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Humans are able to intuitively exploit the shape of an object and environmental constraints
to achieve stable grasps and perform dexterous manipulations. In doing that, a vast
range of kinematic strategies can be observed. However, in this work we formulate
the hypothesis that such ability can be described in terms of a synergistic behavior in
the generation of hand postures, i.e., using a reduced set of commonly used kinematic
patterns. This is in analogy with previous studies showing the presence of such behavior
in different tasks, such as grasping. We investigated this hypothesis in experiments
performed by six subjects, who were asked to grasp objects from a flat surface. We
quantitatively characterized hand posture behavior from a kinematic perspective, i.e., the
hand joint angles, in both pre-shaping and during the interaction with the environment.
To determine the role of tactile feedback, we repeated the same experiments but with
subjects wearing a rigid shell on the fingertips to reduce cutaneous afferent inputs.
Results show the persistence of at least two postural synergies in all the considered
experimental conditions and phases. Tactile impairment does not alter significantly the
first two synergies, and contact with the environment generates a change only for higher
order Principal Components. A good match also arises between the first synergy found in
our analysis and the first synergy of grasping as quantified by previous work. The present
study is motivated by the interest of learning from the human example, extracting lessons
that can be applied in robot design and control. Thus, we conclude with a discussion on
implications for robotics of our findings.

Keywords: postural synergies, human hand motor control, environment constraint exploitation, tactile perception,
grasping

1. INTRODUCTION

The human hand is a remarkably complex system, withmany joints, ligaments, muscles, and sensory
receptors contributing to its wide dexterity. The control of such an abundance or redundancy is
classically referred to as Bernstein’s problem (Bernstein, 1967). Several neuroscientific findings
(Mussa-Ivaldi, 1999; Saltiel et al., 2001; Latash, 2008; Overduin et al., 2014; Stratmann et al., 2016)

Abbreviations: DOF, degree of freedom; EC, Environmental Constraint; ECE, Environmental Constraint Exploitation; PC,
Principal Component; RMSE, Root Mean Square Error; CI, confidence interval.
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suggest that the human nervous system is able to cope with
such complexity leveraging on a control space of reduced dimen-
sionality. Under this regard, synergies were defined as principal
patterns of actuation. Through them, the human Central Ner-
vous System, also leveraging upon peripheral constraints, can
generate movements by combining pre-organized patterns, i.e.,
by simultaneously activating different degrees of freedom, instead
of acting separately on each joint or muscle. These patterns are
implemented at various levels of the motor control architecture,
i.e., either they are represented by cortical mechanisms, hard-
coded in low-level neural circuits, or generated by the mechanical
organization of human musculoskeletal system (Tresch et al.,
1999; Santello et al., 2013; Leo et al., 2016). The synergy concept
has been investigated in different tasks. Examples regarding hand
control are grasping imagined objects (Santello et al., 1998), reach-
to-grasp (Mason et al., 2001), and precision grip (Grinyagin et al.,
2005).

Another key aspect in the generation of meaningful motor
actions was recognized in the interplay between synergistic
components and the external environment (Feldman et al.,
2015). Indeed, from a sensory point of view, it plays a crucial
role to build up our knowledge of the world. Under this regard,
a well-known characterization of hand movements during
the exploration of the environment is represented by the
Exploratory Procedures identified by Lederman and Klatzky

(1990). Exploratory Procedures are stereotyped hand motions
characteristic of human haptic exploration of the environment.
By applying these procedures, subjects try to maximize the
amount of haptic information acquired from external objects.
Thakur et al. (2008) analyzed Exploratory Procedures through
Principal Component Analysis, identifying a reduced set of
postural synergies generating the observed behavior.

Focusing instead on the use of constraints for effective motor
task accomplishment, Environmental Constraint Exploitation
(ECE) primitives are defined in the study of Eppner et al. (2015).
We will refer in the following to ECE strategies as actions which
aim to manipulate or grasp an object and involve the use of a
constraint as central element of the strategy. Figure 1 shows some
examples reproducing experimentally observed behaviors, where
a subject exploits a flat surface. In Puhlmann et al. (2016), a
taxonomy of ECE primitives is proposed. In Eppner et al. (2015),
the authors also show that impairing the use of the environment
during grasping and manipulation sensibly decreases subjects’
performance, suggesting the central role of these strategies in
humans. This way of manipulating and grasping is very different
from the classical strategies used in robotics, where the contact
with the environment is avoided as much as possible (Bonilla
et al., 2014). Thus, it is authors’ opinion that a deeper under-
standing of ECE can directly affect the performance of robotic
manipulators.

FIGURE 1 | Photo sequences of some examples of experimental constraint exploitation (one for each row). In the first two rows, the subject uses the surface to
guide the fingertips position and robustly grasp the object (pinch grasp in the first row, power grasp in the second). In the third row, the subject uses the surface to
reorientate the object. In rows four and five, two thin objects are grasped by flipping them using the surface as pivot. In the last row, the subject shifts the object by
sliding it through the surface to the edge of the table, where it can be efficiently grasped. From these few examples, we can observe a large variety of strategies and
related hand postures.
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In this work, we investigate the presence of a synergistic behav-
ior underlying the generation of hand postures during ECE, exe-
cution, and planning.We also investigate the effect that cutaneous
impairment might have on such synergies. We were motivated
in doing this by the many studies in the literature highlighting
the central role of tactile information in grasping (Johansson and
Westling, 1984;Westling and Johansson, 1987;Nowak et al., 2004).

We performed experiments with six participants, who were
asked to grasp a set of objects from a flat surface. We selected
this task since it represents a good trade-off between analytic
complexity and richness of kinematic behavior induced by ECE,
as accounted, e.g., by Figure 1 and in the study of Eppner et al.
(2015). Two experimental conditions were considered: with and
without cutaneous impairment. In the first case, participants were
requested to wear rigid shells at their fingertips. Results were pro-
cessed through Principal Component Analysis, as it is common in
literature (Santello et al., 2013), in order to check the existence of
a set of Principal Components describing the recorded data. We
performed the analysis during the actual contact with the envi-
ronment and on pre-shaping postures, i.e., during the approaching
movement that precedes the hand–object–table interaction.

A marked synergistic behavior results in all the considered
experiments. Both the interaction with the external environment
and the cutaneous impairment appear to modify only the higher
order Principal Components. Furthermore, the first synergy
exhibits a good resemblance with the one observed in grasping
of imagined objects (reported in Santello et al. (1998)).

In recent years, the idea of hand synergies (with special focus on
grasping) has been successfully applied in robotics for a simplified
yet effective design, sensing, and control of artificial systems. For
a detailed review, we refer the interested reader to the studies of
Alessandro et al. (2013) and Santello et al. (2016). In accordance
with this previous successful experience of mutual inspiration
between neuroscience and robotics, we believe that the here pro-
posed results can inform the design and control of artificial hands
able to take full advantage of the Exploitation of Environmental
Constraints. We discuss these aspects in the final part of the work.

2. MATERIALS AND METHODS

2.1. Participants
We tested six able-bodied volunteers (three females, three males;
age range: 23–27 years, mean 25.17 years). All subjects were tested
on their dominant hand (right hand; self-reported hand domi-
nance). All participants were naive to the experimental purpose of
the study and had no history of neuromuscular disorders. Before
data collection, subjects signed an informed consent to participate
in the experiment. The experimental protocols were approved by
the Institutional Review Board of University of Pisa, in accordance
to the Declaration of Helsinki.

2.2. Apparatus
For the present investigation we employed a multimodal acquisi-
tion setup (see Figure 2), composed of:

• Phase Space Motion Capture System; we record kinematic data
using a commercial system for 3D motion tracking with active

LED markers, the Phase Space.1 Ten stereo cameras working at
480Hz tracked 3Dpositions of 24markers fastened to hand and
phalanges as shown in Figure 2A. The LED frequency is in the
visible red.

• A fingertip shell (Figure 2B); we use the shell of ThimbleSense
sensor (Battaglia et al., 2016). Subjects wore ThimbleSenses
in all fingertips during the tactile impairment experiments,
as in Figure 2B. Each shell is connected to the corre-
spondent fingertip as in classical thimbles. Please refer to
Battaglia et al. (2016) for a more extensive description of the
impairment effects of the shells. Also force information is
acquired, to be used in future works. Subjects wore Thim-
bleSenses on all fingertips, during the tactile impairment
experiments.

• A set of 21 objects (Figure 2D); this is composed of 2 euro
coin, button badge, key, credit card, CD, comb hair color, salt
shaker, tape, chessman (queen), knob, matchbox, screw, match,
cigarette, rubber band, marker, screw driver, shashlik, glasses,
coffee mug, and plate.

• Sensorized platform (600mm× 400mm), which includes the
force-torque sensor ATI mini45E mounted as in Figure 2C. It
allows the sensing of interaction forces/torques with the table
where objects were placed.

• Two cameras (Logitech hd 1080p) to record from two view-
points the experiments, as in Figure 3B. The recordings were
used to visually check the effectiveness of the segmentation.
We use blue filters to improve the quality of the recording,
whichwas reduced by the poor light conditions and the red light
emittance due to the motion capture system.

In contrast with previous work on grasping real objects (e.g.,
Mason et al., 2001), we chose objects that are difficult to grasp
and therefore necessitate exploitation of the flat surface constraint.
A similar set of objects was used in Eppner et al. (2015) in an
analogous table-top scenario, demonstrating the effectiveness of
eliciting a rich set of ECE strategies.

The acquisition is implemented through a custom application
developed in C++ employing:

• Boost libraries (Schäling, 2011) to perform the synchronization
between Phase Space data and force/torque sensors.

• Phase Space OWL library to get the optical tracking system
data.

• A custom library providing an interface to acquire the
force/torque sensor data (Serio et al., 2014).

The acquisition system allows organizing and synchronizing
data with respect to an absolute clock with period 0.025 s.

2.3. Experiments
The experiments were designed with the aim of identifying kine-
tostatic primitives used by humans in grasping and manipulation
tasks involving ECE. The subject was asked to comfortably seat in
front of the table, as in Figure 3A. The subject was instructed to
pose her/his hand in the initial hand position location, positioned
at the right side of the sensorized surface as in Figure 3B. The

1http://www.phasespace.com/, website visited on April 2017.
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A B

C

D

FIGURE 2 | Experimental apparatus. Kinematic measures are kept through an active marker motion capture system. Impaired condition is imposed through
ThimbleSenses’ rigid shells. Force and torque data were acquired from the sensorized table. (A) LED distribution, (B) ThimbleSense, (C) sensorized surface,
and (D) set of objects used in the experiment.

A B

FIGURE 3 | Experimental setup. The subjects sat comfortably in front of the table. In the starting position, subject’s hand was located over the drawing on right side
of the sensorized surface. In addition to the ten cameras used for the motion capture, two cameras are included in the setup to record the scene. (A) Setup side
view. (B) Setup from above.
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distance between the subject’s hand starting position and the site
where the object was placed was 60 cm. For each trial, subjects
were asked to reach the object posed in the center of the sensorized
surface. Once the hand had reached the object, subjects were
asked to grasp, lift (~20 cm height), hold (~1 s), put it back on
the table, and place the hand back to its starting position. The
experimenter gave the starting signal to subjects. In the instruc-
tions, the experimenter emphasized that the whole movement
should be performed in a natural fashion, i.e., the object should
be grasped as if the subject was about to use it, in accordance with
Santello et al. (1998). Two trials were performed for any of the
21 objects grasped. The object order was randomized for every
subject. The sequence of trials was repeated two times, with and
without tactile impairment, for a total of 84 trials per subject.
Each subject performed the whole experiment in a single day. The
experimentswith tactile impairmentwere performed in themorn-
ing, the experiments without tactile impairment in the afternoon,
in agreement with previous experiments (Battaglia et al., 2016).
Each subject performed the experiment in an independent day
w.r.t the other ones.

2.4. Data Pre-Processing and Analysis
Data processing is organized in two phases. First, data are pre-
processed to reduce the noise and to evaluate joint angles and
contact points. Second, we perform statistical analyses to identify
the presence of a synergistic behavior in ECE. We perform the
analyses in pre-shaping and during the whole contact with the
environment. To quantify the role of tactile impairment, we con-
sider separately the impaired and unimpaired cases. The analysis
was performed considering the whole group of participants. In
Section 3.4, we report the CI for the dot products between the
synergies’ vectors.

2.4.1. Data Processing
Raw data collected from the experimental setup were force and
torque from the six axes F/T sensor ATImini45 and 24 LED
positions from the motion capture system, both with and without
tactile impairment.

2.4.1.1. Kinematic Model of the Human Hand
An accurate description of the human hand is challenging due
to the high number of bones and joints composing the human
hand. As a trade-off between accuracy and complexity, in this
work we considered a 20 DoF kinematic model of the human
hand (Figure 4A). Each long finger is described by a set of four
angles: two DoFs for flexion–extension and abduction–adduction
in metacarpophalangeal joints, one DoF for flexion–extension in
proximal and distal intraphalangeal joints. The thumb is described
with four angles: two DoFs for the trapeziometacarpal, one DoF
for the metacarpophalangeal, and one DoF for the interpha-
langeal. For the sake of space, we do not report here the math-
ematical form of the kinematics,2 which can be easily derived
from theDenavit–Hartenberg parameterization in Figure 4B (see,
e.g., Murray et al. (1994)). In the Appendix, we report the direct
kinematics derivation for the led positioned on a long finger nail.
A key characteristic of themodel is that it shares the 15DoFs of the
model used in Santello et al. (1998), allowing an easy comparison
with the classical postural synergies of grasp, as done, e.g., in
Gabiccini et al. (2013).

2Note that here we use the term kinematics as it is commonly done in robotics and
biomechanics, to refer to the mapping of Lagrangian variables to a different point
of the structure. In this context, the evolution in time is referred to as differential
kinematics.

FIGURE 4 | Kinematic model of the human hand considered in this work. The model has 20 DoFs, which include the 15 DoFs of the hand model used in Santello
et al. (1998). The left panel graphically describes the kinematics, while the right one specifies the Denavit–Hartenberg parameterization of thumb and the long fingers.
We denoted with j the joint index, starting from the proximal joint to the distal, while q1, q2, q3, q4 are the joint angles and a2, a3, a4 are the phalanx lengths.
(A) Kinematic model. (B) DH parameterization.
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2.4.1.2. Model Calibration
To reconstruct realistic values of the joint angles from marker
data, the kinematic model employed should reproduce as closely
as possible the actual kinematics of the subject being recorded.
To achieve this goal, we implement an identification procedure
that follows what was done in Gabiccini et al. (2013). The data
set is acquired by asking the subject to perform the Kapandji test
(Kapandji, 1985), i.e., touching the four long fingers with the tip
of the thumb. The test is repeated two times.

The parameters to be identified are: aB ∈ R30 collecting the
length of each phalanx and the three space positions of the abduc-
tion joints (TR/TA, IM/IA, MM/MA, RM/RA, and LM/LA in
Figure 4A) w.r.t. the local frame, and aG ∈ R45 collecting the
location of each marker placed on the phalanxes w.r.t. the joint to
which the LED is connected.

Their values are evaluated as ones minimizing the Root Mean
Square Error (RMSE) between measured marked positions yk and
the estimated ones from the hand kinematics f (xk; aG, aB), in a set
of reference time stamps kid

arg min
x, aG, aB

√ ∑
k∈Kid

(yk − f(xk; aG, aB))T(yk − f(xk; aG, aB))

s.t. xk > 0 ∀k, (1)

where xk ∈ R20 is the vector collecting the estimation of joint
angles at the kth time step, xk > 0 is to be considered element-wise,
x is the vector collecting all the joint estimations in the considered
time steps.We selectedkid as 60 equidistant frames. The constraint
xk > 0 accounts for biomechanical joint limits, in order to achieve
a more robust estimation.

The optimization problem is solved through the MatLab func-
tion fmincon. The initial guess for the parameters aG and aB are
evaluated through direct measurements, done with a caliper on
each subject’s hand before the experiment, while the initial value
of x is the null vector. Since we do not have direct access to the real
joint angles, the quality of the calibration is evaluated as the RMSE
between the measured led positions, and the ones resulting from
the identification, as, e.g., in Gabiccini et al. (2013). The average
error across trials and subjects is 2.2mm for the unimpaired case
and 3.1mm for the impaired case.

2.4.1.3. Joint Angles Estimation
Articulated hand postures typically produce marker occlusion
to cameras. We use here Piecewise Cubic Hermite Interpolating
Polynomials (De Boor et al., 1978) to interpolate missing values.
To estimate the hand postures from marker position we propose
a Constrained Extended Kalman Filter (Sircoulomb et al., 2008).
Kalman filtering was already employed for a similar scope in
Fu and Santello (2010). We rely on the identified hand model,
representing joint evolution as a random walk. In each time step,
the filter estimates the hand posture from the measure of the
marker position in space and previous state estimation. Joint limits
are considered as constraints. To increase the robustness against
marker losses (we had an average of 2.47 marker loss per frame,
and a maximum number of consecutive marker loss of ~15), we
multiply at each step the Kalman Filter observation noise covari-
ance matrix by the number of consecutive missing measures.

The filter is initialized with the open hand posture and a null
state covariance matrix. The observation noise covariance matrix
is 0.001 I20×20, and the state noise covariance matrix is 0.0005
I24×24. Both the matrices are heuristically tuned. The quality of
the reconstruction is evaluated as the RMSE between measured
and estimated LED positions. The mean values are 2.9mm for the
unimpaired case and 3.2mm for the impaired case.

2.4.1.4. Force Data
The force/torque data from ATI Mini45 (i.e., sensorized sur-
face) are filtered through a moving average filter based on the
Savitzky–Golay method (Schafer, 2011). The window width is
heuristically tuned as the 1.5% of total data length. We then use
the knowledge of surface form, to evaluate the centroid of contact
of Force/Torque data.3

2.4.2. Analysis
We segment pre-processed data into three main phases, also
described in Figure 5: (i) pre-shaping, where the object is reached
and the hand posture is shaped in order to purposefully interact
with the environment, (ii) contact, in which the constraint is
exploited in order to manipulate and grasp the object, and (iii)
post-contact, when the object is grasped and lifted from the table.

By considering non-adhesive interactions with the environ-
ment, we can assume any change occurring to the force orthogonal
to the surface as due to an interaction. We thus segmented the
actions searching for a change in the corresponding force mea-
sured by the sensorized surface (see Section 2.2). The cutoff from
the first and the second phase is identified by the first contact with
the table, when the force starts to increase. To accurately detect
this point we consider both to the signal and to its derivative. The
cutoff identifying the end of the contact phase is taken as the first
time in which the contact force returns to zero.

The aim of the analysis is to identify a subspace of reduced
dimensionality embedding the hand postures, to test the hypoth-
esis of presence of a synergistic behavior in Environmental Con-
straint Exploitation. Principal Component Analysis (PCA) is a
valuable tool to achieve this goal (Santello et al., 1998, 2013;Mason
et al., 2001; Thakur et al., 2008). Given a set of data, described by
a correlation matrix C and a mean m, PCA derives an orthonor-
mal base of the data space, whose first element S1 indicates the
direction where data present the greatest variability. In turn, each
successive component Si has the highest variability under orthog-
onality constraint. The ith element of the base is referred to as
Principal Component of the data set. The normalized percentage
of the data variability projected on each Principal Component is
called explained variance of the component.

We evaluate PCA as the singular value decomposition of the
data correlation matrix C, i.e., by finding an orthonormal matrix
Σ, which brings C in Jordan form through the similitude trans-
formation ΣTCΣ. In that case, the Principal Components are the
columnof thematrixΣ= [S1, . . ., Sn], and the explained variances
are the corresponding eigenvalues. For further details on PCA we
refer the interested reader to the study of Jolliffe (2002).

3The contact points are computed through tactile toolbox, as in Serio et al. (2014).
A portable version of this tool as well as raw data of our experiments will be released
through handcorpus.
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A

B

C

FIGURE 5 | Photosequences of experimental constraint exploitation. According to our contact-based classification, (A) presents the pre-shaping phase, (B) shows
the during contact phase, and (C) the post-contact phase.

A B

C D

FIGURE 6 | Explained variance resulting from PCA analysis of postures in pre-shaping and during contact, in tactile impaired and unimpaired case. A marked
predominance of the first Principal Component is present in all the cases, showing a synergistic behavior. (A) Unimpaired, pre-shape; (B) impaired, pre-shape;
(C) unimpaired, contact; and (D) impaired, contact.
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If PCA is used to analyze hand postures in joint space, explained
variances can be used to understand if the hand moves on a
reduced set of the configurations by looking if there are few
principal directions that explain the major part of the data. If this
is the case we refer to such principal directions as synergies.

It is worth noticing that the use of the same calibrated kinematic
model for every subject enables a coherent description of the hand
configuration space as R20 for all the experimental conditions.We
consider cosine of the angle between synergy’s directions as the
metric to compare results of the different analyses. We evaluate it
as the absolute value of the normalized dot product between the
synergy vectors.

We also compare synergies resulting from our analysis with
those employed for the execution of grasping, as shown in San-
tello et al. (1998). The kinematic model in Santello et al. (1998)
takes into account a subset of the joints considered in this work
(see Section 2.4.1.1). Thus, the configuration space of grasping
synergies is a subset of dimension 15 of the hand configuration
space considered in this work. To compare vectors, we projected
full hand configurations in the corresponding subspace. This is
equivalent to simply neglect the values corresponding to joints ID,
MD, RD, and LD in Figure 4A.

Since our main focus is to extract lessons that can inform the
robotic design (as discussed in Section 4.2), a complete study of
inference is beyond the scope of the present work. However, we

considered Student’s t test to infer the general validity of some of
our results. Please refer to the study of Hogg and Craig (1995) for
an exhaustive introduction.

2.4.2.1. Pre-Shaping Analysis
The pre-shaping analysis is done with the purpose of identifying
kinematic regularities in the generation of hand postures for the
ECE exploitation. In Santello et al. (1998), PCA is performed for
constant postures acquired in grasping. These authors took out
effects due to interaction with the objects, by asking subjects to
grasp imagined ones. In this analysis, we aim to achieve the same
goal by performing PCA on a data set composed of the last poses
before the contact with the environment in each trial, i.e., the last
pose in pre-shaping phases when a purposeful interaction with
the environment is planned. Unimpaired and impaired cases are
separately analyzed. Both data sets are composed of 252 poses (six
subjects, 21 objects, and two trials).

2.4.2.2. Contact Analysis
In order to evaluate if there are some kinematic regularities in the
strategies employed by the subjects during actual exploitation of
the surface (see, e.g., Figure 1), we perform PCA on data collected
during the contact phase. We perform the analysis separately in
the impaired and unimpaired case. To characterize the effect of
cutaneous impairmentwe also evaluated themean amount of time

FIGURE 7 | Graphical representation of the movements w.r.t. the mean hand posture, associated with the first three synergies during pre-shaping in unimpaired
condition. Each column presents a different stage of the synergistic movement, obtained by summing the hand mean configuration m, to the synergy vector Si of the
ith synergy.
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in which subjects stay in contact with the table, mean time for
task accomplishment, and the mean norm of interaction forces,
by averaging the correspondent values for every subject and every
object.

The data sets for both impaired and unimpaired conditions
are composed of a variable number of poses depending on the
strategy execution time. Each ECE generates an amount of pos-
tures equal to 40 times the execution time (see acquisition rate
in Section 2.2). All 21 objects, two trials, and six subjects were
considered.

TABLE 1 | Numerical values of the first synergy of Grasp (Santello et al., 1998) and
of Environmental Constraint Exploitation, with and without impairment, before and
after contact.

DoFs Grasp Unimpaired
pre-shape

Impaired
pre-shape

Unimpaired
contact

Impaired
contact

TA −0.43 −0.14 −0.15 −0.12 −0.15
TR 0.29 0.31 0.35 0.30 0.34
TM 0.14 0.14 0.17 0.17 0.16
TI 0.03 0.04 0.05 0.05 0.09
IA −0.13 −0.08 −0.12 −0.08 −0.11
IM 0.33 0.39 0.35 0.40 0.34
IP 0.15 0.16 0.16 0.17 0.20
ID x 0.01 0.03 0.03 0.05
MA x −0.03 −0.08 −0.02 −0.06
MM 0.33 0.38 0.33 0.38 0.32
MP 0.16 0.27 0.27 0.27 0.30
MD x 0.04 0.06 0.05 0.08
RA 0.06 0.00 −0.02 0.02 −0.02
RM 0.40 0.44 0.37 0.43 0.32
RP 0.20 0.22 0.27 0.22 0.35
RD x 0.04 0.06 0.05 0.11
LA 0.14 0.05 0.1 0.08 0.09
LM 0.37 0.43 0.42 0.41 0.37
LP 0.27 0.12 0.21 0.17 0.24
LD x 0.02 0.04 0.02 0.08

We indicate with “x” the DoFs that were not considered in Santello et al. (1998).

2.4.2.3. Differences between Pre and during Contact
We investigate the persistence of the same basic ingredients of
hand posture before and during the contact with the environ-
ment for both bare fingers and cutaneous impairment conditions.
The dot product of synergies evaluated in previous sections was
computed in order to quantify their similarities.

3. RESULTS

3.1. Pre-Shaping Analysis
Figure 6 shows the explained variance associated with the PCs on
the poses during the pre-shaping phase. For the unimpaired case,
the first Principal Component explains about 54% of the variance,
while the first three pre-shaping synergies explain more than
72%. Figure 7 shows the graphical representation of the first three
resulting postural synergies. The same analysis in the impaired
case shows that the first synergy explains about 42% of the
variance, while three Principal Components explain more than
68% of the variance. Thus, for our data set, the variance explained
by the first main synergies is lower in the impaired condition. In
Figure 7, we present the graphical representations of the move-
ments corresponding to the first three synergies of pre-shaping
without tactile impairment. Table 1 presents the numerical values
of the first ECE synergy of pre-shaping with and without impair-
ment, in comparison with the first synergy of grasp (Santello
et al., 1998). Figure 8 presents the movement corresponding to
the second synergy of pre-shaping with tactile impairment.

In all the considered cases, the first synergy describes an
opening–closing behavior of the whole hand, while the second
synergy corresponds to a closure of the distal joints mostly of
index and medial fingers and a closing of the thumb. The third
synergy is similar to the second, but concerning the little and ring
fingers.

Figure 9A shows the scalar product between the first grasp
synergy in Santello et al. (1998) and the ones found in this work for

FIGURE 8 | Graphical representation of the movements associated with the second ECE synergy. Pre-shaping impaired, contact unimpaired, and contact impaired
conditions are considered. The mean posture is referred to as m, the second synergy as S2. We do not report here the first synergies, since they do not present visible
discrepancies from each other. The present figure shows also a good coherence in the behavior described by the second synergy, among the considered conditions.
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both sensory conditions. What is noticeable is that there is a high
level of consistency between themain synergy of grasping and pre-
shaping of human hand in impaired and unimpaired conditions
(≥0.9). The similarity is reduced for the second synergy, as shown
inFigure 9B, and so on for the other orders.Figure 9 reports also a
high correlation between pre-shaping synergies with and without
tactile impairment. The presence of impairment does not alter
the first two synergies during the pre-shaping phase. However,
the similarity strongly drops when the synergy order increases
further, reaching 0.36 for the third and 0.003 for the forth.

3.2. Contact Analysis
In the unimpaired condition, the first Principal Component
explains about the 49% of the variance, and the first three syn-
ergies more than 73%. The same analysis in the impaired case
returns a first synergy explaining about the 39% of the variance,
and the three Principal Components explaining more than 65%
of the variance. Also in this case, for our data set the percentage
of variance explained in the impaired condition is lower. Table 1
presents the numerical values of first ECE synergy during the
contact with the environment, with and without impairment, in

A B

FIGURE 9 | Dot products between first and second grasp synergies and first and second ECE synergies evaluated during pre-shaping, with and without tactile
impairment. The gray scale graphically codes the product value: black is 1, i.e., very similar, white is 0, i.e., very different. A high correlation between the first grasping
and ECE synergies is evidenced. The ECE synergies with and without impairment present high similarity, which, however, drops for higher order synergies. (A) First
synergies and (B) second synergies.

FIGURE 10 | Dot products between the ECE synergies in pre-shaping and in contact with the environment, in the bare finger case. The gray scale graphically codes
the product value: black is 1, i.e., very similar, white is 0, i.e., very different. A tendency to maintain the first main components before and after the contact results
clearly from this analysis. The results for the impaired case are analogous.

Frontiers in Neurorobotics | www.frontiersin.org August 2017 | Volume 11 | Article 4110

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Della Santina et al. ECE Postural Synergies

comparison with the first synergy of grasp (Santello et al., 1998).
Figure 8 presents the movement corresponding to the second
synergy with and without tactile impairment.

The analysis also demonstrates that subjects with tactile impair-
ment are in contact with the table for an average time of 4.2± 3.1 s,
while for the unimpaired case the average time is 2.4± 2.4 s.
The complete task is performed in 13.9± 2.7 s for the tactile
impairment case, while it is performed in 11.5± 2.0 s in the other
case. Finally, the contact force is different for the experiments
considered. Mean value of norm of contact forces for the tactile
impairment case is 23.2± 8.6N, while mean value is 12.3± 5.7N
in the other case.

3.3. Differences between Pre and during
Contact
The result shows that the first Principal Components in unim-
paired and impaired conditions are very similar w.r.t. the corre-
sponding ones of the pre-shaping analysis. The similarity tends to
decrease with the increase in synergy order (correlation≥ 0.75 till
9th synergy). Dot products are graphically reported in Figure 10
for the unimpaired case. Thus, ECs induce only changes for the
high-order synergies, leaving unaltered the main ones, regardless
of availability of tactile input. Note that the first synergy is still
equivalent to the one in Santello et al. (1998).

3.4. Inference and Statistical Relevance
In the previous sections, we presented results from six subjects.
Despite such a moderate number of participants, findings and
analyses are in line with the existing literature in the field, see
e.g., Santello et al. (1998); Mason et al. (2001); and Naceri et al.
(2016). To generalize, we here report additional statistical analyses
that provide Student’s t test based confidence intervals (CI) with
95% probability. CI refers to dot products performed on the PCs
extracted for the different conditions and the ones obtained in
grasping.

CI for the dot product between the first synergy for impaired
and unimpaired conditions is [0.81, 0.96]; CI for the dot product
between the first grasping synergy and the unimpaired first ECE
synergy is [0.88, 0.94]; CI for the dot product between the first
grasping synergy and the impaired first ECE synergy is [0.79, 0.9].
Regarding the contact analysis of Section 3.3, the dot product
between the first Principal Component before and during contact
results in a CI of [0.97, 0.99] (unimpaired case).

4. DISCUSSION AND CONCLUSION

4.1. Implications for Motor Control
The explained variance reported in Figure 6 suggests the presence
of an underlying synergistic behavior in the purposeful exploita-
tion of environmental constraints. Indeed, the dimensionality of
the space required to approximate hand posture is considerably
smaller than the number of degrees of freedom. In particular, the
first Principal Component shows a marked predominance, with
a maximum total variance explained of 54% in the unimpaired
pre-shaping case. The three first synergies explain more than
65% of the total variance in all the considered conditions. In the
considered experiments, during contact with the environment,

the amount of variability accounted by higher order synergies
increases. This could be explained by observing that the interac-
tion can shape the subject hand beyond its nominal kinematics.
This behavior is also in agreement with the findings in Santello
et al. (2002), where the synergistic analysis of Santello et al. (1998)
was performed on grasped real objects instead of imagined ones.

Despite our inference analysis (Section 3.4) is limited to the
first synergy, a series of characteristics of our data set can be
pointed out, which are in accordance with existing neuroscien-
tific findings. Future works will focus on different experimental
procedures and tasks to further investigations. In our data set,
the first two synergies in the impaired and unimpaired conditions
are very similar, as shown in Figures 8 and 9. This suggests that
the presence of tactile impairment, while modifying the strate-
gies themselves, does not substantially modify the most basic
kinematic ingredients commonly used to generate hand postures.
Subjects are aware of the presence of the tactile impairment, so it is
reasonable to expect that they might have changed their planning
in accordance to that. Indeed, the drop of such similarity after the
third synergy suggests that cutaneous impairment affects posture
refinement, which can be likely ascribed to higher order synergies
(as described in Santello et al. (1998)). However, the amount of
data collected does not allow a sound statistical characterization
of this behavior. To assess whether higher order synergies are
primarily noise or they actually contribute to hand postures, we
will resort to the usage of discriminant analysis and information
theory, as in Santello et al. (1998), as future works.

Analogously, Figure 10 shows a high similarity in the first
Principal Components during contact and pre-shaping, while dif-
ferences can be observed for higher order synergies. Uncontrolled
Manifold theory (Scholz and Schöner, 1999; Latash et al., 2007)
suggests that the central nervous system selects in the space of
joint angles a subset of variables of interest, which are regulated,
purposefully leaving free the remaining variables. The persistence
of main postural synergies of pre-shaping during the contact with
the environment can be interpreted in the light of this theory
by considering the first set of ECE synergies as the variables of
interest for the considered task, which remain constant when an
external disturbance occurs. The subspace individuated by the
higher order synergies is instead left free to adapt to the exter-
nal environment. Moreover, such behavior could also be due to
peripheral constraints embedded in the musculoskeletal system,
as discussed, e.g., in Santello et al. (2013).

Data shown in Figure 9 and Table 1 demonstrate that a strong
resemblance exists between the first synergy, resulting from the
analysis of ECE strategies, and the first synergy of grasp as found
in Santello et al. (1998).

This could suggest the presence of underlying synergies, which
are integrated with task specific ones. This was proposed, e.g., in
Gorniak et al. (2007), and it is in agreement with experimental
results presented in Thakur et al. (2008), where task independent
synergies are estimated by a set of unconstrained tasks (see CI
estimates in Section 3.4).

4.2. Implications for Robotics
As it can be widely observed in the literature, neuroscien-
tific results of synergistic behavior of human hands have been

Frontiers in Neurorobotics | www.frontiersin.org August 2017 | Volume 11 | Article 4111

http://www.frontiersin.org/Neurorobotics/
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Della Santina et al. ECE Postural Synergies

successfully translated and applied to robotics to inform the
design, control, and sensing of artificial systems, with special focus
on grasping, see Bicchi et al. (2011) and Bianchi and Moscatelli
(2016). One of the first notable applications of synergies to
robotics was in Brown and Asada (2007), where authors propose
to use grasp synergies to derive actuation patterns for an under-
actuated robotic hand. In Gabiccini et al. (2011), the use of hand
synergies for the choice of grasping forces is discussed. InCiocarlie
et al. (2007) and later in Amor et al. (2012); Malhotra et al.
(2012); and Villani et al. (2012), a synergy based low-dimensional
synergistic space is considered to obtain effective pre-grasp shapes
for fully actuated robotic hands.

Recently, synergy-inspired actuation has been combined with
the introduction of compliance in the structure (Catalano et al.,
2014; Xu et al., 2014; Della Santina et al., 2015; Chen and Xiong,
2016) (according to the soft synergy framework (Bicchi et al.,
2011)). The availability of robotic hands embedding elasticity in
their mechanics has also led to a shift in their control philosophy,
accounted, e.g., in Bonilla et al. (2014) and Eppner and Brock
(2015). In the classical planning, suitable points are selected on the
object to be grasped ormanipulated, generating a nominal grasp of
good quality. Trajectories are then executed, to correctly position
the fingertips while avoiding contacts with the environment. On
the contrary, soft manipulation has changed this scheme. The
hand-environment contacts are no more avoided but exploited to
successfully shape the hand around the object. Under this regard,
the study of environmental exploitation in humans could inform
the design, planning, and control of robotic hands to take full
advantage from the external environment.

The most direct implication of the presented results could
leverage upon the observation that the first synergy of grasping
is very similar to the first synergy for Environmental Constraint
Exploitation (ECE). Thus, the implementation of the first synergy
of grasp as degree of actuation can target the twofold goal of
realizing underactuated robotic hands that can effectively grasp
objects and, at the same time, are able to exploit Environmental
Constraints. To increase hand functionalities beyond the first

degree of actuation, we could implement additional ECE syner-
gies, possibly in combination with the grasp synergies. For some
examples of the implementation of synergies for the design of
underactuated robotic hands, we refer the interested reader to
Grioli et al. (2012); Della Santina et al. (2015); and Piazza et al.
(2016).

Looking at the differences between the impaired and unim-
paired conditions, the key kinematic ingredients seem to remain
unaltered at least for the gross movements. However, the time for
task accomplishment and the force exchanged with the environ-
ment is higher for the impaired case. This result could indicate
possible sensing strategies for soft robotic hands, i.e., to detect
contact with the environment, e.g., through IMU sensors, which
can lead to the development of planning and control laws aiming
at minimizing force execution on external objects.
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A. APPENDIX

A.1. Finger Kinematics
The forward kinematics of a serial chainwith n degrees of freedom
is described by post-multiplicating different rotation-translation
matrices with the following form

Ti−1,i =
(
Ri−1,i hi−1,i
01×3 1

)
,

where Ri−1,i is the rotation matrix between frame i− 1 and frame
i and hi−1,i is the translation vector between frame i− 1 and frame
i. Then the whole forward kinematics is calculated as

T0,n = T0,1T1,2 . . .Tn−1,n.

For the long finger (its kinematics is introduced in
section 2.4.1.1 and parametrized with Denavit-Hartenberg
in Figure 4B) we have

T01 =


C1 0 −S1 0
S1 0 C1 0
0 −1 0 0
0 0 0 1

,T12 =


C2 −S2 0 a2C2
S2 C2 0 a2S2
0 0 1 0
0 0 0 1

,

T23 =


C3 −S3 0 a3C3
S3 C3 0 a3S3
0 0 1 0
0 0 0 1

,T34 =


C4 −S4 0 a4C4
S4 C4 0 a4S4
0 0 1 0
0 0 0 1

.

where Ci stands for cos(qi), Si stands for sin(qi), ai is the length of
the phalanx i− 1 and qi is the ith joint rotation. Then, the forward
kinematics is obtained as

T04 = T01T12T23T34 =
(
R0,4 h0,4
01×3 1

)
.

The extended expression of T04 is neglected for simplicity
and can be easily calculated by the reader. The final position(
xLF yLF zLF

)T of the external phalanges can be extracted from
T04 by selecting h0,4:xLF

yLF
zLF

 =

C1(a2C2 + a3C23 + a4C234)
S1(a2C2 + a3C23 + a4C234)

−a2S2 − a3S23 − a4S234

,

where C23 stands for cos(q2 + q3), C234 stands for
cos(q2 + q3 + q4), S23 stands for sin(q2 + q3), S234 stands for
sin(q2 + q3 + q4). The same procedure can lead to the description
of the thumb forward kinematics. We have

T01 =


C1 0 −S1 0
S1 0 C1 0
0 −1 0 0
0 0 0 1

,T12 =


C2 0 −S2 a2C2
S2 0 C2 a2S2
0 −1 0 0
0 0 0 1

,

T23 =


C3 −S3 0 a3C3
S3 C3 0 a3S3
0 0 1 0
0 0 0 1

,T34 =


C4 −S4 0 a4C4
S4 C4 0 a4S4
0 0 1 0
0 0 0 1

,

and then

xT
yT
zT

 =



a4S4(C3S1 − C1C2S3) + a2C1C2 + a3S1S3
+a4C4(S1S3 + C1C2C3) + a3C1C2C3

a2C2S1 − a4S4(C1C3 + C2S1S3)
−a3C1S3 − a4C4(C1S3 − C2C3S1) + a3C2C3S1

a4S2S3S4 − a3C3S2 − a4C3C4S2 − a2S2

.

(A1)
It is worth to be noticed that, while linear w.r.t. the parameters

a2, a3, a4, equation (A1) defines a strongly non-linear relationship
between joint angles q1, q2, q3, q4 and LED position.
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