist and should
help to evaluate the potential of compliance for locomotion in
terms of robustness, efficiency, and stability. To this end, three
main experiments are conducted. The first experiment gives an
overview about how increasing the number of nodes in a MSD
network leads to more stable locomotion. The second experiment
provides an analysis on the optimal frequency range for the setup,
and the third experiment explores the maximal reachable speeds
for different driving powers and underlines the limitations of the
design to get high performance. In the second part, we analyze the
computational capacity of a MSD body to generate motor control
signals and integrate them as a regulation feedback to a forward
controller.

2. OPEN-LOOP CONTROL

2.1. Materials and Methods
To run our experiments and analysis, we designed a MSD
network simulator directly implementing mechanical equations
using Python and Numpy.1 These networks, inspired by Hermans
et al. (2014) and Caluwaerts et al. (2013), consist of a set of
nodes with mass, connected by spring–damper links which are all

1https://github.com/Gabs48/SpringMassNetworks.

actuated separately. The simulation can be performed either in 2D
or 3D.

2.1.1. Mass Spring Networks
The MSD morphology is presented in Figure 1. Each of the N
nodes, except those at the end or beginning, is sparsely connected
to its closer neighbors by C connections. The total number of
springs in the network S can be easily deduced using geometry:

S =
(
N − 1 − C/2 − 1

2

)
.
C
2

. (1)

Each node i∈ {1, . . . ,N} is represented by its massmi, whereas
the passive parameters for each connection are the spring stiffness
kj and the damper coefficients dj for j∈ {1, . . . , S}. In this paper,
the notion of compliance will be used. It is defined as the inverse
of the stiffness 1/kj. If not specified, the default values used in the
following experiments areN = 20,C= 3,mi = 1 kg, kj = 100N/m,
and dj = 10Ns/m.

In ourmodel, the acceleration, speed, and position of eachmass
are updated using the force vector Fi which combines the gravity
force, the spring force, the damping force, and the air friction
force:

Fi = Fsi + Fdi + Fgi + Fai , (2)

where

• Fsi is the spring force vector applied on the node i and equals the
sum of the j∈ {1, . . . , C} connected non-linear springs forces
for which the equations can be found in Palm (1999):

Fsj = −kj .
lj
lj

.

(
(lj − lj,0) +

α

l2j,0
. (lj − lj,0)3

)
. (3)

FIGURE 1 | The MSD structures are build automatically with a simple morphology that takes the number of nodes and connections as an input. On the
figure above individuals with three, five, ten, and twenty nodes are drawn in a 2D space. Each black circle represents a mass and each line a set of spring and
damper in parallel. The colors indicate the current amplitude of actuation.
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In this equation, lj represents the spring length vector and lj ,0 its
reference length. The variable α is a non-linearity coefficient
which will induce a saturation of the spring force for large
extension lengths. It also takes inspiration from the work of
Hauser et al. (2011) which demonstrates the importance of
these non-linearities from a computational consideration.

• Fdi is the damper force vector applied on the node i and equals
the sum of the j∈ {1, . . . , C} connected dampers:

Fdj = dj .
vj
vj

. (vj − vj,0), (4)

where vj is the vector of extension speed.
• Fgi is the gravity force vector:

Fgj = g . mi . xyi , (5)

where g is the gravity constant and equals 9.81m/s2.
• Fai represents the drag force induced by air friction. It is

assumed proportional to the speed:

Fsj = −a . vi, (6)

where a is the coefficient of air friction and equals 0.1Ns/m.
It has been included to avoid unrealistic models with very
high speed. However, these did not occur in the experiments
presented in this paper.

The ground reactions are modeled by setting the vertical veloc-
ity to zero and the horizontal friction coefficient to infinite. The
masses perfectly stick to the ground as soon as they touch it.
This is a hard constraint that can impact the nature and the
performance of locomotion. However, it simplifies the study of
the body influence by assessing perfect friction conditions in every
simulation.

2.1.2. Control
To actuate the spring using a control signal, we modulate the
reference lengths of the springs lj ,0. In the simplest and default
case, this will be represented by a simple sinusoidal signal like in
Hermans et al. (2014):

lj(t) = lj,0 . (1 + aj . sin(ωj . t + ϕj)). (7)

It induces a set of tunable parameters lj ,0, ωj, ϕj for each spring
in the simulation.

2.1.3. Physics Solver
The simulation time is discretized using K time steps tk, and
equations are solved numerically using the Verlet algorithm as
described in Thijssen (2007). The Verlet integrator leads to more
accurate trajectories, especially for periodic oscillations where
energy is rigorously conserved due to the time reversibility of
this operator. For non-periodic trajectories, one can prove that
due to symplecticity, the energy does not drift away and errors
remain bounded as demonstrated inYoshida (1990). Although it is
more accurate, the Fourth-Order Runge–Kutta integrator requires
four force evaluations per update step and is not symplectic. In
our implementation, the update equations are slightly changed in
order to take the effect of the ground reactions into account.

2.1.4. Loss Function
The goal is to develop a generic approach to obtain robust loco-
motion in open loop without prior knowledge about the body
dynamics. In the case of simulatedMSDnetworks, this implies the
optimization of controller and morphology parameters for each
specific network. This can be formulated as

θ̂ = arg max
θ

f(θ). (8)

where the score function f (θ) and the optimization algorithms
are detailed below. Typically, the optimized parameters θ of the
MSD network are the controller amplitude aj between 0 and 0.25,
its frequency between 0 and 10Hz, its phase ϕj between 0 and 2π,
and the spring stiffness kj between 0 and 100N/m. To synchronize
the actuators together and impose the fundamental frequency, the
angular speeds ωj are fixed to the same value. In the case of a
MSD with N = 20 nodes connected to their six closest neighbors
(C= 6), this represents a total number of springs S= 54 (see
equation (1)) and therefore 163 parameters to optimize. Loco-
motion characterization and evaluation is performed through two
performance metrics:

• Distance traveled D: the difference between the centers of
mass at the end and at the beginning of the simulation. This
function is determined by the full locomotion sequence along
the simulation.

• Power efficiency P: the power dissipation of the non-linear
spring actuators can be approximated according to Palm (1999):

P =
∑
j

kj .
a2
j l2j,0

(
1 + α2a2

j
)

4π
, (9)

in which aj are the relative amplitudes, α is the spring non-
linearity factor, and lj ,0 are the reference lengths of the springs.

Using the ratio of distance to power is unsatisfactory, as this
could result in robots that consume very little power because
they barely locomote. Instead, we will use the following power
efficiency score displayed in Figure 2:

f(θ) = tanh
(
D(θ)
Dref

)
. tanh

(
Pref
P(θ)

)
, (10)

in which Dref and Pref are reference values allowing to normalize
and homogenize the scores. As it is desirable to operate in the
linear regime and avoid saturation of the score, we set them to
3,600 and 100, respectively, following the statistics of the observed
distance and power values.

2.1.5. Optimization
The aim is to develop an optimization approach that can be
applied to highly compliant physical robots, without any need
for an analytical model for the body dynamics. The Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) as formulated
in Hansen (2006) has been selected from a pool of different
optimization methods. Indeed, it fits very well for browsing non-
convex parameter landscapes with a lot of local minima. In addi-
tion, it presents a good convergence speed and requires very few
initialization parameters:
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FIGURE 2 | The efficiency score to quantify locomotion quality increases with traveled distance and decreases with dissipated power. However, taking
directly the ratio between both metrics (left) could lead to optima close to the origin, i.e., where the body barely moves. Using a hyperbolic tangent (left) solves this
problem for small powers but requires to select Pref and Dref carefully to avoid a saturation due to the measure itself.

• The initial parameter distribution is a Gaussian centered in 0.5
and with a SD of 0.2 after normalization of all parameters.

• The population size, the step size, and covariance matrix
parameter are set to their default values as recommended in
Hansen (2006).

• The iteration number is set to ensure convergence, which will
be assessed qualitatively by observing saturation in the score
evolution.

2.2. Results
In this section, we assess the influence of the MSD network size
and compliance on the best locomotion speed found, on the power
consumption, and on the noise robustness in our specific example.
Three different experiments are described in this context. In the
first one, we increase the number of mass nodes in the network
to determine its influence on locomotion efficiency. The second
investigates how optimal compliance is related to the morphol-
ogy parameters and the locomotion frequency. Finally, we dis-
cuss how the optimized gait changes when the driving power is
constrained.

2.2.1. Morphology Analysis
The choices made during the design of a system can contribute
to more efficient and robust behaviors for solving sophisticated
tasks. In the case of the MSD setup, we can intuitively assume
that increasing the number of nodes will broaden the space of
available trajectories, therefore increasing the number of optima
at the expense of a longer learning process. It is interesting to
note that such a tuning does not necessarily imply an increase of
complexity, in the sense of the definition presented in Lungarella
and Sporns (2006).

To verify this assumption, we have optimized open-loop loco-
motion controllers for networks with increasing number of nodes
and springs. As mentioned before, this optimization consists in
tuning the actuators’ amplitudes and phases, the spring constants,

and the global frequency of locomotion. Other parameters of the
MSD network are set to the same value for all bodies, except for
the nodes mass. This is normalized by the number of nodes, such
that the total mass of the MSD network (20 kg) remains the same
in every simulation and the power levels required for locomotion
can be compared.

In order to converge toward stable gaits, we add random accel-
eration impulses during the simulation. Their value is centered
around 10% of the mean absolute acceleration and applied on
random nodes 5% of the time. In the CMA-ES algorithm, the
number of iterations is tuned specifically for each optimization
to ensure convergence, since optimizing small structures will con-
verge faster than larger ones. From each optimization run, the best
individual is retained. Each optimization is repeated five times in
order to average the results and obtain an estimate of the variability
of our observations.

Figure 3 shows the evolution of the averaged best individual
score for increasing body size in blue. From left to right, we
observe that the scores rapidly decrease for structures of up to five
nodes before steadily increasing again. However, the good results
in the first part of the curve should be interpreted carefully, taking
their robustness to noise into account. To assess this property,
we also represented the scores obtained for simulation using the
same parameters but without noise on the same figure. We notice
that this difference decreases with the number of nodes. This
shows that structures with more nodes are more robust to the
noise added during the simulation. The evolution of the CMA-ES
algorithm represented in Figure 4 also supports this hypothesis.
It shows that the optima of the structures with a small number
of nodes are found randomly instead of through convergence of
the algorithm, unlike the structures with more nodes. High scores
originate from these bodies’ reduced stability. This makes them
very sensitive to impulse noise as small disturbances can either
make them fall over or push them forward. They can therefore
rightly be regarded as outliers.
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FIGURE 3 | In this graph, the best individuals for CMA-ES optimizations of different MSD networks are plotted in blue. Other simulations without noise
are then performed on the same individuals with the same parameters in order to identify the outliers due to noise and qualify the stability of locomotion. The low
performance of 3, 4, and 5 nodes MSD structures indicate unstable gaits. For larger structures, the score first increases with the number of nodes but saturates
rapidly for networks of more than twenty nodes.

FIGURE 4 | In this graph representing the CMA-ES evolution for different structures, we can qualitatively observe that the convergence time, whose
estimation is given by the vertical yellow lines, increases with the MSD network size. This is expected as the problem becomes more complex and the
number of optimized parameters is higher as well. When the structure is too simple such as the three nodes (one in the upper left corner), the problem cannot
converge and the best results encountered during the exploration are mainly due to the random noise added in simulation.

It is finally interesting to note that the score increases grad-
ually starting from six nodes but quickly saturates. A more
detailed analysis in Figure 5 shows that this is due to better
performances in terms of traveled distance, whereas dissipated
powers are very similar. However, note that this is achieved
at the expense of a longer learning process, as pointed out by
the number of epochs represented on the graphs X axis of
Figure 4.

In conclusion, this experiment points out that increasing the
number of nodes and springs in the MSD networks leads to an

increased robustness to external noise and better speed perfor-
mances.

2.2.2. Frequency Range Analysis
In this second set of experiments, we try to evaluate the nature
of a link between robot compliance, which is defined by 1/k,
the inverse of spring stiffness, and the optimum efficiency of
locomotion.

The resonance frequency of a MSD system with one unique
node and spring equals

√
k/m. It ranges from 0.6 to 1.8Hz for
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FIGURE 5 | By displaying separately the distance and power components in the loss function of the CMA-ES optimization, we can acknowledge that
the observed variation for different nodes number are mainly due to the distance. As expected by the normalization factor, the driving power remains
sensibly equals for each structure.

FIGURE 6 | The two graphs in this figure show the evolution of score performances with the fundamental frequency of locomotion. On the left side, we
separated the result according to the number of nodes in the structure. By applying a simple CMA-ES convergence assertion, we notice that the operating range can
extend to higher frequency for larger structures. On the right side, we combined all structures to determine a −3dB bandwidth ranging from 0.3 to 5.2Hz.

the mi, kj, and dj values that we are using in our setup (as a
reminder,mi varies with the number of nodes). There is therefore
a bijective function between compliance and resonance frequency.
By extension, we can formulate the hypothesis that the resonance
frequency of aMSD structure is directly coupled to its compliance.
Since they are composed of several masses and springs, we can
expect that the bandwidth of the resonance peak will broaden but
still appear at the same frequency.

With this assumption, the study of correlation between com-
pliance and locomotion efficiency can be reformulated to focus
on the link between actuation frequency and efficiency. Previous
work such as Buchli et al. (2006) for robotic systems or McMahon
and Cheng (1990) for models of mammalian gaits highlighted
such a link: self-learning systemswith differentmorphology prop-
erties tuned their actuation frequency to the resonance of the
structure to reach optimal performance in locomotion.

In this setup, MSD structures with 5, 10, 15, and 20 nodes
were optimized several times by fixing their global frequency
to values between 0 and 10Hz. In Figure 6 (on the left), we
have represented the results for different numbers of nodes. Each
optimization corresponds then to a point on the graph. For some

of those points, however, the optimization process was not able
to converge to a gait that is both stable (whose pattern does not
change in time) and robust (allowing external noisy perturba-
tions). In the graph, this failure is particularly true for structures
with few number of nodes simulated at high frequencies. A first
empirical conclusion is that the robustness of MSD networks
at high frequencies increases with the number of nodes. This
represents an additional advantage concerning the size of the
system along with the discussion from previous section. In terms
of score, however, there is no significant difference between the
topologies, and their optimal bandwidths are very similar. The
optimal scores are a little lower only for the 5 nodes structures,
which corroborates the results from the previous experiment.
To get a more accurate measure of the bandwidth, it may even
be interesting to combine all the results as they possess very
similar resonance frequency. This is presented on the right side
of Figure 6 where we can observe that the structure is optimal
over a 3 dB bandwidth in the range [0.3; 5.2Hz]. The large con-
fidence intervals around 4 and 5Hz are again explained by the
absence of convergence for the structures with a low number of
nodes.
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To sum up, this experiment provides guidance on the choice of
compliance values in the design of aMSDnetwork for locomotion.
Choosing the global compliance to optimize a robot of a given
mass is conditioned by the frequency at which we plan to actuate
the robot. Also, structures with more nodes tolerate a broader
range of frequencies while keeping stability.

2.2.3. Performance Limits with Constrained Power
So far, we have used a loss function that combines performance
with respect to both traveled distance and energy consumption.
However, it may be beneficial to analyze them separately in
order to understand the limiting factors and to observe what can
be the best compromise between them. The following experi-
ment also allows us to qualitatively characterize the gaits of our
structures and to observe possible transitions between different
modes.

For this purpose, several optimizations have been performed by
constraining the power and forcing their saturation to different
values. In this way, one can expect to observe what is the max-
imum distance an individual can reach for a given power. Since
we work outside the boundaries of the desirable operating range
of the original cost function, we have now increased the reference
value Dref to 1,000m in order to avoid a saturation effect due to
the cost function itself.

Figure 7 shows the evolution of the optimal speed as a function
of a constrained power budget. The best individuals are in the
upper left corner. As might be expected from the conclusions of
the previous section, the 3-Hz frequency gives the best results.
Concerning the shape of the curve, we can see that the maxi-
mum speed increases almost linearly until 15,000W and starts
saturating beyond that.

This saturation highlights the limits of our model. It helps
to understand which factors such as the spring saturation, the
ground friction, the air drag, or the geometry play a larger role in

performance compared to the driving power. It also situates the
previous experiments in the non-saturating range, which helps to
appreciate their significance better.

Finally, for very low power, an energy increase does not seem
to add any improvement and even the opposite happens for
frequencies 1 and 4Hz.

A visual observation of the locomotion is useful to give
more insights about the possible gait transitions on this curve.
For this purpose, we have produced a series of videos ren-
ditions of individual simulations provided in Supplementary
Material. A qualitative analysis of those video shows that the
most common gaits consist of displacing the whole structure
along a wave movement (each node touches the ground a lit-
tle after the previous one) or locomoting in two steps (the
body touches the ground two times per period with a phase
difference of 180°). Concerning the high power saturation, a
video was made for each point of the 3-Hz curve. It shows that
the most energy-consuming individuals present spring exten-
sion close to their saturation, which causes a loss of stability of
the locomotion. In the same way, videos were produced in the
low-power domain for the points on the 4-Hz curve. For the
lowest power, a good two-step alternation of contacts between
the body and the ground is observed, whereas the phase shifts
between the different contacts with the ground are much less
synchronous for the following individuals. The same results have
been established each of the 5 times the experiment has been con-
ducted. Progressively with increasing power, a two-step approach
with robot–ground contacts phase-shifted by 180°comes up
again.

In short, we can stress the role of the body design in locomo-
tion through two principal observations: first, a saturation of the
spring leading to a degraded operation in high power; second, a
qualitative influence of the optimal gait on the performances for a
given morphology and power consumption.

FIGURE 7 | This curves shows the evolution of the maximal speed reached for different constrained power at different frequencies. The saturation
effect for high powers demonstrates the physical limits of the structures, while the slight decrease for very low powers indicates a change in locomotion gaits
associated with a different efficiency.
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3. CLOSED-LOOP CONTROL

3.1. Materials and Methods
The closed-loop control of the MSD network is performed
through physical reservoir computing. In this setup, our goal
is to reproduce the control signals at a time step tk using the
physical states of the network at times tk−1−n . . . tk−1 only. This
is performed by training the weights of a linear combination (the
readout).

3.1.1. Setup
The closed-loop system is composed of different elements repre-
sented at Figure 8:

• TheMSD structure that can be perceived as a physical reservoir
because of its dynamics and high complexity. For each time step
tk, the system’s current state is evaluated using the acceleration

vectors a[k], a[k− 1], and a[k− 2], which comprise both X
and Y components of all the nodes. The choice of acceleration,
instead of, e.g., speed, is based on the work of Caluwaerts et al.
(2013). Trials using integrated quantities such as position or
speed instead have also been evaluated but added a drifting
error during training. Also, based on the same work, we choose
a buffer size of 3 time steps. In our experiments, smaller values
led to deteriorated results but larger ones did not show any
significant improvements.

• A sensor filter, whose principal role is to model the physi-
cal limitations in acceleration sensing. It is composed of an
amplitude threshold followed by a low-pass filter. The cutoff
frequency at 6Hz has been chosen very low to eliminate possi-
ble oscillations due to our numerical integration method while
keeping the locomotion fundamental frequency and its first-
order harmonics. At the output of the filter, a vector x[k] is sent
to the next element.

FIGURE 8 | The principal components in the closed-loop learning pipeline consist in a readout layer whose weight matrix is trained at each time step
and a signal mixer that gradually integrates the feedback in the actuation signal.

FIGURE 9 | Adding some noise on the actuation signal in open loop can give a hint about the maximum error we can accept on the trained signal in
closed loop without damaging the locomotion stability and is helpful to determine the regularization parameter. In this graph, each red point represents
a simulation and the blue line shows the average evolution. Performances start decreasing from a relative Gaussian noise of 0.01.
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• A readout layer, which computes the actuation signals for the
next time step based on the current and previous states of the
MSD:

y[k + 1] = WT
out . x[k]. (11)

To learn the weights of the output matrix Wout, we use the
FORCE learning method as in Sussillo and Abbott (2009),
whose equations are the following:

e[k + 1] = fsigmoid

(
WT

out[k] . x[k + 1]
)

− ytarget[k + 1]

(12)

P[k + 1] = P[k] − P[k] . x[k + 1] . xT[k + 1] . P[k]
1 + x[k + 1]T . P[k] . x[k + 1]

(13)

Wout[k + 1] = Wout[k] − P[k + 1] . x[k] . e[k + 1]T (14)

ytrained[k + 1] = fsigmoid

(
WT

out[k + 1] . x[k + 1]
)
, (15)

where the estimate of the inverse of the correlation matrix P
is initialized to I/α. The sigmoid function added ahead of the
readout adds non-linearity in the control signal by saturating
for too high values.

• A signal mixer to avoid a brutal transition from open-loop
to closed-loop control. Its role is to incorporate gradually the
readout output contribution to the target signal. It is defined
by three parameters: the open-loop time tol when the MSD
network is run in open-loop mode only; the training time
ttrain in which the contribution of closed-loop signal increases
linearly and the percentage β of feedback in the full control
signal before switching to closed-loop mode only.

3.1.2. Parameter Tuning
The α parameter of the FORCE learning algorithm plays the role
of a regularization variable in the process of learning the Wout
matrix. It must be selected in order to avoid an overfitting that

would reduce robustness to undesired forces on theMSDstructure
but also to ensure a trained signal sufficiently close to the target.
This is a major issue since a signal ytrained with too much noise
can easily cause a divergence in the locomotion limit cycle. Tests
on signal noise robustness as presented in Figure 9 allowed to
estimate a value of α= 0.01 as a good compromise.

The open-loop training and running times can be estimated
by analyzing the convergence error of the FORCE algorithm (see
Figure 10) and are fixed to 12 s of open-loop learning followed by
38 s where the feedback signal is gradually added to the target sig-
nal to reach a value of β = 95% before closing the loop. Stopping
the training before the actuation signal reaches 100% of feedback
avoids convergence to a steady state as discussed in Caluwaerts
et al. (2013).

3.2. Results
In order to determine the contribution of the system size in
the process of learning its own locomotion gaits, we simulated
MSD networks with different numbers of nodes and evaluated
the distances traveled over the last 10 s in closed loop. The same
simulation was carried out in open loop to provide a reference.
The results of these simulations are presented in Figure 11. At first
sight, it appears that the learning algorithm with its configuration
can achieve performances of the same order of magnitude in open
and closed loops for the structures between three and twenty-six
nodes analyzed in this simulation. However, it is worth noting
that MSD with less than 6 nodes already provided non-significant
results in open loop.

Alternatively, the study of limit cycles gives an indication of
the stability of closed-loop control. In Figure 12, we represented
the temporal evolution of the internal states xk in a 2 coordinate
space obtained by PCA. Larger structures lead to smoother limit
cycles in closed loop. The limit cycles even diverge from their
basin of attraction for very small MSD networks. A simple inter-
pretation is that more nodes lead to more cycles in the physical
reservoir, which provides more robust trajectories in the principal

FIGURE 10 | The learning error can be used to estimate the required training time and the maximal rate at which the loop should be closed. From this
graph, we can deduce that 12 s of simulation is sufficient to consider the convergence of the readout weights.

Frontiers in Neurorobotics | www.frontiersin.org March 2017 | Volume 11 | Article 1610

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Urbain et al. Morphological Properties of Mass–Spring Networks

FIGURE 11 | In this picture, we plot the traveled distances for the last 10 s of simulation in open loop in blue and closed loop in red. There is no crucial
difference between the two curves, which seems to indicate that the performances in closed loop are close to the one in open loop for all structures.

FIGURE 12 | From left to right and top to bottom, the limit cycle during FORCE training are represented for structures with, respectively, 5, 10, 15, and
20 nodes. The color ranges from yellow for the initial seconds of the simulation (which point out the transient effect) to black in the end of the simulation. When the
node number is too low, the trained signal can diverge from its basin of attraction.

components reference. This hypothesis is corroborated by ana-
lyzing the quality of the generated actuation signals. This can be
quantified by plotting the Normalized RootMean Square Error, as
shown in Figure 13, which decreases with the number of nodes.

In conclusion, the morphology of MSD bodies has the capabil-
ity to compute at each time step the next value on the parametric
trajectories found in open-loop optimization with a sufficient
accuracy for locomotion task. The computation and memory that
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FIGURE 13 | The normalized root mean square error between the trained and target signals is represented for each node number. It indicates that the
learning tends to produce better more accurate results with an increasing number of nodes.

was previously embedded in an external controller can be fully
distributed in the structure and the readout layer. The size and
number of sensor measurements on the structure have a positive
effect on the accuracy and stability of the feedback signal.

4. DISCUSSION

In this article, we have tried to study systematically the influence
of high-level design choices on the performance of MSD systems.
Because of their analytical simplicity and their modularity, those
body structures seem indeed adapted to conduct studies on the
morphological contribution in the process of locomotion con-
trol. This research was divided into two main parts. On the one
hand, an open-loop study focused on the benefits of body size
to efficiency and stability. A similar analysis was also performed
on locomotion frequency and helped to draw conclusions about
how compliance can be chosen to increase optimal performance.
On the other hand, we aimed at demonstrating the key role of
morphology to generate control signals in a completely closed
operation mode.

The different trials undertaken in open loop indicated the
importance of the structure size to ensure optimal performance
in terms of distance traveled and gait stability. Concerning com-
pliance, its relation to the fundamental frequency of locomotion
was used to demonstrate a link with the efficiency and to provide
a specific suggestion in the design of optimal MSD systems. It
has been noted that the frequency response of the different MSD
networks shows a bell shape, displaying a degraded score for
too high or too low frequencies and that the stability at high
frequencies is better for larger structures. Finally, the behavior at
different power values has highlighted the limits of the design in
reaching high speeds, and a qualitative study has shown the effect
of the gait evolution in this phenomenon.

In closed loop, the ability of MSD structures to generate their
control signals on the basis of a single, fully connected layer of
neurons has been attested. An increase in the size or the number
of sensor signals induced a positive influence with regard to the

limit cycle stability and the accuracy of the signals generated by
the algorithm.

In future work, themain improvement should focus on increas-
ing noise robustness and adaptability on different terrains and
facing various obstacles. In this way, the goal is to provide a simple
and generic locomotion primitive for complex structures, which
learns how to perform actuator synchronization by harvesting the
mechanical feedback while taking higher level control inputs such
as the locomotion frequency. On the other hand, it would be
interesting to generalize our conclusions to both real robots and
biologically inspired dynamical models such as quadrupeds and
bipeds.
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