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Handling objects or interacting with a human user about objects on a shared tabletop
requires that objects be identified after learning from a small number of views and that
object pose be estimated. We present a neurally inspired architecture that learns object
instances by storing features extracted from a single view of each object. Input features
are color and edge histograms from a localized area that is updated during processing.
The system finds the best-matching view for the object in a novel input image while
concurrently estimating the object’s pose, aligning the learned view with current input.
The system is based on neural dynamics, computationally operating in real time, and can
handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects,
the system achieves recognition rates of 87.2% from a single training view for each object,
while also estimating pose quite precisely. We further demonstrate that the system can
track moving objects, and that it can segment the visual array, selecting and recognizing
one object while suppressing input from another known object in the immediate vicinity.
Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing
angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four
training views.

Keywords: object recognition, pose estimation, neural dynamics, recurrent process, top-down feedback

1. INTRODUCTION

Imagine you are sitting at a table onwhich a number of objects are distributed. Perhaps you are trying
to repair a toaster and have tools, parts, and the toaster spread out in front of you. You will easily
commit to memory the parts that you remove upon disassembly of the unit, even if they are objects
that you have never seen before in your life. Your repair will be successful only if you recognize these
objects even if they now lie in a different pose before you. You will be able to grasp and handle them
precisely because you are able to estimate their pose.When objects move, perhaps through your own
action, you will be able to update the pose estimate and the associated object representations in your
memory, grasping the shifted or rotated object correctly.

In the lab, psychophysical studies have shown that in the context of a natural scene, human
observers are able to commit large numbers of objects to memory by examining each object only
once for a short time (Hollingworth, 2005). In the recall phase, participants were asked to determine
an object’s identity by discriminating it against other instances of the same category and to estimate
the object’s pose by discriminating it against other rotated poses of the same instance. Participants
had very high retention rates even when tests were made a day later. Representations of object pose
can be continuously linked to sensory inputs. Fast online updating of object-oriented movements
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to translations or rotations of an object, for instance, have been
documented even under conditions in which the change of object
pose was not consciously perceived, because the change was
induced during a visual saccade when observers are blind to visual
input (Prablanc and Martin, 1992).

The capacity to recognize individual object instances and esti-
mate object poses contrasts with the human perceptual skill of
detecting objects of a given category in a visual scene. Humans can
do this with exposure times as short as 20ms and response times
as short as 150ms (Thorpe et al., 1996), suggesting that this is
done primarily through feedforward neural processing. Such fast
visual categorization works for superordinate categories and does
not necessarily come with information about the specific feature
values or the location of the object (Mack and Palmeri, 2011).

Because of the good performance of the primate visual sys-
tem, it often serves as an inspiration for artificial vision systems.
Most neurally inspired work on object recognition has taken the
feedforward picture (Fukushima, 1980; LeCun and Bengio, 1995;
LeCun et al., 1998; Riesenhuber and Poggio, 1999; Wiskott and
Sejnowski, 2002; Serre et al., 2007). The focus of such work has
been the discriminative power of the high-dimensional feature
vectors thought to be represented in primate visual cortex (Serre
et al., 2007). The organization of visual processing in cortex into a
hierarchy of processing steps has inspired hierarchical approaches
in artificial vision that forms the basis for invariance, the classifi-
cation of visual inputs as pertaining to the same class as the visual
object varies in surface appearance through differences in light-
ing or pose. The HMAX model (Riesenhuber and Poggio, 1999;
Serre et al., 2007), for instance, pools the outputs of units that
model orientation-tuned simple cells in visual cortex, passing
only the maximal activation along to complex cells on different
scales. In this model, the units in the final layer of the hierar-
chy are thus invariant to pose. Feedforward approaches do not
necessarily discard pose information, though. In slow feature
analysis (Wiskott and Sejnowski, 2002), a hierarchy compresses
the high-dimensional image information into the most tempo-
rally invariant components. Some of these components code for
the object’s identity, while others encode information about the
object’s pose.

In terms of recognition performance, deep neural networks
(DNNs), first introduced by Fukushima (1980) and extended by
LeCun and Bengio (1995), LeCun et al. (1998), and Hinton et al.
(2006), have recently achieved very high classification rates that
approach and even exceed human abilities (see, for example,
Ciresan et al. (2012)). Pose information is typically discarded in
these networks, although it is possible, in principle, to address
pose (Osadchy et al. (2007); albeit in a face detection rather than
recognition task).DNNs assign an object to classes that are learned
from many example instances. Probabilistic approaches to object
categorization have reduced the number of training examples
required for successful categorization (Fei-Fei et al., 2003). How-
ever, when classifying, multiple instances will always be required
to learn the properties defining the classes. Correspondence-
based approaches, in contrast, can sometimes work from individ-
ual instances. They establish correspondence by matching land-
marks on a stored and a current image (Wiskott et al., 1997;
Zhu and von der Malsburg, 2004). Establishing correspondence

is, in general, difficult and computationally costly. It works best
when landmarks are highly characteristic, as is the case for face
recognition, where correspondence-based approaches have been
very successful (Wiskott et al., 1997). A correspondence-based
approach that employs the loosely neurally inspired SIFT features
comes close to what we aim to achieve here in that it explicitly
estimates pose during recognition (Lowe, 2004). Correspondence
is established for keypoints using nearest neighbormethods based
on the SIFT descriptors. Integration across keypoints makes use
of a generalized Hough transformation that identifies clusters of
features that vote for the same pose. The pose emerges from an
optimal inverse of an over-determined system of linear transfor-
mation equations.

Cognitive robots, especially when they interact with humans,
must have the capacities we outlined for humans in the “toaster
scenario” above: recognizing object identity from a single previ-
ous view, estimating an object’s pose relative to that view, and
updating that estimate as the object is moved (Kragic et al., 2005).
These capacities are critical to object manipulation, in particular,
in scenarios in which a robot interacts with a human user who
may be unwilling to provide a lot of training data to the robot,
even while expecting the robot to discriminate between object
identities that are not captured by well-known object categories
(e.g., different screw drivers on the work surface). Moreover,
human interaction typically involves users handling objects, lead-
ing to dynamic scenes wherein pose informationmay change even
while processes for pose estimation and object recognition are
active.

While object recognition in robotic scenarios is a focus of cur-
rent work (e.g., Schoeler et al. (2014) and Pasquale et al. (2015)),
the problemof combining object recognitionwith pose estimation
in such scenarios has not yet been sufficiently addressed. This is
the focus of our contribution. We exploit analogies with neural
mechanisms of vision based on three ideas. First, in our system,
we represent objects as localized histograms of color and of edge
orientations, as well as heuristic measures of object shape. Our
system learns these features for a single instance of an object by
storing and associating them with an object label. We choose this
representation to enable the active transformation of an object’s
stored image into new poses observed in novel images. Second,
inspired by the map-seeking circuit (Arathorn, 2002; Gedeon and
Arathorn, 2007), we solve the two problems of identifying objects
and estimating their pose in the image plane simultaneously in a
recurrent loop that bootstraps initial, broad estimates to the final
values over time (for a related attempt to use the map-seeking
circuit in neurally inspired vision, see Wolfrum et al. (2008), who
use it to recognize faces in different poses). Third, we realize
this bootstrapping process via attractors of a neural dynamics.
This enables the continuous online updating of the pose estimate
in response to object movement and stabilizes object identity in
response to time-varying or fluctuating inputs.

By combining a “what” with a “where” channel of visual pro-
cessing (Milner and Goodale, 1995) in a closed loop, this model
moves beyond the feedforward neural networks that are the basis
for most neurally inspired solutions to problems in artificial
vision. To achieve this, we employ principles of neural dynamics,
neural networks in which recurrent connections dominate, as
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formalized in Dynamic Field Theory (DFT; Schöner et al. (2015)).
A key idea is that both recognition and estimation are selection
decisions that are realized within the recurrent neural dynamics
that combine the two streams. Adhering strictly to the neural
principles of DFT and eschewing algorithmic components or
“read-out” procedures, the proposed model is one large (neural)
dynamical system. In assessing its performance in settings close
to those of technical computer vision, we demonstrate that the
visual function of object recognition with pose estimation can be
obtained from the postulated neural principles.

Preliminary results were published in Faubel and Schöner
(2008, 2009, 2010) and Faubel (2009). The model is available
online along with a manual.1

2. MATERIALS AND METHODS

Pose is represented neurally through dynamic neural fields, such
as illustrated in Figure 1 (top panel). Neural fields capture popu-
lation distributions of activation as they arise in cortex and other
brain structures (Lins and Schöner, 2014). They are modeled as
activation distributions over relevant metric dimensions, here, the
two-dimensional position of an object or the orientation of an
object relative to a reference image. Localized peaks of activa-
tion are stable solutions of a neural dynamics of these activation
fields, introduced below. The locations over which such peaks are
generated encode the estimate of the underlying dimension. The
peaks are stabilized by neural interaction within the neural fields,
locally excitatory and globally inhibitory. Such connectivity also
characterizes the competitive dynamics of neural nodes that are
used to represent object identity (Figure 1, bottom panel).

These two types of neural dynamics for object pose and identity
form the core of the neural-dynamic architecture illustrated in
Figure 2. A bottom-up path transforms an input image based on
the current estimate of position and, in a next stage, of orientation.
These transformations align the pose of the object in the input
image with learned object views, enabling matching for recogni-
tion. A top-down path matches the recognized image with every
possible rotation of the input to obtain an estimate of orientation.
In a next stage, the top-down path reverses the estimated rotation
of the learned view and matches it with every possible translation
of the input to obtain an estimation of position.

Figure 2 illustrates how the recurrent loop of bottom-up and
top-down neural processing converges toward estimates of object
pose and identity. On the left, an early stage of convergence is
shown, in which the neural fields representing pose have not yet
converged to localized peaks of activation. The transformations
in the bottom-up path then generate a superposition of all pos-
sible translations and rotations of the input image. The neural
nodes representing object identity have not converged toward a
winner either, so that the top-down path generates superposed
views of all learned object views. In the middle panel, the neural
field representing object position has converged to a localized
peak, so that along the bottom-up path a localized image patch
is generated. The neural field representing orientation is just
beginning to converge, so that the transformed image is still

1https://www.ini.rub.de/pages/publications/LompFaubelSchoener2016.

FIGURE 1 | Dynamic neural fields (top panel) form localized regions of
suprathreshold activation (solid red line) in response to localized input
(dashed green line). The shape of these peaks depends on local excitation
(solid black arrow) and global inhibition (solid black line ending in a circle).
Dynamic neural nodes (bottom panel) follow similar dynamics. Their activation
and input, here, are pictured along a categorical identity axis and symbolized
by circles with stems.

rotationally blurred to some extent. The neural nodes representing
object identity are also beginning to converge, so that the learned
view along the top-down path begins to resemble an individual
object, improving the precision of the matches of object pose. In
the right panel, the recurrent loop has converged, with a sharp
neural activation peak for object position and orientation and a
winner-takes-all representation of object identity. The bottom-
up path shifts and rotates the input image to center the object
in the upright pose in which it was learned. The top-down path
reverses these transformations and correctly predicts the input
image.

Figure 2 only illustrates one of five feature channels, which the
full model uses in parallel. The shape channel illustrated in the
figure plays an important role for segmentation but has limited
discriminative power because we use a coarse shape representa-
tion. We explain the neural dynamics of the bottom-up and top-
down paths for the shape channel in exemplary fashion next. The
neural dynamics of the other feature channels are analogous and
are summarized in a separate subsection. This is followed by an
account for how the different feature channels are fused around
Figure 3. We close the materials and methods section with notes
about the process of learning objects and a description of the
performance measures used to evaluate the model.

2.1. The Shape Channel
The shape channel is based on responses from a bank of ori-
ented, steerable edge filters (Freeman and Adelson, 1991). First,
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FIGURE 2 | Three snapshots (from left to right) of the architecture during the convergence process. Circles with a “T” stand for transformation operations,
while circles with an “M” stand for matching operations. The estimates use neural fields depicted as in Figure 1. The position estimate extends this graphical
representation to two dimensions. The left panel shows an initial state where pose and identity are unspecific. The middle panel shows an intermediate state where
the position estimate has become specific, but identity and orientation estimates are still largely unspecific. In the right panel, the architecture has converged. Both
identity and pose estimates are specific.

we extract the edge energy separately for the black (Y) and chro-
maticity (red, Cr and blue, Cb) channels. We then sum these edge
energies, and partially fill out the result by applying Gaussian
smoothing. This is followed by thresholding and range compres-
sions with logarithmic functions to finally give a shape image
I(x, y, t) 7→ for a given input image at time t∈ + (seeFigure 4).

We first explain the bottom-up, then the top-down path. Next,
the neural dynamics at the core of the closed loop is explained
for pose and then for identity estimation. To the purpose of this
exposition, we assume that the system has already been trained
and that all training views are in a canonical pose.

2.1.1. The Bottom-up Path: Matching Object Views
We estimate the parameters of a set of transformations,
T = {sh= shift, rot= rotation}, that describe translation (shift)
and rotation of the image. Each pose parameter is represented by
an activation function, ps:Rs × + 7→ [0, 1], defined over the range
of possible pose parameter values, Rs ⊆ d of transformation
s∈T, and time (the function for ps is given in equation (15)).
The higher the activation level of a pose parameter value, the
better the match achieved by transforming the image view to the
corresponding pose.

The input pattern is first transformed according to the current
shift estimate psh:

Ishbu(x, y, t) =
∫∫

psh(x − x′, y − y′, t)I(x′, y′, t) dx′ dy′. (1)

Mathematically, this is analogous to the convolution of the
function Iwith the kernel psh. The convolution can be visualized as
a superposition of all possible transformed versions of the input,
I(x′, y′, t), each weighted by the shift representation, psh(x− x′,
y− y′, t).

After applying the shift estimate, we change the coordinate
system for Ishbu to log-polar coordinates (which we denote by ρ for
the distance from the center and byϕ for the angle). This allows us
to rotate the input image by transforming along these coordinate
axes. Thus,

Irotbu (ρ, ϕ, t) =
∫

prot(ϕ − ϕ′, t)Ishbu(ρ, ϕ′, t) dϕ′, (2)

is the rotated version of the shifted pattern. Again, we use the
idea of a convolution as a weighted superposition. Figure 5 shows
an example of such a superposition when the current orientation
estimate is bimodal because it has not yet converged on a unique
estimate. By going back to Cartesian coordinates for Irotbu , we obtain
the shifted and rotated input image.

We next compare the transformed input image, Irotbu , with all
learned object views, Wl(x, y, t), where l= 1, 2, . . . corresponds
to the labels given to the learned object views. For each known
object view, this provides a match value

matchl(t) =
∫∫

Î rotbu (x, y, t)Ŵl(x, y, t) dx dy. (3)
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Here, we use the notational convention that

X̂(x, t) =
X(x, t) − X̄

∥X∥2
(4)

where X̄ is the mean value (disregarding time) of X: n × + 7→
(for n≥ 1) and ||X||2 is the L2 norm of X (also disregarding time).
Thus, Îrotbu is the mean-free, normalized version of Irotbu . The match

FIGURE 3 | An overview of the contributions of the feature channels to
the estimation process. The edge channel here is representative of three
channels of edge orientations extracted from the luma (Y), blue (Cb), and red
(Cr) chromaticity channels of the YCbCr color model. Gray boxes labeled
“T/M” stand for transformation and matching stages as elaborated in
Figure 2 and the text.

values, matchl(t), serve as input to a set of dynamic neural nodes
which detect and select candidates from the learned views as
described in Section 2.2.1.

2.1.2. The Top-down Path: Matching Pose
In the top-down path, the learned views, Wl, are superposed,

Ptd(x, y, t) =
∑
l∈L

pl(t)Wl(x, y, t), (5)

weighted by their match values pl(t)∈ [0, 1] (specified in detail
in equation (20)). The result is matched against the transformed
versions of the input image in the bottom-up path, yielding
new pose estimates. We first match the superposition (in log-
polar coordinates) with the shifted input image along the angle
parameter:

matchrot(ϕ, t) =
∫∫

P̂td(ρ
′, ϕ + ϕ′, t)̂Ishbu(ρ′, ϕ′, t) dρ′ dϕ′.

(6)
This match value serves as input to the dynamic neural field

that represents the rotation of the object (see Section 2.2.1).
To compute the spatial match, we first transform Ptd back to

the original orientation based on the rotation representation, prot,
now used as an inverse:

Prot
td (ρ, ϕ, t) =

∫
prot(ϕ′ − ϕ, t)Ptd(ρ, ϕ′, t) dϕ′. (7)

A B

FIGURE 5 | An example of a weighted superposition. Panel (A) shows an
example rotation estimate where two poses (0° and 90°) are equally active.
Panel (B) shows the result of transforming an exemplary input image by this
rotation estimate.

FIGURE 4 | Example for the shape extracted from an input image. Panel (A) shows the input image and (B) the sum of the energies of edges in the black (Y)
and chromaticity (Cr and Cb) channels of the input image. Panel (C) shows The final extracted shape. In the latter two figures, darker areas are more active than
lighter areas.
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Because we formulated rotation transformation as a simple
shift operation, we find its inverse by reversing the argument,
pinv
rot(ϕ − ϕ′, t) = prot(ϕ′ − ϕ, t). The rotated image is correlated

with the input pattern

matchsh(x, y, t) =
∫∫

P̂rot
td (x + x′, y + y′, t)̂Ibu(x′, y′, t) dx′ dy′.

(8)

This match value serves as input to the object position field (see
Section 2.2.1).

2.2. Neural Dynamics
The cores of the model are neural-dynamic representations of
pose and of object identity, that implement processes of pose
estimation and object recognition. We review these in turn.

2.2.1. Dynamic Neural Fields for Pose Representation
Representing pose neurally makes it possible to perform pose
transformations before a specific pose estimate has been obtained.
Initially, the neural field representation of pose is flat, so that
all possible values of the pose parameter are equally valid. This
representation evolves in time as described by dynamic neural
fields, ultimately converging to mono-modal distributions, whose
peak locations indicate the final pose estimate. This convergence
occurs at the same time as the estimate of object identity also
evolves and converges, as sketched below.

We explain the neural representation of pose, described by the
pose parameter r, jointly for the two transformations translation
and rotation. For translation, r= (x, y)⊆ 2; and, for rotation,
r=ϕ ∈ [0, π).

To represent the value of each pose parameter, we introduce
two layers of dynamic neural fields (DNFs), u1(r, t) and u2(r, t).
(Strictly speaking, all fields and associated parameters need to
have an index to distinguish the two transformations. To avoid
clutter, we suppress these indices.) The activation in both layers is
governed by a neural dynamics inspired by classical work ofAmari
(1977). For the first layer, the dynamics is given by

τ1u̇1(r, t) = −u1(r, t) + h1 + s1(r, t) + cη,1 η1(r, t)

+
∫

w1(r − r′)σ
(
u1(r′, t)

)
dr′, (9)

where h1 < 0 is the resting level to which activation relaxes in
the absence of any input, s1, on the timescale τ 1 > 0. η1 is a
Gaussian white noise term with unit variance, weighted by the
factor cη ,1 ≥ 0. Only field sites with significant activation levels
contribute to interaction, as described by a sigmoid function σ:

7→ [0, 1],

σ (u) =
1
2

(
1 +

βu
1 + β|u|

)
, (10)

with steepness β > 0. The sign and size of interaction is defined
by an interaction kernel,

wi(r − r′) =
∑
j

ajgσj(r − r′) − γi (11)

which consists of global inhibition, γi ≥ 0, and local interaction
of strength aj (>0 for local excitation, <0 for local inhibition),
modeled as a sum of Gaussians

gσj(r) = exp

[
− r2

2σ2
j

]
, (12)

with width σj. The match functions defined in Section 2.1.2 pro-
vide input, s1, into the corresponding first layer of neural activa-
tion: for translation, s1(x, y)=matchsh(x, y), and for orientation,
s1(ϕ)=matchrot(ϕ).

This variant of neural dynamics was analyzed by Amari
(1977) who showed that for sufficiently strong localized inputs,
localized connected regions of suprathreshold activation (peaks)
become attractor states. The shape of these peaks is largely deter-
mined by the interaction kernel. Local excitation (positive aj
in equation (11)) strengthens peaks beyond the local level of
input. Peaks suppress all other field sites through global inhibition
(γi > 0 in equation (11)), which can lead to selection inwhich only
a single peak may form within a field.

The dynamics of the second layer is given by
τ2u̇2(r, t) = −u2(r, t) + h2 + cη,2 η2(r, t)

+
∫

w2(r − r′)σ
(
u2(r′, t)

)
dr′

+ c12
∫

gσ12(r − r′′)θ
(
u1(r′′, t)

)
dr′′. (13)

It receives input from the first layer controlled by the coupling
strength, c12 > 0, and the semi-linear threshold function,

θ (u) =

{
u : u ≥ 0
0 : otherwise

(14)

All other variables are defined analogously to equation (9).
The actual pose estimate represented by the two-layer structure

is a multiplicative mixture of the output of the two layers,
ps(r, t) = m(t)σ (u2(r, t)) + (1 − m(t))θ (u1(r, t)) , (15)

where s is an index for a transformation. Here, m(t)=σ(up(t)) is
the ratio of the mixture. Its value depends on the activation of a
peak detector, up(t), which is governed by the dynamics

τpu̇p(t) = −up(t)+wpσ (up(t))+
∫

σ
(
u2(r′, t)

)
dr′+hp, (16)

where wp > 0 and hp < 0.
In the first layer, only weak global inhibition is applied so that

multiple candidate values of pose may become active in the field.
Strong candidates are strengthened by local excitation, while very
weak candidates are suppressed through global inhibition. Global
inhibition is stronger in the second layer, so that it selects one
of the candidate pose values from the first layer as the final pose
estimate.

We choose τ 1 <τ 2, so that the first layer converges faster than
the second layer. The fields will thus initially represent a set of
candidate pose parameter values. These candidates are used to
transform the input image and the superposition of the learned
views leading to increasingly accurate pose estimates. This process
continues until the second layers decide which candidate values to
use for the final pose estimate.
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2.2.2. Dynamic Neural Nodes for Identity
Representation
Each learned object view is indexed by a label l. We represent the
estimation of the best-matching object view by the activation of
two layers of dynamic neural nodes, ul ,1 and ul ,2. The dynamics
for these layers of nodes are defined analogously to the dynamics
of the neural activation fields used for pose representation. For the
first layer, the dynamics are given by

τ1u̇l,1(t) = −ul,1(t) + h1 + matchl(t) + cL
η,1η1(l, t)

+
∑
l′

w1,l,l′σ (ul′,1(t)) , (17)

where τ 1 > 0 is the time scale, h1 ≤ 0 is the resting level, η1 is a
Gaussian white noise term with unit variance, cLη,1 ≥ 0, and

wi,l,l′ =

{
wi,self : l = l′

γi : otherwise
(18)

is the interaction matrix with self-excitation strength wi ,self > 0
and global inhibition γi ≤ 0.

The second layer follows the dynamics

τ2u̇l,2(t) = −ul,2(t) + h2 +
∑
l′

w2,l,l′σ (ul′,2(t)) + cLη,2η2(l, t)

+ c12θ (ul,1(t)) , (19)

where τ 2 > 0 is the time scale, h2 ≤ 0 is the resting level, η2
is a Gaussian white noise term with unit variance, cL

η,2 ≥ 0, the
weights, w2, l , l′ , are defined as in equation (18), and c12 > 0 is the
connection strength from layer one to layer two.

The actual estimate of object identity represented by the two-
layer structure is a multiplicative mixture of the output of the two
layers,

pl(t) = m(t)σ (ul,2(r, t)) + (1 − m(t))θ (ul,1(r, t)) . (20)

As before, m(t)=σ(up(t)) is the ratio of the mixture. Its value
depends on the activation of a detector for active label nodes,up(t),
which is governed by the dynamics

τpu̇p(t) = −up(t) + wpσ (up(t)) +
∑
l′

σ (ul′,2(t)) + hp, (21)

where wp > 0 and hp < 0.
In analogy to the two-layer structure of the pose representa-

tion, the first layer has only little global inhibition and detects
candidates for the best-matching views. The second layer is much
slower than the first one (τ 1 <τ 2), and is much more selective
(γ1 <γ2), allowing only a single view node to become active. The
final recognition, then, is given by the active node l∗ for which
σ (ul∗,2(t)) >> 0.

2.3. The Color and Edge Channels
Shape is combinedwith feature channels for color (hue of theHSV
color model) and for the orientation of edges of the luma (Y)
and chromaticity (Cb, Cr) components of the image (Figure 3).
These feature channels are based on localized histograms that
are explained next. We then describe how the pose transforma-
tions for translation and for rotation are performed on these
histograms, followed by a description of how the transformed
histograms are matched to the top-down path.

2.3.1. Histogram Extraction
For computational efficiency, localized histograms for each fea-
ture channel, F, are extracted only on a regular two-dimensional
grid of image points that subsample the image. These grid points
become the centers, ci,j ∈ 2 of the histograms, which are thus
labeled by two discrete indices, i, and j:

hi,j( f, t) = nF(t)
∫∫

gσh,ci,j(x, y) mF(x, y, t)

× χ[f,f+∆f](IF(x, y, t)) dx dy (22)

Here, IF : 2 × + 7→ are the feature values extracted from
the input image I. χ[f ,f+∆f](·) is the characteristic function of an
interval, [f, f +∆f ], along the feature dimension. It returns 1
when the argument falls into the interval and zero else. The size
of this interval, ∆f, reflects the discrete sampling of the feature
dimension used in practice. Here, we still keep the continuous
notation for the feature dimension, f, because that makes it easier
to express the pose transformations in feature space. gσh,ci,j(x, y)
is a Gaussian kernel

gσh,ci,j(x, y) = exp

[
−

∥(x, y) −ci,j∥2
2

2σ2
h

]
, (23)

centered on the grid points, ci,j. The masking term mF(x, y, t) =
mθ

F (x, y, t)Psh
td(x, y, t), where

Psh
td(x, y, t) =

∫∫
psh(x′ − x, y′ − y, t)Prot

td (x′, y′, t) dx′ dy′ (24)

is the shape predicted in the top-downpath (Prot
td , see equation (7)),

and mθ
F(x, y, t) ∈ {0, 1} is a threshold function. For color, this

threshold is

mθ
col(x, y, t) =


1 : saturation(x, y, t) > θsat

∧ value(x, y, t) > θval

0 : otherwise
, (25)

where saturation (x, y, t) and value (x, y, t) are given by the HSV
colormodel, and θsat ∈ and θval ∈ are thresholds. Analogously,
the threshold for the edge channels is defined by

mθ
edge(x, y, t) =

{
1 : energy(x, y, t) > θedge

0 : otherwise
, (26)

where energy (x, y, t) is the edge energy obtained from steerable
filters (Freeman and Adelson, 1991) and θedge ∈ is a threshold.
Finally, the normalization factor, nF, is given by

nF(t) =
(∫∫

mθ
F(x, y, t) dx dy

)−1
. (27)

2.3.2. Translation
The goal is to match the learned object views with those parts of
the image that the current shift representation, psh, maps onto the
center of the visual array. In a sense, the learned views can be
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thought of as being localized at that center. The shift represen-
tation is thus used to translate image patches to the center and
at the same time as a mechanism of spatial attention that selects
the portions of the image to be matched. The spatial range over
which image information is taken into account is determined by
the spatial distribution of activation in the shift representation
itself.

Implementing this idea is complicated by the fact that we sub-
sampled the image on a coarse subgrid for efficiency reasons (see
above). We must, therefore, subsample the shift representation,
psh, in the same way. To do this without loss of local peaks, we
use a maximum filter. Specifically, pmax

sh (ci,j, t), is determined by
finding the maximum activation level of the shift representation,
psh, within a square sample centered on the grid point, ci,j. Atten-
tional selection togetherwith shift transformation is then achieved
through a weighted sum of the localized histograms:

hsh
bu( f, t) =

∑
i,j

pmax
sh (ci,j, t)hi,j( f, t). (28)

This yields a single “bottom-up” histogram of the feature
dimension, F, that the variable, f, samples.

The match between the localized histograms, hi ,j( f, t), com-
puted from the selected and shifted image patch (bottom-up), and
the analogous localized histograms, ĥtd( f, t), computed from the
learned images (top-down) is determined as

matchsh(ci,j, t) =
∫

ĥi,j( f ′, t)ĥtd( f ′, t) df ′. (29)

where the “hats” again indicate mean-freeing and normalization
as described by equation (4). This match is used to update the
pose representation by contributing input to the dynamic neural
fields representing object position (equation (9)). This requires
lifting the subsampled grid-representation back to the full image
sampling by bicubic interpolation.

For the color feature channel, the top-downhistogram, ĥtd( f, t),
is the weighted sum of the color histograms extracted from
training images. For the edge orientation feature channel, the
learned histograms of edge orientations extracted from the train-
ing images must first be rotated based on the current orientation
estimate as described next. The weighted superposition of these
rotated, learned histograms serves as top-down histogram, ĥrot

td .

2.3.3. Rotation
In the bottom-up path, edge histograms are transformed based on
the representation of object orientation, prot(∆ϕ, t):

hrot
bu (ϕ, t) =

π∫
0

prot(ϕ − ϕ′, t) hsh
bu(ϕ

′, t) dϕ′ (30)

where the edge orientation, ϕ ∈ [0, π), covers only half of orien-
tation space because the edge feature does not include polarity.
The top-down histogram, htd, is rotated analogously, by applying
the inverse of the representation of orientation, pinv

rot(ϕ − ϕ′, t) =
prot(ϕ′ − ϕ, t):

hrot
td (ϕ, t) =

π∫
0

pinv
rot(ϕ − ϕ′, t)htd(ϕ

′, t) dϕ′ (31)

The edge channel contributes to the update of the represen-
tation of object orientation because it is sensitive to orientation
(the color channel is not and, therefore, does not contribute).
The update is based on the correlation of the shifted bottom-
up histogram for the edge channel, hsh, with the corresponding,
non-rotated top-down histogram, htd:

matchrot(ϕ, t) =

π∫
0

hsh
bu(ϕ + ϕ′, t)htd(ϕ

′, t) dϕ′. (32)

This match function contributes input to the dynamic neural
fields representing object orientation (equation (9)).

2.3.4. Matching Histograms to Object Views
In order to estimate object identity, transformed bottom-up his-
tograms, hbu, arematched against learned patterns,Wl. In analogy
to matching in the shape channel (see equation (3)), the his-
tograms are matched by correlating their mean-free normalized
versions:

matchl(t) =
∫

ĥbu( f, t)Ŵl( f, t) df. (33)

For the color channel, f = c is a color and hbu(c, t) = hsh
bu(c, t).

For the edge orientation channels, f =ϕ is an edge orientation
and hbu(ϕ, t) = hrot

bu (ϕ, t). The match function contributes
input to the dynamic neural nodes representing object identity
(equation (17)).

2.4. Fusing the Different Feature Channels
Evidence for object identity and pose from the five feature chan-
nels is fused by weighted addition. Each channel contributes to
the input, s1(r, t), of the dynamic neural fields that represent the
different dimensions, r, and analogously to the input of the label
nodes. Different channels contribute to different dimensions of
pose, as illustrated in Figure 3. The color channel is invariant
under rotation and thus only contributes to the estimation of posi-
tion. The localized histograms of edge orientations are extracted
on three different color channels and contribute to the estimation
of position and orientation. The shape-based channel also con-
tributes to these two dimensions. In principle, shape may provide
an estimate orientation across the complete range of orientation
from 0° to 360°. Because the contribution of shape to orientation
is relatively weak, we did not use it to disambiguate the orientation
estimate delivered by the edge channel, which cannot distinguish
between an image and its rotation by 180°. Instead, we restrict the
orientation estimate across all channels to the range of 0° to 180°.
For shape, this means that we sum the activations in the two sub-
intervals of that orientation space. The discriminative power of
the shape channel is also relatively weak so that its contribution
to object identification is less important than its contribution to
pose estimation.

2.5. Learning Objects
The architecture learns objects during a supervised training phase.
In this phase, object images are presented to the system one by
one. For each image, the system’s continuous-time dynamics is
simulated in the same way as during recognition. Because at that
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time, the object has not yet been learned, the question arises how
its pose is being represented. We set the pose in all transformation
fields by biasing the first-layer pose representation fields with
Gaussian inputs centered on zero. These inputs are strong enough
to induce a peak at zero, which then drives the second layer as well.
In that layer, pose values that become activated by the matching
processes lose the competition mediated by global inhibition. As
a result, the pose of the object to be learned is defined as zero.
The mean shift and rotation applied to the input pattern is zero,
although the width of the Gaussians induces a slight blurring to
the transformed patterns.

Analogously, object identity is set by biasing a dynamic neural
node on the first layer of the object identity representation (see
Section 2.2.1). This reflects an externally cued label, lcued. The
cued node becomes active and drives the corresponding node on
the second layer, where all other nodes are suppressed by global
inhibition.

For each feature channel and each label, l, a memory of a feature
pattern, Wl( f, t), is learned on a timescale, τ learn, by the learning
dynamics:

τlearnẆl( f, t) = −(Wl( f, t) − m( f, t))blearn(t)pl(t). (34)

The linear term, −(Wl( f, t) −m( f, t)), creates an attractor
for the learned feature pattern, Wl( f, t), at the feature pattern
m( f, t) that results from the bottom-up path summarized below.
The factor, blearn(t)∈ {0, 1}, enables and disables learning and
is controlled externally, and initially set to zero. Once the pose
and label estimates converge, blearn(t) is set to one to allow the
learned pattern to converge tom( f, t) over time. pl(t) is the current
object identity representation defined in equation (21). After the
object identity representation has converged, the cued label, lcued,
is represented by plcued (t)= 1, with pl′(t)= 0 for all l

′
̸= lcued. As an

effect, only the learned pattern for the cued label changes.
The feature pattern to be learned, m( f, t), is always the fully

transformed pattern of the bottom-up path of the feature channel.
For the color histogram, f = c is a color andm(c, t)= hsh

bu(c, t). For
the edge orientation channels, f =ϕ is an edge orientation and
m(ϕ, t) = hrot

bu (ϕ, t). For the shape channel, f = (x, y) is a spatial
location and m(x, y,t)= Irot(x, y, t).

2.6. Evaluation Methods
Before evaluation, the architecture is trained in a number of
training trials. In each training trial, a single training image is
presented to the architecture. At the start of each trial, the archi-
tecture undergoes a soft reset in which the resting level of all
fields and nodes is lowered, leading to a decay of their activation.
Once their activation has fully decayed so that the activity of
all field sites and nodes is sufficiently close to the resting level,
the reset is considered complete, and the architecture converges,
reflecting the specified pose and label information as described
in Section 2.5. Once the label representation has converged, the
learned patterns are adapted as described in Section 2.5. This
learning phase has a fixed duration after which the training trial
is considered complete, and the next trial starts.

Once the architecture is fully trained, recognition performance
is assessed. Recognition trials beginwith the same soft reset proce-
dure as training trials, after which a query image is presented and

the system is allowed to converge to a pose and label estimate. The
recognition process is considered complete when the activation
of a label node on the second layer remains above threshold
for a fixed time interval or once trial duration exceeds a given
maximum. The estimated pose and identity are recorded, and the
next image is processed.

We explain next how recognition performance is assessed
through a rank measure and then describe how pose estimation
is assessed. Finally, we describe a simplified recognition model
without pose estimation that is used to assess how the different
components contribute to the performance of the model.

2.6.1. Rank Measure
At the end of each recognition trial, we record the output of the
second layer of label nodes, σ(u2, l(t)), where l is a label. We rank
order labels by their output level into a list (l1, l2, . . ., ln) with li ̸=
lj and σ(u2,li(t)) ≥ σ(u2,li+1(t)) ∀i∈ {1, . . ., n− 1}, so that:

rank (li) = i. (35)

The label, l, for which rank (l)= 1, is the best-matching label;
the label, l, for which rank (l)= 2 is the second-best match; and
so on. When the best-matching label corresponds to the anno-
tated label of the presented view, the trial counts as a correct
recognition.

2.6.2. Measuring Pose Errors
At the end of each recognition trial (indicated by the time, tend), we
also record the output of the second layer of the pose estimation
fields, u2(r, t) (where r is a pose dimension), which manifest a
localized peak of activation at this time. The location of these
peaks provide the pose estimates. For position, the pose estimate

x̃ = (x̃, ỹ) = argmax
x,y

σ (u2(x, y, tend)) (36)

leads to a pose error computed as

Esh(x, x̃) =
√

(x − x̃)2 + (y − ỹ)2, (37)

where x= (x, y) is the annotated position of the object. For
orientation, the pose estimate

ϕ̃ = argmax
ϕ̃

σ
(
u2(ϕ̃, tend)

)
. (38)

leads to a pose error of

Erot(ϕ, ϕ̃) =

{
|ϕ̃ − ϕ| |ϕ̃ − ϕ| < 90◦

180 − |ϕ̃ − ϕ| otherwise
, (39)

where ϕ ∈ [0°, 180°] is the annotated orientation of the object.

2.6.3. Role of Pose Estimation in Recognition
One question is how much the concurrent estimation of pose and
of object identity contributes to recognition as compared to the

Frontiers in Neurorobotics | www.frontiersin.org April 2017 | Volume 11 | Article 239

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Lomp et al. Concurrently Estimating Pose and Identity

raw recognition rates that can be obtained from the feature chan-
nels alone, without concurrent pose estimation. To address this
question, we implemented a variant of the recognition approach,
in which a nearest neighbor classification scheme employs the
same color and edge channels as used in our main model. In this
scheme, histograms, hF ,i, for each feature channel, F, are extracted
from each training image indexed by i according to

hF,i( f) =
∫∫

δ( f − IF,i(x, y)) dx dy. (40)

where IF ,i(x, y) is the spatial pattern of feature values in the train-
ing image. (Note that this corresponds to equation (22) without
the local Gaussian and the top-down weights.) The correlation
between the query image and each training image (index, i),∫
ĥF,query( f)ĥF,i( f)df (the “hat” indicates mean-freeing and nor-

malizing of each histogram) is combined across feature channels,
F, with weights, wF. The best-matching training image,

i∗ = argmax
i

∑
F

wF

∫
ĥF,query( f)ĥF,i( f) df (41)

is recognized. We tested two ways to combine feature channels.
The no-pose-color approach (NP-C) uses only color information
(i.e., wcol = 1, all other weights zero). The no-pose-color and edges
(NP-C+E) comparison uses color information aswell as edge ori-
entations on the black (Y) and chroma components (Cb and Cr)
of the input image. The contributions of these feature channels,
wF, are given the same weight as in the proposed system.

We first tested the new approach on the COIL-100 dataset
(Nene et al., 1996), a well established benchmark for object recog-
nition. Because objects in COIL are rotated outside the image
plane, the assumptions on which pose estimation is based in the
proposed system are violated.We provide, therefore, a new dataset
on which we are able to make detailed quantitative assessments
of both object identity and pose estimation. All evaluations pre-
sented here are based on an implementation of the proposed
system in the software framework cedar (Lomp et al., 2013).

2.6.4. Baseline Comparision
To provide a baseline for the recognition performance of our
model, we employed the SURF-based object recognition system
(Bay et al., 2008). This well-established approach achieves approx-
imate pose invariance through rotation and scale invariant inter-
est point descriptors. Rotation and orientation estimates can be
obtained from the system. We applied the method to both out
tabletop images and to the COIL data set.

3. RESULTS

3.1. Evaluation on the COIL-100 Dataset
TheCOIL-100 database (Nene et al., 1996) consists of color images
of 100 objects, each recorded individually in front of a uniform,
dark background from one of 72 different view angles achieved by
placing the object on a turntable that was rotated in 5° intervals.
Our model recognizes objects based on a single view. To approach
the COIL paradigm, we used four training views for each object,

TABLE 1 | Overview of the recognition performance on the test portion of
the datasets.

Database COIL (first 30) (%) Tabletop (%)

Proposed system 91.1 87.2
SURF baseline 57.8 34.8
NP-C 95.3 84.4
NP-C+E 92.2 81.5

Please refer to Section 2.6.3 for an explanation of the “no-pose” (NP) variants. Note that
in order to capture stochastic variations in the recognition results that stem from the noise
in the dynamics of the pose and label representations, these results are averaged over
four runs through the set of test images.

taken from0°, 90°, 180°, and 270° angles. Each training view is rep-
resented by a dynamic neural node. The four nodes representing
the four views of a single object are combined in a second two-
layer stage of neural dynamics at which one node stands for one
object. We only learned the first 30 objects of COIL-100.

We added a uniformborder of 64 pixels to the images. The color
of this border matched the background color of the COIL-100
images to avoid artifacts from edge responses at the border of the
padded image. Padding the images allowed us to keep sampling
rates and other parameter values in our architecture the same as
in the experiments performed in the next section, in which we
will locate objects in 256× 256 pixel images with a relatively large
amount of background.

The set of query images was presented in different random
orders four times, while the recognition process ran in one contin-
uous simulation. In this scenario, the proposed system achieved a
recognition rate of 91.1%. The recognition rate achieved by the
SURF baseline method on the same set of images was 57.8%.

The impact of pose estimation on the recognition rate is sum-
marized in Table 1. Using color histograms alone, without pose
estimation, (NP-C) leads to a higher recognition rate than that of
our proposedmethod.When edges are added to color (NP-C+E),
the advantage goes away and the recognition rate approximately
matches that of our proposed method. These two observations
may at first seem puzzling. That color performs well reflects the
invariance properties of color histograms. Edges are less discrim-
inative and less invariant, so adding the edge feature degrades
performance. Color histograms do not enable orientation esti-
mation, of course, so our proposed method needed to include
the less discriminative edge feature. However, on the COIL data
base, estimating the pose does not improve performance. This is
probably due to the fact that most pose variation in the COIL
database comes from rotations in depth, which are not estimated
in our approach. In the tabletop setting, in contrast, the variation
of pose is better captured by the image-based pose estimation
process of our approach.

3.2. Tabletop Setting
A tabletop dataset that specifically probes both object identity and
pose estimation was previously developed in preliminary work
(Faubel and Schöner, 2008, 2009). It contains images of thirty
common household objects in a robotic tabletop setting. Each
image shows an object in one of ten different positions on a
white tabletop in front of the robotic platform CoRA (Iossifidis
et al., 2003). Of the ten positions, one is the training pose, while
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the other nine are used for testing (see Figure 6). The images
are captured by a Sony DFW-VL500 camera with a resolution of
640× 480 pixels. Lighting conditions as well as camera position
and settings are constant throughout the whole dataset.

For the recognition process, a subregion of 256× 256 pixels
is cut out from the images. The cut out region is placed in the
center of the full-sized image for poses 1–3, at the top-left corner
for poses 4–6, and at the bottom-right corner for poses 7–9 (see
Figure 6). This cutting-out procedure is meant to reflect the effect
of attention that would focus input to the recognition system on
the vicinity of the object to be recognized.

Figure 7 shows cropped training images of all objects in the
database. The full images and pose annotations of the tabletop
dataset are available online (see text footnote 1).

Note that in contrast to many other databases, objects take
up only a small portion of the input image due to the cam-
era’s angle of view (see Figure 6 for examples). The problem of

FIGURE 6 | The ten poses used in the tabletop scenario, here shown
for the green screwdriver. Left: in the training pose, the object’s long axis is
aligned with the vertical image axis. The solid red square indicates the
256×256 subregion of the image that is used for training. Right: all different
poses superimposed in one image. Poses are numbered 1–9 as shown in the
figure. The different squares indicate the subregions of the image used as
input to the recognition process; the dotted (blue) region is used for poses
4–6, the solid (red) region is used for training and poses 1–3, and the dashed
(green) region is used for poses 7–9.

FIGURE 7 | Training views of the 30 objects of the tabletop database.
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foreground-background segmentation is simplified by present-
ing objects on a white tabletop. Training views show objects
in a canonical pose, that is, with their longer axis pointing up,
in order to simplify the calculation of pose errors (if objects
were not learned in canonical poses, we would have to record,
for each object, what the estimated pose was during learning,
and computing the error would need to reference this recorded
estimate).

3.2.1. Recognition and Pose Estimation Performance
We first trained the system using the 30 training images from the
tabletop scenario. Each training imagewas presented a single time,
so that the original form of the architecture could be used. As in
the COIL experiments, results from four runs through the entire
test set, in randomly permuted order, were averaged to compute
recognition and pose estimation performance.

The recognition rate of our system was 87.2%. This compares
to the baseline SURF system which achieved a recognition rate of
34.8%. This is a stronger contrast than for the COIL data base. The
tabletop database entails more strongly the type of pose variation
that our system is able to estimate.

Table 1 compares recognition performance of the system to the
two variants that do not estimate pose. Note that for the table top
scenario, pose estimation is always advantageous. Given that our
system uses edges as features to enable the estimation of rotation,
the contrast of our system to NP-C+E is a direct assessment
of the advantage of pose estimation provides, approximately a

boost of 6% in recognition rate. Recognition based on color alone
(NP-C) is still better than recognition that also includes the less
discriminative and invariant edge information (NP-C+E).

The performance of the proposed system on pose estimation is
compared to the SURF baseline method in Table 2. The proposed
system dramatically outperforms the baseline.

Figure 8 provides a more detailed characterization of recog-
nition and pose estimation performance. The distribution of the
rank of the correct label across all test trials shown in Figure 8A
indicates that the average rank of the correct class was 1.2. Within
the set of trials in which the object was incorrectly classified, the
average rank of the correct class was 2.5.

Figure 8B illustrates how recognition rates variedwith the devi-
ation from the training pose. Shifted (left) and rotated (center)
poses somewhat degrade performance, most strongly when shift
is combined with a large rotation (right).

TABLE 2 | Pose estimation errors.

Proposed method SURF baseline

All Correct All Correct

Position (px) 13.5 13.0 52.4 87.3
Rotation (°) 14.0 12.1 37.1 30.5

Errors have been averaged separately over all test trials as well as those test trials in which
the correct object was recognized. Please refer to the text for details on how these errors
are calculated.

A B

C D

FIGURE 8 | Overview of the system’s performance on the tabletop dataset. Panel (A) shows a histogram of ranks of the correct label in the test trials (see
Section 2.6.1 for a description of the rank measure). Panel (B) shows recognition performance by pose. Please refer to Figure 6 for an explanation of the different
poses and Section 2.6.2 for an explanation of how pose errors were calculated. Panel (C) shows a histogram of rotation errors. (D) Details the position errors for
each of the object poses in the database. The square inlays in (B,D) symbolize the position and alignment of the object in the views, relative to the cutout region.
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Figure 8C shows how the error of orientation estimation is
distributed. Note, that the maximum error is 90° because rotation
was only estimated within the range [0°, 180°] (see equation (39)).
The small peak around 90° reflects that objects tend to have two
main axes, whichmaybe confusedwhenobjects are approximately
quadratic. Finally, the dependence of these errors on the tested
poses is shown in Figure 8D. It shows a similar pattern as the
recognition rates, with the largest errors occurring when a shift
and a large rotation are combined (right).

To assess the contribution of each feature channel to the per-
formance of the model, we deactivated all but one feature channel
(by setting all weights to zero except one, which was reweighted
to achieve the same overall input strength). Table 3 lists measures
of pose and recognition performance for each individual feature
channel. Color histograms make by far the strongest contribu-
tion to recognition, but contribute nothing to the estimation of
orientation (45° being random for a uniform distribution from
0° to 180°), both expected outcomes. However, color histograms
contribute the best estimation of shift. Edges contribute to the
estimation of orientation, most strongly for the luma-based edges
(Y). Color edges contribute a little more to recognition than the
luma-based edges. The shape channel is useful mainly for shift
estimation.

3.2.2. Feature Sampling
The performance of the system depends on the resolution of the
feature histograms. In order to quantify this dependence, we used

TABLE 3 | Performance of the individual feature channels on the tabletop
dataset.

Pose errors

Channel Recognition rate (%) Position (px) Orientation (°)

Color 85.2 17.0 44.9
Y edges 7.7 21.4 14.4
Cr edges 11.3 28.8 24.4
Cb edges 11.4 27.8 21.2
Shape 6.3 20.3 42.1

the same training- and testing procedure but varied the resolution
of the color and edge feature channels. The resulting recognition
performance is shown in Figure 9A, while the pose estimation
errors are shown in Figure 9B.

3.2.3. Partial Estimation
To separately evaluate the system’s pose and identity estima-
tion performance, we provided either location or object identity
information to the system on test. For label only recognition,
pose information was provided by Gaussian inputs into the pose
representation fields centered on the veridical pose. Pose repre-
sentation fields are thus strongly biased to select the specified
pose. As a result, pose estimation converges to the correct value
early in the recognition process. For pose only recognition, the
correct label node receives a strong bias. The weighted superpo-
sition of learned object views, therefore, approximates the correct
top-down prediction very early in the recognition process.

Table 4 compares performance in these two variants against the
combined pose and identity estimation process. Figure 10 shows
a histogram of rotation errors in pose only recognition. Figure 11
shows a distribution of ranks for label only recognition.

3.2.4. Multiple Objects in One Image
Figure 12 demonstrates that the proposed system is capable of
focusing on a single object even if the test image contains multiple

TABLE 4 | System performance when partial information on the object in
the image is provided.

Estimated parameters

Pose only Label only Pose and label

Recognition rate (%) 100.0 86.8 87.2
Position error (px) 13.0 0.8 13.5
Orientation error (°) 13.3 1.0 14.0

In “pose only” recognition, label information was given to the system. In “label only”
recognition, pose information was provided. “Pose and label” recognition is the concurrent
estimation of both object pose and identity (results are taken from Table 1). Numbers
printed in bold face correspond to information that was estimated by the system in the
testing phase.

A B

FIGURE 9 | This figure shows how the resolution of feature sampling affects the performance of the system on the tabletop images. Panel (A) shows
the impact on the recognition rate, while panel (B) shows how pose estimation performance changes. The x-axis indicate the number of points used to sample the
continuous feature values, f, in equation (22). Note that the color feature channel is sampled at double the resolution of the edge feature, with a maximum resolution
of 180 feature bins. The gray area in the plots marks cases where color resolution is maximal.
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FIGURE 10 | Histogram of rotation errors with partial supervision. In
the “pose” condition, the correct label is specified during recognition. In the
“pose and label” condition, no additional information is given to the system
(values reproduced from Figure 8C for comparison).

FIGURE 11 | Histogram of ranks when only labels are estimated. In the
“label” condition, the correct pose is specified during recognition. In the “pose
and label” condition, no additional information is given to the system (values
reproduced from Figure 8A for comparison).

objects. This is ultimately the result of the top-down path that
effectively provides a variable mask on top-down input. To see
this, Figure 12 provides a timeline of the recognition process in
such a situation. At the end of the soft reset of the system (in
Figure 12A around t= 0), all pose representation fields and object
nodes are below threshold and the predicted top-down shape is
broad and spans the whole image. After a short time, the position
and orientation estimates begin to sharpen. This filters out some
of the irrelevant information and thus helps refine the label esti-
mate. The shape estimate becomes more localized (Figure 12B).
However, there are still multiple candidates for the object being
recognized (Figure 12F), and the top-down shape contains con-
tributions from all of these candidates. Shortly afterward, the
system decides for a label (Figure 12G). All other candidates are
suppressed, and as a result, the top-down shape begins to reflect
the selected object only (Figure 12C). This decision enables the
system to further refine the pose estimates until they converge to
the pose of the recognized object (Figure 12D).

3.2.5. Tracking
Figure 13 shows the system tracking a moving object in real time.
Initially, the object is placed at the center of the image. After the
system has recognized the object, the user rotates it. Note that the
recognition decision persists (label activation stays above thresh-
old), even though the user’s hand touching the object changes the
image within the viewing area that provides input to the recog-
nition system. Persistence of object identity estimation removes
the need to restart the recognition process for each frame. Instead,
the recognition system smoothly tracks the changes in the object’s
orientation. This scenario highlights an important property of the
neural dynamics on which this approach is based: recognition
decisions are stabilized over time. Masking the input with the
current shape estimate further stabilizes the recognition decision
by suppressing visual input outside the object boundaries.

A B C D

E F G H

FIGURE 12 | An example of a recognition trial with an input image that contains multiple known objects. Top row: result of masking the input image with
the currently estimated top-down shape at different times of the recognition process [t= 0 s (A), t= 1 s (B), t= 2 s (C), and t= 7 s (D)]. Bottom row: corresponding
activation of the nodes on the first (green) and second (blue) label layer [t=0 s (E), t= 1 s (F), t= 2 s (G), and t= 7 s (H)]. The red line marks the activation level to
which the nodes converge during the reset. The black line marks the threshold for considering a node active. The gray bar indicates the node corresponding to the
label on which the system settles in the end. Two videos of this process are available in the Supplementary Material, one showing the process at full speed and one
showing it at a slower speed.
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FIGURE 13 | This figure shows our system tracking an object in a video in real time. The first row of images shows the input stream at select time steps. The
second row of images shows the input region, masked by the top-down shape estimate. The third row shows the activation of the label nodes over time, and the
fourth row shows the time-course of the orientation estimate.

4. DISCUSSION AND CONCLUSION

In this paper, we have developed a system that learns to identify
objects from single training views. In a typical tabletop scenario,
the system will identify these objects as they are handled by a
human or a robot, while at the same time estimating the objects’
current pose relative to the pose in the training view. The system
is based on ideas from neural dynamics, in which a recurrent loop
of top-down and bottom-up processing generates stable states for
both pose estimation and object identification.

We have evaluated the recognition performance of the system
in a tabletop scenario and found correct identification in 87.2% of
all trials, much better than the SURF baseline which clocked in at
34.8%. Evenwhen the object is not correctly identified, the correct
object label is among the top choices of the system (seeFigure 8A).
Although much of the discriminative power of the system comes
from the features used, concurrent pose estimation increases this
power in the tabletop scenario, especially when features are sam-
pled coarsely (Figure 9A). In the COIL database, variation of pose
is not captured by shift and image-based rotation as strongly. As a
result, pose estimation did not improve recognition performance.
The recognition rate was still respectable (91.1%), better than the
SURF base line (57.84%), but lower than with color histograms
alone.

Evaluating the performance in pose estimation for the tabletop
database, we found that the pose estimation error was small on
average (Table 2). For object orientation, most trials led to an
estimation error of less than 10°. Errors around 90° deviation
(Figure 8C) occur with some frequency, reflecting the symmetry
properties of some objects (e.g., square objects that have the same
edge distribution when rotated by 90° or round objects that do
not have a clear long-axis on which orientation can be anchored).
Discarding these special cases, the precision of pose estimation
becomes impressive, given that pose estimation is view based and
thus approximate only.

The need to estimate object pose does not generally limit
recognition performance. When full pose information is given,
recognition performance is not improved (see Table 4). This
suggests that the annotated poses are not more accurate than the
estimates delivered by the system.

The processing speed in our implementation of the architecture
is sufficient to deal with real time camera input. This speed could
be improved by optimizing the computational implementations.
In particular, the computationally expensive construction of the
localized histograms could be parallelized to further improve real
time performance.

There are neurally inspired object recognition approaches that
may achieve higher recognition rates. For example, deep networks
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reach very high recognition rates that may exceed human perfor-
mance (Ciresan et al., 2012). These approaches cannot be mean-
ingfully compared to the system studied here, however, because
they address a different task. Typically, these approaches recognize
objects in the sense of assigning a new instance to a learned object
class that has been extensively trained using a variety of training
examples. In contrast, the system we developed here learns object
from a single view stored in a single shot learning procedure.
When the system recognizes an object, it not only estimates object
identity but also object pose. Most neurally inspired approaches
do not address pose estimation. When object recognition is com-
bined with pose estimation in scenarios similar to ours, recogni-
tion rates are low (e.g., below 70% for 28 objects (Kragic et al.,
2005)).

A successful branch of feedforward neural networks based on
the HMAX model (Riesenhuber and Poggio, 1999; Serre et al.,
2007) achieve pose invariant object recognition by making fea-
tures invariant against changes of pose in amultilayer architecture.
The system developed here achieves pose invariant recognition,
instead, by explicitly estimating pose, so that the transformation
of a current view to the learned view becomes possible. This
requires features that support such active pose transformation.
For example, localized color histograms vary when objects are
shifted, but not when they are rotated because their receptive
fields are point symmetric around their center. Localized color
histograms are thus used to estimate object position, but not
object orientation. Localized histograms of edge orientation, in
contrast, vary both when objects are shifted and rotated and are
thus used to estimate both object position and orientation. Con-
versely, top-down prediction of views from learned views requires
a neural representation of object identity from which views can be
constructed by weighted superposition.

SIFT based approaches come closest to what we have reported
here. In application to robotic scenarios, they typically use 3D
estimation (e.g., from multiple cameras as in Collet et al. (2011),
or RGB-D cameras as in Schoeler et al. (2014)) and focus less
on single view-based recognition. In preliminary work, we have
used keypoints within our framework and found that at tolerable
computational effort the recognition rate was lower (Lomp et al.,
2014).

The concurrent estimation of pose and object identity endows
the system with additional functionality. For instance, segmenta-
tion of the visual array into the foreground object and background
distractors emerges from the system’s dynamics. This is illustrated
in Figure 12, which tracks the time course of recognition and pose
estimation when two objects are in the field of view. As the system
converges toward correct identification and pose estimation, the
mask that the top-down path applies to the input image focuses
on the identified object and suppresses the distractor object. This
figure-ground segmentation not only stabilizes the recognition
decision but also prevents interference from other parts of the
visual array, such as from the human or robotic hand that may
be visible while handling the object.

Such resistance to distractors is demonstrated in Figure 13
along with the system’s capability to track changes in the input
image. In the demonstration, after initial recognition of the object,
a human operator rotates the object by hand. Due to the masking

and stabilizing properties of the neural dynamics, the visible hand
has no bearing on the recognized label. The changing object
orientation is smoothly tracked as the neural dynamics keeps con-
verging to the moving attractor. Tracking is an emergent property
of the dynamics of the neural field, in which local excitatory inter-
action actively supports the update of the location of activation
peaks as inputs shift. Online tracking of object poses is critical in
scenarios in which objects are handled such as in the toaster repair
scenario we alluded to in the Introduction. A simplified version
of the developed system has, in fact, been deployed in a similar
scenario (Knips et al., 2014).

More generally, the system developed in this paper is an
exemplary integration of feed-forward neural architectures with
a recurrent loop of top-down prediction. The feed-forward or
bottom-up path, provides high-dimensional feature information,
here color and edge orientation distributions, that endows the
model with discriminative power. The recurrent processes of esti-
mating pose and object identity are enabled by neural dynamics
that provide the competitive interaction necessary to filter out
non-matching pose and object identity candidates over time and
stabilize the resulting selection decision. Among possible exten-
sions of the approach is the introduction of an additional level of
transformation for scale, which amounts to a shift transformation
along the distance dimension of the log-polar representation of
the current model.

We have seen that feature channels are complementary. Edge
features are good at pose estimation but not very discrimi-
native, while color is most discriminative for recognition but
provides no orientation information. Combining the different
feature channels is thus attractive. The neural-dynamic framework
is particularly well suited to achieve this combination in closed
loop. Tracking exploits the stability of pose estimation in neural
dynamics and leverages the strength of the feature channels most
suited to pose estimation.
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SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at
http://journal.frontiersin.org/article/10.3389/fnbot.2017.00023/
full#supplementary-material.

VIDEO S1 | The video shows the system recognizing an object when two
known objects are shown in the input image at normal speed.

VIDEO S2 | The video shows the system recognizing an object when two
known objects are shown in the input image. The process is slowed down to
5% of real time.
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