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This paper presents a multi-objective evolutionary algorithm of bio-inspired geomagnetic

navigation for Autonomous Underwater Vehicle (AUV). Inspired by the biological

navigation behavior, the solution was proposed without using a priori information, simply

by magnetotaxis searching. However, the existence of the geomagnetic anomalies has

significant influence on the geomagnetic navigation system, which often disrupts the

distribution of the geomagnetic field. An extreme value region may easily appear in

abnormal regions, which makes AUV lost in the navigation phase. This paper proposes

an improved bio-inspired algorithm with behavior constraints, for sake of making AUV

escape from the abnormal region. First, the navigation problem is considered as the

optimization problem. Second, the environmental monitoring operator is introduced, to

determine whether the algorithm falls into the geomagnetic anomaly region. Then, the

behavior constraint operator is employed to get out of the abnormal region. Finally,

the termination condition is triggered. Compared to the state-of- the-art, the proposed

approach effectively overcomes the disturbance of the geomagnetic abnormal. The

simulation result demonstrates the reliability and feasibility of the proposed approach

in complex environments.

Keywords: geomagnetic navigation, bio-inspired navigation, geomagnetic anomaly, local optimal, evolutionary

algorithm

INTRODUCTION

Autonomous Underwater Vehicle (AUV) has been widely used for both civilian and military
applications, such as laying pipelines, ocean data collection, underwater equipment maintenance,
and layingmines (Wadhams, 2012;Wynn et al., 2014; Shi et al., 2017). Most navigation systems rely
on dead-reckoning that is by using inertial navigation system and velocity information from the
Doppler sonar. However, the cumulative error becomes difficult to handle during the navigation,
in contrast to the GPS and the acoustic transponder networks (Caiti et al., 2014).

Various techniques have been developed to eliminate the dead-reckoning errors (Hao et al., 2008;
Yi et al., 2008; Shen et al., 2017). The geomagnetic navigation, which is originated from animal
behaviors due to the earth’s magnetic fields, has been widely used (Gould, 1984; Lohmann, 2010).
It overcomes the following drawbacks: the error accumulation from the inertial navigation system,
and the rapid attenuation signal from the satellite navigation system (Goldenberg, 2006). Thus, the
geomagnetic field plays a key role in navigation, as it provides the position information in large scale
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environments (Teixeira and Pascoal, 2008). Typically, each point
on the near-earth space has an unique magnetic field vector with
respect to the corresponding coordinate, while the geomagnetic
navigation is employed to provide a reliable navigation reference
(Fu-qing, 2006; Zhou et al., 2008).

Based on the characteristics of the geomagnetism, numbers of
methods have been developed (Caifa et al., 2011). The principle
idea is employed based on the matching algorithms, such as MSD
(Mean Square Difference), MAD (Mean Absolute Difference),
ICCP (Iterative Closest Contour Point Algorithm) (Jia et al.,
2012; Xie et al., 2013; Chong et al., 2014). However, traditional
matching algorithms strongly depend on a priori geomagnetic
map, which is quite challenging to acquire in practice.

To address this issue, the bio-inspired geomagnetic navigation
method was proposed from animal behaviors (Liu et al.,
2013). The most informative experimental paradigms have
verified that the animals (like sea turtles and pigeons) can
geomagnetic navigation to reach their goal locations (Paolo
et al., 2003). Schulten concluded that animals can navigate by
relying on geomagnetic sensitivity (Schulten, 1982). Winklhofer
proposed the magneto-reception mechanisms to explain animals’
navigation behavior (Winklhofer, 2009). Mole rats and salmons
are also sensitive to the earth’s magnetic field (Kimchi et al.,
2004; Hays, 2013). In conclusion, the bio-inspired geomagnetic
navigation provides a natural solution for navigation problem
without a priori geomagnetic map.

However, the geomagnetic anomaly often influences the bio-
inspired geomagnetic navigation system which is caused by
large iron ores. Boström showed that many geomagnetic blind
spots were existed with respect to some migrating animals
(Boström et al., 2012). Kiliowska pointed out the geomagnetic
anomalies have interfered the whales’ navigation system and
caused them to beach (Klinowska, 1986). Lohmann pointed out
the geomagnetic anomalies made the migrating turtles lost into
Mexico (Lohmann et al., 2007). Dennis pointed out the pigeons
were also easily lost when they were released in the geomagnetic
anomaly area (Dennis et al., 2007). With respect to an AUV
navigation, the geomagnetic anomalies disrupt the distribution of
the geomagnetic field, which makes AUV lost in the navigation
phase. In our previous works, the bio-inspired navigation
algorithmwas easily trapped in a local minimum point, caused by
the geomagnetic anomalies (Liu et al., 2014). This happens where
the distribution of the multiple geomagnetic was changed to the
unsmooth and discontinuous regions (“concave” or “convex”).
This caused the multi-objective search to converge to a local
minimum easily (see Figure 1).

This paper presents a multi-objective evolutionary algorithm
to address the local minimum problem by using the behavior
constraint strategy. Main contributions are summarized as
follows: First, it determines whether the algorithm is falling into
the abnormal area. Second, it provides the strategy to jump out of
the geomagnetic anomaly area. Once the algorithm is trapped in
the local minimum, the behavior constraints are utilized to jump
out the abnormal area.

The rest of this paper is organized as follows: Section
Problem Formulation briefly introduces both the multi-objective
search and the local minimum problems, respectively. Section

FIGURE 1 | The geomagnetic anomaly scenario.

Multi-Objective Evolutionary Algorithm with Geomagnetic
Anomaly Presents the Multi-Objective Evolutionary Algorithm
in Scenarios of Geomagnetic Anomaly. Section Numerical
Simulations gives the main results and theoretical analysis.
Finally, the conclusion is given in Section Conclusion.

PROBLEM FORMULATION

In this paper, the motion of AUV on the horizontal plane
is considered in the 2D Cartesian coordinate system. This
simplification is justified due to the fact that the difference of
the geomagnetic in vertical is often negligible. Therefore, the
kinematic equations of the motion are introduced as follows:

{

x
(

k
)

= x
(

k− 1
)

+ v(k)1T cos θ(k)
y
(

k
)

= y
(

k− 1
)

+ v(k)1T sin θ(k)
(1)

where 1T is the sample period, k is the time instant, v
(

k
)

is the
kinematic velocity, θ

(

k
)

is the heading of AUV in a time instant.
Here, assuming AUVmoves with a constant velocity, formula (1)
can be written as follows:

{

x
(

k
)

= x
(
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)

+ L cos θ(k)
y
(

k
)

= y
(

k− 1
)

+ L sin θ(k)
(2)

where L is the step size, L = v(k)1T.

Mathematical Description of the
Multi-Objective Search Problem
The geomagnetic fields include multiple geomagnetic
components (Caifa et al., 2011), which can be described as
follows:

B = {B1,B2, · · · ,Bn} (3)

where B is the set of the geomagnetic components vector,
B1,B2, · · · ,Bn are defined as geomagnetic components, such as
the north magnetic field Bx, the east magnetic field By, the
downwardmagnetic field Bz , the total intensity BF , the horizontal
magnetic field BH , the declination angle BD, and the declination
angle BI .
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The bio-inspired navigation is thus the convergence process
of the geomagnetic components from the current position to the
target position (Liu et al., 2014). Therefore, the navigation process
can be considered as the multi-objective searching problem as
follow:

{

min Fk

(

f k1 (B) , f k2 (B) , · · · , f kn (B)

)

s.t. f ki (B) = (Bti − Bki )
2
, i ∈ n

(4)

where Bti is the geomagnetic component of the target position; Bki
is the geomagnetic component of the current position; f ki is the
difference of the ith geomagnetic component between the target
position and the current position; Fk is the objective function.

Considering the different magnitude of the geomagnetic
components, the objective function is normalized as follows:

Fk =
∑n

i=1

f ki (B)

f 0i (B)
=

∑n

i=1

(Bti − Bki )
2

(Bti − B0i )
2 (5)

The errors between the current position and the target position
can be assumed as the geomagnetic trend, while the searching
process is terminated when the error converges to ε. This is
expressed as:

limk→∞

∥

∥Fk − Fk−1
∥

∥ < ε (6)

where ε is a fixed value.
The bio-inspired navigation is thus considered as a posteriori

searching problem, in presence of unknown geomagnetic
components. Once the geomagnetic error between the current
position and the target position converges to zero, the navigation
process is terminated.

Geomagnetic Searching in Anomaly
Environment
The geomagnetic anomaly field has significant
influences on the geomagnetic navigation system,
where the related factors are analyzed according to
the distribution characteristics of the geomagnetic field
(Talwani, 1965). Usually the geomagnetic anomaly is
given by:

B
′

= B+ 1B (7)

where B is the amplitude of the abnormal region.

Considering the geomagnetic anomaly for the bio-inspired
algorithm, the difference of the ith geomagnetic component is
expressed as:

f
′k
i = (B

′t
i − Bki )

2
= (Bti + 1B− Bki )

2
(8)

Combining formulas (7) and (8), the convergence condition is
given by:
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where ξ is bigger than ε if the geomagnetic anomalies exists.
This result shows that the algorithm is easily trapped in the local
minimization.

MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHM WITH GEOMAGNETIC
ANOMALY

This section gives the general idea of the proposed algorithm
in geomagnetic anomaly, the experiment will be given in next
section.

The Search Principle
A bio-inspired navigation method is investigated, which is based
on a simple assumption that a homing animal only senses and
compares the variation of the geomagnetic field to reach its home.

Evolutionary algorithm is often used to solve problems in
highly complex spaces (Cliff et al., 1993; Droste et al., 2002; Vrugt
and Robinson, 2007; Peng et al., 2016; Peng and Wu, 2017).
Based on Darwin’s evolutionary theory, ethologists have been
concerned with the evolution of animals’ behavior (Alerstam
et al., 2003). Searching behavior can be described as active
movement, in which animals attempt to find resources such as
food, mates, nesting sites (Bell, 1992). Based on this, McFarland
has proposed a number of mathematical analogs by using
adaptive evolutionary behaviors (McFarland and Bösser, 1993).

Hence, by utilizing the evolution of animals behaviors,
the evolutionary algorithm is employed for searching the
geomagnetic space. In evolutionary algorithm, each possible
solution is defined as the individual, whereas a set of individuals
is defined as the population. The evolution method requires
maintaining a population of various individuals, according to the
operators such as selection, mutation, and so on. The repeated
process of recombination, selection, and mutation leads the
individuals to adapt to the environment, whereas the selection
operator is implemented by a task-oriented evaluation function:
the better the AUV performs its task, the more offspring it has.
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However, the local anomalies from the geomagnetic field have
significant influences on the proposed geomagnetic navigation
system. The next section explains the solution to the anomaly
problem.

The Search Algorithm with Geomagnetic
Anomaly
This section discusses how to deal with the local minimum
problem within the geomagnetic anomaly areas. Our solution
has two phases: the first phase is to determine whether the
algorithm falls into the geomagnetic anomaly area, and the
second is to determine whether the algorithm arrives at the target
location.

The first phase refers to the environmental monitoring
operator 9(k), which can be expressed as:

9(k) =

∥

∥

∥
F
′

k
− F

′

k−1

∥

∥

∥

1
T1

∑T1
i=1

∥

∥

∥
F
′

k
− F

′

k−1

∥

∥

∥

=

∥

∥

∥
F
′

k
− F

′

k−1

∥

∥

∥

E(1F
′

T1
)

(10)

where T1 is the period of time, E(·) is described as mean values.
The termination condition in second phase is determined as:

{

∥

∥

∥
F
′

k
− F

′

k−1

∥

∥

∥
≤ ρ

F
′

k
≤ ϕ

(11)

where ρ is a small value zero, ϕ is the scope of the desired target
location. The steps for themulti-objective evolutionary algorithm
which can address the challenge of the geomagnetic anomaly are
given as follows:

Step 1: Population Initialization. Randomly generate N
individuals in the population space Q (Q =
{

θj
∣

∣j = 1, 2, · · · ,N
}

), θ is the set of samples and
given by:

θ =

{

θ1, θ2, · · · , θm, m =
2π

1θ
, θj = 1θ × i, i ∈ [1,m]

}

(12)

where θ is the sampling interval.
Step 2: Individual Selection. Randomly select the sample θj, and

the probability of each individual is given by:

p(θj) =
1

N
(13)

when the current number of iterations is k, the
probability of the selected individual θi can be obtained
as

p(θkj ) =

∑N
j=1 δj(θj = θi)

N
(14)

where δ is a symbolic function.
Step 3: Population Updating Rules. The termination is

calculated if the selected individual accomplishes a
successful search. Thus the individual updating rules

can be divided into two parts: for one that moves toward
the target direction (F

′

k
≤ F

′

k−1), the selected individual
heading is reserved in the population. And for the other
that moves away from the target direction (F

′

k
> F

′

k−1),
the selected individual heading is replaced.

{

θj = θi, F
′

k
≤ F

′

k−1
θkj = 1θ × i, F

′

k
> F

′

k−1
(15)

Step 4: Environmental Monitoring Operator. The monitoring
factor 9(k) is used to determine whether the algorithm
falls into the geomagnetic anomaly area (9

(

k
)

≥ µ,µ is
the threshold value).

Step 5: Motion Constraint Operator. Once the search algorithm
is trapped into the local minimum area, the maximum
probability θi is preserved. This can be expressed as:

θki = θmax{p(θi)} (16)

When formula (17) is satisfied, the algorithm jumps out
of the local minimum area.

∥

∥

∥
F
′

k+M − F
′

k+M−1

∥

∥

∥
< µE(1F

′

T1
) (17)

Step 6: Termination condition. The navigation is terminated if
formula (11) is satisfied. The workflow of the proposed
evolutionary algorithm is shown in Figure 2.

NUMERICAL SIMULATIONS

To verify the effectiveness of the proposed multi-objective
evolutionary algorithm, numerical simulations are performed.

Simulation Setup
The Word Magnetic Model (WMM2010) is used to provide the
real time geomagnetic data (Maus et al., 2012). In simulation,
a rectangular area is selected from north latitude 30◦ and
east longitude 100◦ (N.30◦ and E.100◦) to north latitude
45◦ and east longitude 135◦ (N.45◦ and E.135◦). Considering
the non-relevance of the geomagnetic components, only three
geomagnetic components are used, which are the north magnetic
field Bx, the east magnetic field By, and the total intensity BF ,
respectively.

Meanwhile, it is assumed that the geomagnetic navigation
would encounter a geomagnetic anomaly region. Here, the multi-
mode function is utilized to construct the abnormal geomagnetic
environment (see in Figure 3), where the intensity of the highest
abnormal geomagnetic field value is−5,000nT.

In Figure 3, the starting position and the target position
are depicted by using the three geomagnetic components
at B0 = [31, 464nT, −2, 036nT, 52, 508nT] and Bt =

[26, 290nT, −4, 229nT, 54, 254nT], respectively. The circle, “◦”,
stands for the starting position, and the star, “∗,” stands for the
target position. The related parameters are shown in Table 1.
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FIGURE 2 | The workflow of the evolutionary search within geomagnetic anomaly.

Simulation Results
To evaluate the performance of the proposed approach, two
cases are evaluated: one occurs without considering geomagnetic
anomaly and the other one with geomagnetic anomaly.

Figure 4 illustrates the navigation trajectory without
the interference of geomagnetic anomalies, whereas
Figure 5 illustrates the moving trajectory with the
interference of geomagnetic anomalies. As shown in
Figure 5, the previous algorithm is easily trapped into
the local minimization in geomagnetic anomaly areas,
in which individuals move toward different directions
(Liu et al., 2014). It is observed that the navigation
performance strongly depends on the geomagnetic
anomalies.

It is concluded that the original searching algorithm is not
capable for the anomalies of geomagnetic fields, in which AUV
moves toward different directions and ultimately fails.

Figure 6 illustrates the proposed approach, where AUV
successfully overcomes the influence of the geomagnetic
anomalies. During the navigation phase, the individual directions
are randomly changed due to the probability selected in
the population. Zoomed figure on the left corner shows
the two motion constraints, which are performed using the
monitoring factor 9(k). Two time periods “c” and “d” are
within the geomagnetic anomaly area, while “a” and “b” represent
the variation anomalies of the geomagnetic components,
respectively. By monitoring the changes of the geomagnetic
components, the proposed approach effectively detects the
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FIGURE 3 | The simulation scenario within multi-modal function.

TABLE 1 | Setting navigation parameters.

No Parameters Size

1 L 500m

2 N 50

3 1θ 30
◦

4 ρ 0.007

5 ϕ 0.01

6 µ 1.6

7 pm 0.02

FIGURE 4 | The navigation without the geomagnetic anomalies.

abnormal regions. Then, the statistic characteristics of the
convergence state is utilized to the behavior constraints, for the
purpose of jumping out the abnormal region.

FIGURE 5 | The navigation with the geomagnetic anomalies.

FIGURE 6 | The navigation result in the geomagnetic anomalies with the

proposed solution.

Convergence Performance of the Search
Algorithm
The convergence curves of three geomagnetic components are
shown in Figure 7. It is observed that the convergence curves
present violent shakings in three geomagnetic components.

To better evaluate the performance in presence of
geomagnetic anomalies, the convergence properties of three
geomagnetic components are provided. As depicted in Figure 8,
there is a divergence trend for the three geomagnetic components
in periods of “a” and “b.” The convergence properties of the
geomagnetic components are improved after using behavior
constraints, demonstrating that the normalized error are able
to converge to a stable state. It is observed that the improved
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FIGURE 7 | The convergence curves of geomagnetic components within the

geomagnetic anomalies.

FIGURE 8 | The geomagnetic components convergence within the

geomagnetic anomalies.

algorithm could converge the curves of the geomagnetic
components to zero in finite steps.

To explore the advantages of the proposed algorithm, the
traveling time employed by the AUV in both scenarios is also
compared in Figure 9. It shows that the proposed approach could
converge to a stable state in scenarios of geomagnetic anomalies,
and the navigation process is terminated in 540 steps.

Discussion
In this paper, the multi-objective evolutionary algorithm has
been proposed to address the AUV navigation problem. As
a result of geomagnetic anomaly, the distribution of the
geomagnetic components is often disrupted over the searching
space. Therefore, the environmental monitoring and the behavior
constraints are used to tackle the local optimal problem. The

FIGURE 9 | The convergence of the objective function.

time complexity of the proposed algorithm is O(k3) in the
geomagnetic anomalies.

For the geomagnetic navigation, the optimal path between the
starting position and the destination is quite challenging without
a priori geomagnetic map. Also, the AUV navigation in oceans
strongly influences by the geomagnetic anomaly effects. However,
the proposed approach indicates that the searching strategy
performs optimally for AUV navigation in the geomagnetic
anomaly areas.

Thus, the multi-objective searching algorithm with the
environmental monitoring and the behavior constraints is
proposed to ensure the success and safety of AUV navigation.

CONCLUSION

This paper presents a novel strategy for bio-inspired geomagnetic
navigation in presence of geomagnetic anomalies. Inspired by
the biological navigation, in our previous work we proposed
an evolutionary schema which helps the AUV to reach the
destination without geomagnetic map. However, it suffers the
disturbance from geomagnetic anomalies and often converges
to the local minimum point. To tackle the problem, this
paper proposes an improved navigation model by introducing
constraints strategy to make AUV escape from the abnormal
regions. Simulation results show that the proposed model
effectively overcomes the disturbance of the geomagnetic
abnormal for AUV navigation.
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