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Neuromorphic hardware emulates dynamics of biological neural networks in electronic

circuits offering an alternative to the von Neumann computing architecture that is

low-power, inherently parallel, and event-driven. This hardware allows to implement

neural-network based robotic controllers in an energy-efficient way with low latency,

but requires solving the problem of device variability, characteristic for analog electronic

circuits. In this work, we interfaced amixed-signal analog-digital neuromorphic processor

ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and

developed an autonomous neuromorphic agent that is able to perform neurally inspired

obstacle-avoidance and target acquisition. We developed a neural network architecture

that can cope with device variability and verified its robustness in different environmental

situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We

demonstrate how this network, combined with the properties of the DVS, allows the robot

to avoid obstacles using a simple biologically-inspired dynamics. We also show how a

Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic

hardware. This work demonstrates an implementation of working obstacle avoidance

and target acquisition using mixed signal analog/digital neuromorphic hardware.

Keywords: neuromorphic controller, obstacle avoidance, target acquisition, neurorobotics, dynamic vision sensor,

dynamic neural fields

1. INTRODUCTION

Collision avoidance is one of the most basic tasks in mobile robotics that ensures safety of the
robotic platform, as well as the objects and users around it. Biological neural processing systems,
including relatively small ones such as those of insects, are impressive in their ability to avoid
obstacles robustly at high speeds in complex dynamical environments. Relatively simple neuronal
architectures have already been proposed to implement robust obstacle avoidance (e.g., Blanchard
et al., 2000; Iida, 2001; Rind and Santer, 2004), while probably the most simple conceptual
formulation of a neuronal controller for obstacle avoidance is the famous Braitenberg vehicle
(Braitenberg, 1986). When such neuronal control architectures are implemented on a conventional
computer, analog sensor signals are converted and stored in digital variables. A large number of
numerical computations are performed then, which are required to model the involved neuronal
dynamics in software.
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Neuromorphic hardware offers a physical computational
substrate for directly emulating such neuronal architectures in
real time (Indiveri et al., 2009; Furber et al., 2012; Benjamin et al.,
2014; Chicca et al., 2014), enabling low latency and massively
parallel, event-based computation. Neuromorphic electronic
circuits can implement dynamics of neurons and synapses using
digital (Furber et al., 2012) or analog (Benjamin et al., 2014; Qiao
et al., 2015) designs and allow for arbitrary connectivity between
artificial neurons. The analog implementations of artificial neural
networks are particularly promising, due to their potential
smaller size and lower power consumption figures than digital
systems (for a review see Indiveri et al., 2011; Hasler and Marr,
2013). But these features come at a price of precision and
reliability. Indeed, with analog designs, the device mismatch
effects (i.e., variation in properties of artificial neurons across the
device) have to be taken into account for the development of
robust functional architectures (Neftci et al., 2011).

A promising strategy for taking these issues into account
is to implement the mechanisms used in biological neural
networks, which face the same problem of using an unreliable
computing substrate that consists of noisy neurons and synapses
driven by stochastic biological and diffusion processes. These
biological mechanisms include adaptation and learning, but also
using population coding (Ermentrout, 1998; Pouget et al., 2000;
Averbeck et al., 2006) and recurrent connections (Wilson and
Cowan, 1973; Douglas et al., 1995) to stabilize behaviorally
relevant decisions and states against neuronal and sensory noise.
In this work, we show that by using the population-coding
strategy in amixed signal analog/digital neuromorphic hardware,
it is possible to cope with the variability of its analog circuits and
to produce reliably the desired behavior on a robot.

We present a first proof of concept implementation of such
a neuromorphic approach to robot navigation. Specifically, we
demonstrate a reactive vision-based obstacle avoidance strategy
using a neurally-inspired event-based Dynamic Vision Sensor
(DVS) (Lichtsteiner et al., 2006) and a Reconfigurable On-Line
Learning (ROLLS) neuromorphic processor (Qiao et al., 2015).
The proposed architecture is event-driven and uses the neural
populations on the ROLLS device to determine the steering
direction and speed of the robot based on the events produced
by the DVS. In the development phase, we use a miniature
computer Parallella1 solely to manage the traffic of events
(spikes) between the neuromorphic devices, and to store and
visualize data from the experiments. The Parallella board can be
removed from the behavioral loop in target applications, leading
to a purely neuromorphic implementation. In this paper, we
demonstrate the robustness and limits of our system in a number
of experiments with the small robotic vehicle “Pushbot2” in a
robotic arena, as well as in an unstructured office environment.

Several neuromorphic controllers for robots were developed
in the recent years, e.g., a SpiNNacker system (Furber et al.,
2012) was used to learn sensory-motor associations with
robots (Conradt et al., 2015; Stewart et al., 2016), a neural-
array integrated circuit was used to plan routes in a known

1https://www.parallella.org
2http://inilabs.com/products/pushbot

environment (Koziol et al., 2014), three populations of analog
low-power subthreshold VLSI integrate-and-fire neurons were
employed to control a robotic arm (Perez-Peña et al., 2013).
Our system goes along similar lines and realizes a reactive robot
navigation controller that uses a mixed signal analog/digital
approach, and exploits the features of the ROLLS neuromorphic
processor.

In this work we follow a dynamical systems—attractor
dynamics—approach to robot navigation (Bicho et al., 2000),
which formalizes one of the famous Braitenberg vehicles
(Braitenberg, 1986). The neuronal architecture in our work
is realized using a number of neuronal populations on the
neuromorphic device ROLLS. The dynamical properties of
neuronal populations and their interconnectivity allow to process
a large amount of sensory signals in parallel, detecting the
most salient signals and stabilizing these detection decisions in
order to generate robustly closed-loop behavior in real-world
unstructured and noisy environments (Sandamirskaya, 2013;
Indiveri and Liu, 2015). Here, we demonstrate the feasibility of
deployment of a neuromorphic processor for the closed loop
reactive control. We found several limitations of the simple
Braitenberg-vehicle approach and suggest extensions of the
simple architecture that solve these problems, leading to robust
obstacle avoidance and target acquisition in our robotic setup.

2. MATERIALS AND METHODS

The experimental setup used in this work consists of the Pushbot
robotic vehicle with an embedded DVS camera (eDVS) and
the ROLLS neuromorphic processor. A miniature computing
board Parallella is used to direct the flow of events between the
robot and the ROLLS. Figure 1A shows the components of our
hardware setup, while Figure 1B shows the information flow
between different hardware components.

The Pushbot communicates with the Parallella board via a
wireless interface for receiving motor commands and for sending
address-events produced by the DVS. Using a dedicated WiFi
network, we achieve communication latency below 10 ms, which
was enough to demonstrate functionality of our system at speeds,
possible with the Pushbot.

The ROLLS device is interfaced to the Parallella board using an
embedded FPGA, which is used to configure the neural network
connectivity on the chip and to direct stimulating events to
neurons and synapses in real time. The Parallella board runs a
simple program that manages the stream of events between the
neuromorphic processor and the robot.

2.1. The ROLLS Neuromorphic Processor
The ROLLS is a mixed signal analog/digital neuromorphic
chip (Qiao et al., 2015) that comprises 256 spiking silicon
neurons, implemented using analog electronic circuits which
can express biologically plausible neural dynamics. The neurons
can be configured to be fully connected with three sets of
synaptic connections: an array of 256 × 256 non-plastic
(“programmable”) synapses, 256 plastic (“learnable”) synapses
that realize a variant of the Spike-Timing-Dependent Plasticity
(STDP) rule (Mitra et al., 2009), and 4 additional (“virtual”)
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FIGURE 1 | (A) Information flow between the three main components:

ROLLS, Parallella, and the Pushbot, in particular, its sensor DVS and two

motors. (B) The hardware setup used in this work: the neuromorphic

processor ROLLS is interfaced to a miniature computer Parallella, which

communicates with the Pushbot robot over a dedicated WiFi network.

synapses that can be used to receive external inputs. In this
work, only the programmable synapses were used for setting
up the neuronal control architecture, as no online-learning was
employed for the navigation task.

Figure 2 shows a block diagram of the ROLLS device, in
which 256 spiking neurons, implemented using analog electronic
circuits (Indiveri et al., 2006), are shown as triangles on the
right, and 256 × 256 non-plastic (“programmable”) synapses,
which can be used to create a neuronal architecture on the
ROLLS, as well as 256 “virtual” synapses used to stimulate
neurons externally, are shown as white squares. A digital Address
Event Representation (AER) circuitry allows to stimulate neurons
and synapses on the chip, as well as to read-out spike events
off chip; a temperature-compensated digital bias-generator
allows to control parameters of analog electronic neurons and
synapses, such as the refractory period or membrane time
constant.

The programmable synapses share a set of biases that
determine their weight values, their activation threshold, and
time constants. These three parameters determine the synaptic
strength and dynamics of the respective connection between
two neurons. A structural limitation of the hardware is
that each synapse can only assume one of eight possible
weight values (four excitatory and four inhibitory values).
This means that in a neuronal architecture, several different
populations might have to share weights, which limits the
complexity of the architecture. ROLLS consumes ∼4 mW
of power in typical experiments, run here. The ROLLS
parameters (biases) used in this work are listed in the Appendix
(Supplementary Material, Appendix A).

2.2. The DVS Camera
The Dynamic Vision Sensor (DVS) is an event-based camera,
inspired by the mammalian retina (Lichtsteiner et al., 2006; Liu
and Delbruck, 2010). Figure 3 shows a typical output of the DVS
camera accumulated over 0.5 s (right) from the Pushbot robot
driving in the office (left).

Each pixel of the DVS is sensitive to a relative temporal
contrast change. If such change is detected, each pixel sends
out an event at the time in which the change was detected
(asynchronous real-time operation). Each event e is a vector:
e = (x, y, ts, p), where x and y define the pixel location in
retinal reference frame, ts is the time stamp, and p is the polarity
of the event. The event polarity encodes whether the luminance
of the pixel increased (an “on” event) or decreased (an “off”
event). All pixels share a common transmission bus, which uses
the Address Event Representation (AER) protocol to transmit the
address-events off chip.

The AER representation and asynchronous nature of
communication makes this sensor low power, low latency, and
low-bandwidth, as the amount of data transmitted is very
small (typically, a very small subset of pixels produce events).
Indeed, if there is no change in the visual scene, no information
is transmitted off the camera. If a change is detected, it is
communicated instantaneously, taking only a few microseconds
to transfer the data off-chip.

For the obstacle avoidance scenario, important properties
of the DVS are its low data rate, high dynamic range, and
small sensitivity to lighting conditions (Lichtsteiner et al., 2006).
The challenges are noise, inherent in the sensor, its inability
to detect homogeneous surfaces, and relatively small spatial
resolution (128 × 128 pixels), as well as a limited field of view
(60◦). New versions of DVS are currently available, which would
further improve performance of the system. Moreover, more
sophisticated object-detection algorithms for DVS are currently
being developed (Moeys et al., 2016).

The embedded version of the DVS (eDVS) camera (Müller
and Conradt, 2011) used in this work uses an ARM Cortex
microcontroller to initializes the DVS, capture events, send them
to the wireless network, and to receive and process commands for
motor control of the Pushbot.

2.3. Neuromorphic Robot
The robot used in this work is the mobile autonomous platform
Pushbot, which consists of a 10× 10 cm chassis with two motors
driving two independent tracks for propulsion (left and right).
The predominant component on the small robot is an eDVS
(Section 2.2), which acquires and provides sensory information
and controls actuator output, including the robot’s motors,
through its embedded microcontroller. The sensor’s integrated
9 DOF IMU reports changes of velocity and orientation. The
robot actuators include a buzzer, two parallel, horizontal forward
laser pointers and an LED on top, which all can show arbitrary
activation patterns. The Pushbot is powered by 4 AA-batteries,
which ensure∼2 h operation time.

The robot communicates through WLAN at up to 12 Mbps,
which allows remote reading of sensory data (including events
from the eDVS) and setting velocities with a latency < 10ms.

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2017 | Volume 11 | Article 28

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Milde et al. Navigation Using Analog/Digital Neuromorphic Hardware

FIGURE 2 | The schematic visualization of neurons (grey triangles), non-plastic and virtual synapses (white squares), as well as input-output interfaces and bias

generator of the ROLLS chip. Each neuron on the chip (presynaptic neuron) sends its output spikes to 256 non-plastic synapses, which, if set active, can route these

spikes to any of the neurons on the chip (postsynaptic neurons). The connectivity matrix allows for all-to-all connectivity, but also other configurations. AER is a digital

Address-Event Representation, used to communicate spikes (it consists of an index of the spike-emitting neuron).

FIGURE 3 | The Pushbot robot driving in the office (left) and a visualization of

the DVS output (right), accumulated over 0.5 s.

The Pushbot robot is too small to carry the current experimental
hardware setup. In principle, however, it is possible to place the
ROLLS chip directly on a robot, removing the WiFi latency.

2.4. Spiking Neural Network Architecture
The core of the system presented here is a simple neural network
architecture that is realized in the ROLLS device and allows
the robot to avoid obstacles and approach a simple target. The

“connectionist” scheme of the obstacle avoidance part of the
architecture is shown in Figure 4A, while the scheme of the target
acquisition architecture is shown in Figure 4B.

For obstacle avoidance, we configured two neuronal
populations of 16 neurons each to represent a sensed obstacle
to the right (“obstacle right,” or OR) and to the left (“obstacle
left,” or OL) from the robot’s heading direction. Each neuron
in the OL and OR populations receives a spike for each DVS
pixel that produces an event in the left (right) part of the sensor,
respectively (we used the lower half of the sensor for obstacle
avoidance). The spiking neurons in the two obstacle populations
sum up the camera events according to their neuronal integrate-
and-fire dynamics (equations can be found in Appendix B
(Supplementary Material)). If enough events arrive from the
same neighborhood, the respective neuron will fire, otherwise
it will ignore events that are caused by the sensor noise. Thus,
the obstacle representing neuronal populations achieve basic
filtering of the DVS events. The output spikes of the neuronal
populations signal the detection of an object in the respective
half of the field of view.

Each of the obstacle detecting neuronal populations is
connected to a motor population “drive left, DL” or “drive
right, DR” (with 16 neurons per population). Consequently, if
an obstacle is detected on the right, the drive left population
is stimulated, and vice versa. The drive populations inhibit
each other, implementing a winner-take-all dynamics. Thus, a
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FIGURE 4 | The implemented neuronal architectures for obstacle avoidance and target acquisition. (A) Obstacle avoidance: Violet OL and OR circles represent

obstacle detecting neuronal populations. Orange DL and DR circles are motor driving populations. sp is the speed-setting population, and exp is the constantly firing

population that sets the default speed. Thin arrows show excitatory non-plastic connections realized on the ROLLS chip, whereas colors and numbers show the

weights (the exact value of the weight is set by the biases, listed in Table 2) in Appendix B (Supplementary Material). (B) Target acquisition: Same notations. The violet

line of circles shows a DNF population that represent targets. On the chip, both architectures are realized at the same time.

decision about the direction of an obstacle-avoiding movement
is taken and stabilized at this stage by the dynamics of neuronal
populations on the chip.

The drive populations, in their turn, inhibit both obstacle
detecting populations, since during a turning movement of
the robot, many more events are generated by the DVS,
compared to those generated during translational motion. This
inhibition compensates for this expected increase in the input
rate, similar to the motor re-afferent signals in biological neural
systems (Dean et al., 2009). This modification of the simple
Braitenberg vehicle principle is required to enable robust and fast
behavior.

The speed of the robot is controlled by a neuronal population,
“speed, sp,” which receives input from a constantly firing “exc,”
excitatory population. The latter group of neurons has strong
recurrent connections and continually fires when triggered by
a transient activity pulse. In an obstacle-free environment, the
speed population sets a constant speed for the robot. The obstacle
detecting populations OL and OR inhibit the speed population,
making the robot slow down if obstacles are present. The
decreasing speed ensures a collision-free avoidance maneuver.

These six populations comprise only 96 neurons, and
represent all that is needed to implement the obstacle avoidance
dynamics in this architecture (Figure 4A).

The control signals sent to the robot are, first, the angular
velocity, va, that is proportional to the difference in the number
of spikes per neuron emitted between the two drive populations
(Equation 1), and, second, the forward velocity, calculated based
on the number of spikes per neuron emitted by the speed
population (Equation 2):

va = cturn

(

N
spike
DL

Nn
DL

−
N

spike
DR

Nn
DR

)

, (1)

vf = cspeed
N

spike
sp

Nn
sp

, (2)

where N
spike
XX are the numbers of spikes, obtained from the

respective populations [drive left (DL), drive right (DR), and
speed (sp)] in a fixed time-window, we used 500 and 50 ms
in an improved version); Nn

XX is the number of neurons in
the respective population; and cturn and cspeed are turn- and
speed-factors (user-defined constants), respectively.

Thus, we used neural population dynamics to represent
angular and translational velocities of the robot and used the
firing rate of the respective populations of neurons as the control
variable.

2.4.1. Dynamic Neural Field for Target Representation
To represent targets of the navigation dynamics, we use a
Dynamic Neural Fields (DNFs) architecture as defined in Bicho
et al. (2000). DNFs are population-based models of dynamics
of large homogeneous neuronal populations, which have been
successfully used in modeling elementary cognitive function in
humans (Schöner and Spencer, 2015), as well as in implementing
cognitive representations for robots (Erlhagen and Bicho, 2006;
Bicho et al., 2011; Sandamirskaya et al., 2013). DNFs can be
easily realized in neuromorphic hardware by setting a winner-
take-all (WTA) connectivity network in a neural population
(Sandamirskaya, 2013). Each neuron in a soft WTA network
has a positive recurrent connection to itself and to its 2–4

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2017 | Volume 11 | Article 28

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Milde et al. Navigation Using Analog/Digital Neuromorphic Hardware

nearest neighbors, implementing the lateral excitation of the
DNF interaction kernel. Furthermore, all neurons have inhibitory
connections to the rest of the WTA network, implementing
the global inhibition of a DNF. These inhibitory connections
can be either direct, as used here, or be relayed through an
inhibitory population, which is a more biologically plausible
structure.

In our architecture, we select 128 neurons on the ROLLS
chip to represent visually perceived targets. Each neuron in
this population receives events from the upper half of each
column of the 128 × 128 sensor frame from the eDVS and
integrates these events according to its neuronal dynamics: only
events that consistently are emitted from the same column
lead to firing of the neuron. The nearby neurons support each
other’s activation, while inhibiting further neurons in the WTA
population (Figure 4B).

This connectivity stabilizes localized blobs of most salient
sensory events, filtering out sensor noise and objects that are too
large (inhibition starts to play role within object representation)
or too small (not enough lateral excitation is engaged). Thus,
the WTA connectivity stabilizes the target representation. The
target in our experiments was a blinking LED of the second
robot, which was detected in the DNF realized on the ROLLS.
While this target could be easily detected since the blinking LED
produces many events, more sophisticated vision algorithms are
being developed to pursue an arbitrary target (Moeys et al., 2016).

The target population was divided in three regions: neurons
of the DNF that receive inputs to the left from midline of the
DVS frame drive the “drive left” population, whereas neurons
that receive input from the right half of the DVS frame drive
the “drive right” population. We did not connect the central 16
neurons of the target DNF to the drive populations to ensure
more smooth target pursue when the target is in the center of
the DVS frame (Figure 4B).

2.4.2. Combining Obstacle Avoidance and Target

Acquisition
The two neuronal populations that ultimately determine the
robot’s steering direction (DR and DL) sum-up contributions
from the obstacle-representing populations and the target-
representing WTA population (Figure 4). The obstacle
contribution is made effectively stronger than the target
contribution by setting the ROLLS biases accordingly. Thus, in
the presence of an obstacle in the robot’s field of view, an obstacle
avoidance maneuver is preferred.

Figure 5 shows the connectivity matrix used to configure
the non-plastic connections on the ROLLS chip to realize both
obstacle avoidance and target acquisition. This plot shows the
weights of non-plastic synapses on the ROLLS chip (blue being
the negative weights and red the positive weights; the same
color code is used for the different weights as in Figure 4),
which connect groups of neurons (different populations, labeled
on the right side of the figure) among each other. Within-
group connections are marked with black squared frames on the
diagonal of the connectivity matrix. Violet and orange arrows
show inputs and outputs of the architecture, respectively.

This connectivity matrix is sent to the ROLLS device to
configure the neuronal architecture on the chip, i.e., to “program”
the device.

3. DEMONSTRATIONS

We verified the performance of our system in a number of
demonstrations, reported next. Overall, over 100 runs were
performed with different parameter settings. In the following, we
will provide an overview for the experiments and describe a few
of them in greater detail to provide intuition of how the neural
architecture works. For most experiments, we let the robot drive
in a robotic arena with a white background and salient obstacles.
We used a tape with a contrastive texture to make the walls of the
arena visible to the robot. In four runs, we let the robot drive for
several minutes freely in the office.

3.1. Probing the Obstacle Avoidance: A
Single Static Obstacle
In the first set of experiments, we let the robot drive straight
toward a single object (a colored block 2.5 cm wide and 10 cm
high) and measured the distance from the object at which the
robot crossed a virtual line perpendicular to the robot’s initial
heading direction, on which the object is located (e.g., see the
distance between the robot and the “cup” object at the last
position of the robot in Figure 6). We varied the speed factor of
the architecture from 0.1 (∼0.07 m/s) to 3.0 (∼1 m/s) and have
verified the effectiveness of the obstacle avoidance maneuver.
Furthermore, we have increased the turning factor from 0.5 to
1.0 to improve performance at high speeds and have tested color-
dependence of the obstacle perception with the DVS. Table 1
shows results of these measurements. Each trial was repeated 3
times and mean over the trials was calculated.

The table allows to note the following characteristics of
the architecture at the chosen parametrization. First, the
performance drops at very low speeds (speed factor 0.1),
especially for red and yellow objects, due to an insufficient
number of DVS events to drive the neuronal populations on
ROLLS. Second, there is a trade-off between this effect and
the expected decay in performance (in terms of the decreasing
distance to the obstacle) with increasing speed. Thus, at a turning
factor 0.5, best performance is achieved for the blue object at
speed factor 0.5 and for the red object at speed factor 1. Distance
to the obstacle can be further increased by increasing the turn
factor. Thus, at turn factor 1 and speed factor 1 best performance
(i.e., largest distance to the obstacle) can be achieved for both the
blue and red objects. Yellow object provides too little contrast to
be reliably perceived by the DVS in our set-up.

Figure 6 demonstrates how the neuronal architecture on the
ROLLS chip realizes obstacle avoidance with the Pushbot. On
the left, an overlay of video frames (recording the top view of
the arena) shows the robot’s trajectory when avoiding a single
obstacle (here, a cup) in one of the runs. Numbers (1–3) mark
important moments in time during the turning movement. On
the right, summed activity of the neuronal populations on the
ROLLS device is shown over time. The same moments in time
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FIGURE 5 | The synaptic connectivity matrix, configured on the ROLLS chip to implement the obstacle avoidance and target acquisition architectures. Colors

encode different synaptic weights (red for positive and blue for negative connection weights) of the recurrent connections on the chip.

are marked with numbers as in the left figure. In this case, already
the obstacle detecting populations had a clear “winner”—the left
population forms an increasing activity bump over time, which
drives the “drive right” population, inducing a right turn of the
robot. The bottom plot shows the commands that are sent to the
robot (speed and angular velocity): the robot slows down in front
of the obstacle and turns to the right.

We have performed several further trials, varying the lighting
conditions (normal, dark, very dark) and parameters of the
architecture. Since the architecture uses the difference in spiking
activity, induced by sensory events from the two halves of
the visual space, avoiding a single obstacle works robustly,
although the camera might miss objects with a low contrast
(e.g., yellow block in our white arena). More advanced noise
filtering would improve performance. While more extended
version of the performed tests will be reported elsewhere,
Figure 7 show results of some of the successful and unsuccessful
runs.

3.2. Avoiding a Pair of Obstacles
We repeated the controlled obstacle avoidance experiment with
two and three blocks in different positions. Each configuration
was tested twenty times without crashes at speed 0.35 m/s (speed
factor 0.5).

Figure 8 shows an exemplary run that explains how the robot
avoids a pair of obstacles. This example is important, since in the
attractor dynamics approach to navigation, distance between the
two objects determines a decision to move around or between the
objects.

Snapshots from the overhead camera are shown on the left
of Figure 8. Output of the DVS, accumulated in 500 ms time
windows around the time when the snapshots were taken3,
is shown in the second column, and the spiking activity of
neuronal populations recorded from the ROLLS chip is shown
in the two right-most columns. Activity is shown of the obstacle
representing left (red) and right (blue) neuronal populations
(third column), the left (red) and right (blue) drive populations,
and the speed population (gray, forth column). Each of these
populations has 16 neurons, dots represent their spikes4.

At the moment, depicted in the top row of Figure 8, the robot
senses an obstacle on the right, although the DVS output is rather
weak. Note that the neuronal population filters out sensory noise
of the DVS and only detects events that cluster in time and in
space. The robot turns left, driven by the activated drive left
population and now the obstacle on the right becomes visible,
providing a strong signal to the right obstacle population and,
consequently, to the drive left population (second and third row).
Eventually, the obstacle on the right dominates and the robot
drives past both obstacles on the left side (forth row).

Thus, with the chosen parametrization of the neuronal
network architecture, the robot tends to go around a pair of
objects, avoiding the space between them. This behavior could
be changed, making the connections between the obstacle
representing populations and drive populations stronger.
However, for a robot equipped with a DVS, such strategy is

3We dropped 80% of DVS events randomly in our architecture; moreover, we only

used 5% of all remaining events for plotting.
4Only 5% of the ROLLS spikes (every 20th spike) are shown in all our plots.
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FIGURE 6 | An example of an obstacle avoidance maneuver. Left: Overlay of video frames showing the trajectory of the robot. Right: activity of the neuronal

populations on the chip (Top: the left and right obstacle detecting populations; Middle: the left and right drive populations), and the motor commands, sent to the

robot (Bottom plot).

TABLE 1 | Collision avoidance at different speeds: distance to the obstacle when crossing the obstacle-line (mean over 3 trials ± standard deviation in [cm]) at different

speed- and turn-factors and for different colors of the obstacle.

Speed/turn 0.1/0.5 0.5/0.5 1/0.5 1/1 1.5/1 2/1 3/1

Blue 7.0 ± 1.0 10.3 ± 0.6 7.7 ± 1.5 19.3 ± 2.1 16.3 ± 3.3 10.8 ± 2.6 0*

Red 0* 2.3 ± 0.6 4.7 ± 0.6 10.7 ± 1.2 9.7 ± 3.5 5.0 ± 1.0 0*

Yellow 0* 0* 0* 7.0* ± 6.1 0* 0* 0*

* signifies trials when a collision happened.

safer, since for homogeneous objects, the DVS can only sense the
edges, where a temporal contrast change can be induced by the
robot’s motion. The robot thus might miss the central part of
an object and avoiding pairs of close objects is a safer strategy.
Adaptive connectivity that depends on the robot speed is also
feasible.

3.3. Avoiding a Moving Obstacle
In these experiment, the robot is driving straight in the arena
while we move an obstacle (a coffee mug) into its path. We repeat
this experiment six times with varying speed factors (0.1–2) of the
robot. The robot was capable to avoid collisions in all tested cases.
In fact, avoiding a moving obstacle is more robust than avoiding
a static obstacle because the moving obstacle produces more DVS
events than a static one at the same robot speed.

Figure 9 shows how the robot avoids a moving obstacle. The
same arrangement of plots was used as in Figure 8, described in
Section 3.2. The robot was moving with cspeed = 0.5 (0.35 m/s)
here, the cup was moved at∼0.20 m/s.

3.4. Cluttered Environment
In the following set of experiments, we randomly placed obstacles
(8–12 wooden pieces) in the arena and let the robot drive around
at an average speed (0.35m/s). We analyzed the performance of
the architecture, suggesting a number of modifications to cope
with its limitations.

Figure 10 demonstrates behavior of the obstacle avoidance
system in a cluttered environment. In particular, we let the
robot drive in an arena, in which 8 obstacles were randomly
distributed. The robot successfully avoids obstacles in its way
with two exceptions: the robot touches the blue obstacle in the
center of the arena, which entered the field of view too late for
a maneuver, and also collides with the yellow object, which did
not provide enough contrast to produce the required number
of DVS events. These collisions point to two limitations of the
current setup, which, first, uses single camera with a narrow field
of view and, second, drops 80% of events to improve signal to
noise ratio (the latter deprives performance for objects with low
contrast against the background). Usingmore sophisticated noise
filter would improve visibility of the faint obstacles. Note that we
used rather small objects on these trials (blocks of 2 × 5 cm),
which posed a challenge for the event-based detection, especially
taking into account our very simplistic noise-reduction strategy.

To improve behavior in a cluttered environment, we modified
the architecture, adding two more populations on the ROLLS
chip, which receive input from the inertia measurement unit
of the Pushbot and which suppress obstacle populations when
the robot is turning. Moreover, we replaced the homogeneous
connections between the obstacle and the drive populations with
graded connections that become stronger for obstacles detected
in the center than in the periphery of DVS field of view. This
allows the robot to make shorter avoidance maneuvers and avoid
obstacles in a denser configuration at a higher speed. Figure 11
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FIGURE 7 | Exemplary experiments showing successful (Top row) and unsuccessful (Bottom row) obstacle avoidance maneuvers in different light conditions (A)

and with obstacles of different colors (B).

shows a successful run with the modified architecture. Here,
we also changed the sampling mechanism used to calculate the
robot commands, replacing a fixed time window with a running
average. This allowed us to avoid obstacles in the cluttered
environment without collisions at speed as high as 0.5 m/s.

3.5. Variability of Behavior
Since behavior of our robot is controlled by activity of neuronal
populations, implemented in analog neuromorphic hardware,
the behavior of the robot has some variability, even when exactly
the same parameters of the architecture and the same hardware
biases are used. Despite this variability, the robot’s goal—avoiding
obstacles—remains fulfilled. Such variability of behavior can be
used as a drive for exploration, which may be exploited in
learning scenarios in more complex architectures, built on top
of our elementary obstacle avoidance system.

Figure 12 demonstrates variability behavior of our neuronal
controller. In the figure, we show three trials, in which the
robot avoids a two-blocks configuration, starting from exactly the
same position and with the same configuration of the neuronal
controller (speed factor 0.5, turn factor 0.5). Mismatch in the
neuronal populations implemented in analog neuromorphic
hardware, variability of the DVS output, and its dependence on
the robot’s movements lead to strong differences in trajectories.
In particular, in the case shown in Figure 12, the trajectories may
bifurcate and the robotmight avoid the two obstacles on the right,
or on the left side.

3.6. Obstacle-Avoidance in a Real-World
Environment
Finally, we tried our architecture outside of the arena as well.
The robot was placed on the floor in the office and drove
around avoiding both furniture and people. The high amount of
background activity compared to the arena did not diminish the
effectiveness of the architecture: in four 0.5–1.5-min long trials,
the robot only crashes once after it maneuvered itself into a dark
corner under a table where the DVS sensor could not provide
sufficient information to recognize obstacles.

Figure 13 shows an example of the Pushbot robot driving in
the office environment. On the left, three snapshots from the
video camera recording the driving robot are shown (full videos
can be see in the Supplementary Material). The snapshots show
the robot navigating the office environment with its task being
to avoid collisions. The middle column of plots shows pairs of
eDVS events, accumulated over 500 ms around the moment in
time in the corresponding snapshot on the left, and respective
histograms of events from the center region, used for obstacle
avoidance. Events above the mid-line of the eDVS field-of-view
are shown with transparency to emphasize that they were not
used for obstacle avoidance: only events from the region of the
eDVS field-of-view between the two vertical lines in Figure 13

were used.
Histograms below the eDVS plots show the events from this

region of the field of view, summed over the eDVS columns.
These events drive the obstacle left (red colored part of the
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FIGURE 8 | Avoiding a pair of obstacles. First column: Snapshots of four moments in time during avoidance of a cup, moved into the robot’s trajectory.

Second column: DVS “frames”—events, accumulated over a 0.5 s time window. Green dots are off events, blue dots are on events. Events in the upper part of the

frame were not considered for the obstacle avoidance. Third column: Activity of the obstacle representing populations in 0.6–1.5 s before the camera snapshot in the

first column was taken (red—left population (nOL), blue – right population (nOR); each population has 16 neurons). Forth column: Activity of the drive left (red), drive

right (blue), and speed population on the ROLLS chip in the same time as on the plots in column 3.

histogram) and obstacle right (blue part of the histogram)
neuronal populations on the ROLLS chip.

The right column shows activity of the neuronal populations
on the ROLLS chip over time, as in the previous figures.
Black vertical lines mark time moments that correspond to the
three snapshots in the left column. These plots allow to see
that although the left and right obstacle populations are often
activated concurrently, only one of the drive populations (either
left or right) is active at any moment, leading to a clear decision
to turn in either direction in the presence of perceived obstacles.
The speed plot shows that movement of the robot is not very
smooth—it slows down and accelerates often based on the sensed
presence of obstacles. This behavior is improved in the modified
architecture, briefly described in Section 3.4.

When driving around the office, robot faced very different

lighting conditions, as can be seen already in the three snapshots

presented here. This variation in lighting conditions did not effect

obstacle avoidance in most cases, since the DVS is sensitive to
relative change of each pixel’s intensity, which varies less than
the absolute intensity when the amount of ambient light changes.
However, in an extreme case, shown in the lower snapshot in

Figure 13, the robot collided with themetal foot of the chair. This
was the only collision recorded.

3.7. Target Acquisition
In addition to obstacle avoidance we also tested target acquisition
in ten experiments using a second robot with a blinking LED
as target. The robot successfully turns and drives toward the
target every time (at speed and turn factors = 0.5). In 8 out
of 10 experiments the target is recognized as an obstacle when
approached and is avoided; in two experiments, the robot failed
to recognize target as obstacle after approaching it.

Obviously, the simple visual preprocessing that we used
did not allow us to distinguish the target from obstacles
(other than through their position in the upper or lower
part of the field-of-view of the DVS). Moreover, we would
need an object detection algorithm to detect the target and
segregate it from the background. This vision processing is
outside the scope of our work, but there is a multitude
of studies going in this direction (Moeys et al., 2016)
using modern deep/convolutional neural networks learning
techniques.
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FIGURE 9 | Avoiding a moving obstacle. The same arrangement is used as in Figure 8. See main text for the discussion.

FIGURE 10 | Navigation in a cluttered arena. Left: Overlayed frames from the video, recoding the robotic arena from the top. Green line markes the path of the robot.

Right: Summed activation of neurons in populations on the ROLLS chip over the time of the experiment. Obstacle and turn (left and right) population are shown, as

well as the commands sent to the robot (angular velocity and speed).

Figure 14 shows target acquisition for a static target and
demonstrates that the robot can approach the target object. At
a short distance, the obstacle component takes over and the
robots turns away after approaching the target. The figure shows

the overlayed snapshots from the overhead camera, showing
how the robot turns toward the second robot, standing on the
left side of the image. When getting close to the second robot
(∼10 cm), the robot perceives the target as an obstacle, which
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FIGURE 11 | Successful run in a cluttered environment with a modified

neuronal architecture. Overlay of the overhead-camera frames.

has a stronger contribution to its movement dynamics and the
robot turns away. On the left, the spiking activity of the target
representation on the ROLLS chip is shown (raster plot where
each dot represents a spike5). We can see that the robot perceives
its target consistently on the left. After the eighth second, the
obstacle contribution on the right becomes dominant and the
robot turns left strongly.

Figure 15 shows how the robot can chase a moving target.
We have controlled the second Pushbot remotely and have
turned its LED on (at 200 Hz, 75% on-time). The LED
provided a rather strong (though spatially very small) input to
the DVS of the second, autonomously navigating robot. This
input was integrated by our target WTA (DNF) population,
which, however, also received a large amount of input from the
background (in the upper part of the field of view the robot could
see behind the arena’s walls). Input from the localized LED was
stronger and more concise than more distributed input from
the background and such localized input was enhanced by the
DNF’s (WTA’s) lateral connections. Consequently, the respective
location in the target WTA formed a “winner” (localized activity
bump in the DNF terminology) and inhibited the interfering
inputs from other locations.

In the figure, four snapshots of the video recording the two
robots are shown (top row). The leading robot was covered with
white paper to reduce interference from the obstacle avoidance
dynamics as the robots get close to each other (the space in the
arena and the small size of the blinking LED forced us to put the
robots rather close to each other, so that the target robot could be
occasionally perceived as an obstacle).

In the second row in Figure 15, the summed over 500 ms
events of the DVS are shown, around the same time points
as the snapshots. Only the upper part of the field-of-view was
considered for target acquisition. This part is very noisy, since

5Remember, that only 5% (every 20th) of all spikes from the ROLLS processor are

shown.

the robot “sees” outside the arena and perceives objects in the
background, which made target acquisition very challenging.
Still, the blinking LED provided the strongest input and in most
cases the target DNF was able to select its input as the target
and suppress the competing inputs from the background—see
activity of neurons in the target DNF in the bottom plot.

This last plot shows spiking activity of 215 neurons of
the ROLLS chip, used to drive the robot (we don’t show the
constantly firing nexc population here). We can see that the target
DNF (WTA) successfully selects the correct target in most cases,
only loosing it from sight twice, as the robot receives particularly
many DVS events from the background during turning. The
lower part of this raster plot shows activity of the obstacle
populations, the drive populations, and the speed population,
thus the dynamics of the whole architecture can be seen here.

4. DISCUSSION

This paper presents a neuronal architecture for reactive obstacle
avoidance and target acquisition, implemented using a mixed-
signal analog/digital neuromorphic processor (Qiao et al., 2015)
and a silicon retina camera DVS as the only source of information
about the environment. We have demonstrated that the robot,
controlled by interconnected populations of artificial spiking
neurons, is capable of avoiding multiple objects (including
moving objects) at an average movement speed (up to 0.35 m/s
with our proof of concept setup). We have also demonstrated
that the system works in a real-world office environment, where
background clutter poses a challenge for the DVS on a moving
vehicle, creating many distracting events. We demonstrated that
also the target acquisition neural architecture can cope well with
this challenge, which was relevant even in the robotic arena. The
distributed DNF representation of the target, supported by lateral
interactions of the WTA neuronal population, enabled robust
detection and reliable selection of the target against background.

The reactive approach to obstacle avoidance that we adopt
in this work has a long history of success, starting with the
neurally inspired turtle robot more than half a century ago,
as reviewed by Holland (1997). Later, Valentino Braitenberg
analyzed a number of hypothetical vehicles, or creatures, that
use reactive control to produce complex behaviors (Braitenberg,
1986). His controllers were realized as simple “nervous
systems” that directly linked the sensors to the motors of the
vehicle. Using similar sensorimotor, or behavioral modules as
building blocks, Rodney Brooks developed a behavior-based
controller paradigm for roaring vehicles, known as “subsumption
architecture” (Brooks, 1991). Although this framework did not
scale well for complex tasks and is not ideally suited for online
learning methods, this type of controller is at the heart of highly
successful real-world robotic systems such as the autonomous
vacuum cleaners, and has been adopted, to some extent, in a
wide range of impressive controllers for autonomous robots (e.g.,
Khansari-Zadeh and Billard, 2012).

The dynamical systems approach to robot
navigation (Schöner et al., 1995) is an attempt to mathematically
formalize reactive control for autonomous robots using
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FIGURE 12 | Variability of the robot’s behavior. Left: Overlay of video camera frames recording the robot, avoiding a pair of obstacles; top view. Three different trials

are recorded and overlayed here (trajectories are shown with green lines 1–3). Right: Velocity commands, received by the robot from the neuronal architecture

(angular velocity and speed) for the three trials (from top to bottom).

FIGURE 13 | Robot driving in the office environment. Left: Snapshots from the video camera showing robot at three time points during the experiment.

Middle: Events from the DVS camera and histogram of these events, binned over 500 ms in columns in the region between two vertical lines, which were used to

drive obstacle populations on the ROLLS. Each pair of the eDVS events and histogram corresponds to the time point of the video frame in the Left column. Note that

80% of events are randomly dropped here and only “on” events are shown in the relevant region (lower part of the screen). Events above the midline of the image

sensor are shown with transparency (these events were not used for obstacle avoidance). Right: Activity of the obstacle (left and right), drive (left and right), and

speed neuronal populations over time (summed activity across each population). Vertical lines mark time point that correspond to the video frames in the Left column.

differential equations that specify attractors and repellors for
behavioral variables that control the robot’s heading direction
and speed (Bicho et al., 2000). In this framework, obstacle
avoidance has been integrated with target acquisition and
successful navigation in an unknown environment has been
demonstrated both for vehicles and robotic arms (Reimann

et al., 2011). This approach is similar to another successful
reactive approach to obstacle avoidance: the potential field
approach (e.g., Haddad et al., 1998), in which the target creates
a global minimum in a potential that drives the robot, whereas
obstacles create elevations in this potential. However, the use of
Cartesian space instead of robot-centered velocity space used in
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FIGURE 14 | Simple target acquisition: single stationary target. Left: Overlay of video frames from the overhead camera. The robot approaches a stationary target on

the left-hand side of the arena from right to left. The robot turns left toward the target until it perceives it as an obstacle and makes an obstacle avoidance maneuver.

Right: Time-course of the spiking activity (raster plot) of the target-representing (WTA) neurons on the ROLLS chip (top plot) and summed (over 500 ms and over

populations) activity of neurons in obstacle representing and drive populations on the ROLLS chip. Vertical lines mark time points that correspond to two middle

positions of the navigating robot.

this potential field approach makes it prone to getting trapped in
local minima.

In mixed-signal analog /digital neuromorphic hardware, the
neuronal dynamics is taken care of by the physics of analog
electronic circuits, avoiding loosing digital computational
resources on simulating them. Thus, neuromorphic
implementation of simple biologically inspired obstacle-
avoidance architectures can lead to low-latency (on the order of
microseconds) and power-efficient (on the order of milliwatts)
solutions, analogous to the ones used by insects. In contrast,
more conventional obstacle-avoidance systems require a
substantial amount of computing resources to process and store
sensory data, detect obstacles, and compute motor commands.
Neuromorphic implementation of such low-level processing will
allow to use analog sensory signals directly, avoiding their digital
representation and storage, while at the same time allowing to
build complex neural-network based computing architectures,
that could be used for solving cognitive tasks, such as task
planning, map building, or object recognition.

We consider the work proposed as a first feasibility study,
which still has a number of limitations that we will address
in our future work. The main limitation is variability of
neuronal behavior because of parameter drift on the analog
hardware: the parameters of the hardware neural network
change the network properties as the experimental setup
conditions (temperature, humidity, etc.) change. This is a
serious limitation of the hardware used, which makes in
challenging to implement complex architectures that have to
balance contributions of different behavioral modules (e.g.,
controlling turning and forward velocities, or obstacle avoidance
and target acquisition). We are currently working on algorithms
and methods for automatically re-tuning these parameters in
a principled fashion with optimization and machine learning

techniques. In addition, we are designing new versions of
the neuromorphic hardware with on-board stabilization of
the chip parameters, and more resources for simplifying the
fine-tuning process of the architectures. However, approach
employed here—use of populations of artificial neurons in
place of single nodes in the architecture—allowed us to
generate behavior with the state of the art analog neuromorphic
hardware.

Apart from the hardware limitations, our simple architecture
currently allows robust obstacle avoidance at moderate speeds
(∼0.35 m/s). Since the robot slows down when an obstacle
is detected, movement appears to be “jerky.” Although the
smoothness of the robot movement could be improved by
tuning the coupling strength between the obstacle and drive
populations, the best solution would involve improving the
visual pre-processing stages. In our setup, the DVS detects
local contrast changes and produces different amount of
events depending on the objects in the environment, but also
modulated by the robot translational and rotational movements.
Currently we ignore about 80% of all DVS events to remove
both noise and to reduce bandwidth. This very basic strategy
improves the signal to noise ratio, because the architecture
enhances the spatially and temporally coherent inputs and
suppresses the effect of random inputs. However, we plan
to study a more principled approach to pre-processing and
noise reduction, and to investigate other biologically inspired
architectures for obstacle avoidance, for example inspired by
the fly’s EMD (Elementary Motion Detector) (Hassenstein and
Reichardt, 1956) or the locust’s LGMD (looming detector Lobula
Giant Movement Detector) (Gabbiani et al., 2002; Rind and
Santer, 2004). We are currently working on neuromorphic
implementation of these algorithms (Milde et al., 2016; Salt et al.,
2017).
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FIGURE 15 | Chasing a moving target. First row: Snapshots from the overhead camera showing the robot controlled by the ROLLS chip chasing a manually

controlled robot. Second row: Summed eDVS events from 500 ms time windows around the same moments. Events from the upper part were used for target

acquisition, events from the lower part—for obstacle avoidance. Bottom row: Spiking activity of all neurons on the ROLLS chip over the time of the experiment.

Vertical line show the moments in time, selected for the first two rows. Red dots are spikes from the “left” populations and blue dots are spikes from the “right”

populations.

Moreover, the 500 ms time window that we used to create
plots of DVS events and average spiking activity was also used
in our controller for counting spikes when calculating motor
commands, sent to the robot. In our preliminary experiments
on optimizing the controller, we have reduced this time window
to 50 ms and, more importantly, replaced it with a sliding-
window calculation of the average firing rate of the drive and
speed neuronal populations. A more principled solution to this
problem would be development of a more direct hardware
interface between the spiking neuromorphic processor and the
robot’s motors, so that spikes can control the motor rotation
directly, as suggested by Perez-Peña et al. (2013).

Our target acquisition network can also be further improved:
the main strategy will be to introduce target representations
in a reference frame that moves with the robot, but has a
fixed orientation. Such representation will allow the robot to
turn back to a target that has been lost from sight due to
an obstacle avoidance maneuver. Furthermore, increasing the
strength of lateral interactions in the WTA (DNF) population

will allow to stabilize the target representation, allowing it to
form a “working memory,” which will support target acquisition
behavior in cluttered environments. To still make the system
reactive and allow it to follow the visible target, control of the
strength of lateral interactions will be introduced, increasing their
strength when target is being lost from view and decreasing their
strength when the target is visible. Detecting the target based on
its features perceived with a DVS is a separate topic of ongoing
research both in our lab and worldwide (e.g., Lagorce et al., 2015).

Despite of this list of necessary improvements, our
neuromorphic architecture is an important stepping stone
toward robotic controllers, realized directly in neurally
inspired hardware, being the first architecture for closed-
loop robot navigation that uses analog neuromorphic processor
and minimal preprocessing of visual input, obtained with
a silicon retina DVS. Such neuromorphic controllers may
become an energy efficient, fast, and adaptive alternative to
conventional digital computers and microcontrollers used
today to control both low-level and cognitive behaviors
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of robots. While neural network implementations using
the conventional computing architecture are typically
time- and energy consuming, implementation of neuronal
architecture using analog neuromorphic hardware approaches
the efficiency of biological neural networks. Building neuronal
models for higher cognitive function using, for instance,
the framework of Dynamic Neural Fields (Sandamirskaya,
2013) or the Neuro-Engineering Framework (Eliasmith,
2005), will allow to add more complex behaviors to the
robot’s repertoire, e.g., finding a particular object, grasping
and transporting it, as well as map formation and goal-
directed navigation, which is the goal of our current research
efforts.
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