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Genetic algorithms are widely adopted to solve optimization problems in robotic

applications. In such safety-critical systems, it is vitally important to formally prove the

correctness when genetic algorithms are applied. This paper focuses on formal modeling

of crossover operations that are one of most important operations in genetic algorithms.

Specially, we for the first time formalize crossover operations with higher-order logic

based on HOL4 that is easy to be deployed with its user-friendly programing environment.

With correctness-guaranteed formalized crossover operations, we can safely apply them

in robotic applications. We implement our technique to solve a path planning problem

using a genetic algorithm with our formalized crossover operations, and the results show

the effectiveness of our technique.
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INTRODUCTION

Genetic algorithms are widely adopted in robotic applications such as path planning (Hu and Yang,
2004; Taharwa et al., 2008; Achour and Chaalal, 2011; Liu et al., 2013; Sanfilippo et al., 2013; Gautam
and Verma, 2014; Vicmudo et al., 2014).When genetic algorithms are applied in such safety-critical
applications, it is extremely important to prove their correctness. Specially, crossover operators
play a key role in searching for near-optimal solution in genetic algorithms. Therefore, it becomes
an important issue for how to develop correctness-guaranteed formalized crossover operations in
robotic applications (Zhou and Sun, 1999; Wang and Cao, 2002).

There have been studies to formalize crossover operations of genetic algorithms. In Uchibori
and Endou (1999), completed the formalization of crossover operators. In Vidal et al. (2008),
a mathematical abstraction of crossover operators is proposed to extend the applicability of
formalized crossover operators in genetic algorithms. In Nawaz et al. (2013), the correctness of
genetic algorithms with formalized crossover operators is verified. While the above studies lay the
foundation for formalizing crossover operations of genetic algorithms, effective mechanisms and
techniques are still urgently needed for developing correctness-guaranteed formalized crossover
operations that can be easily deployed in genetic algorithms in practice.

In this paper, we for the first time develop correctness-guaranteed formalized crossover
operations based on HOL4 (Higher-Order Logic 4) (HOL Project, 2017) that is easy to be deployed
with its user-friendly programing environment. We first present a general structural model and
construct the formal model of cross operators. Based on these, one-point crossover operator
and multi-point crossover operator are then formalized and proved with HOL4. We conduct
a case study by implementing the proposed technique in robotic applications to solve a path
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planning problem, in which a genetic algorithm with our
formalized crossover operations has been developed, and the
results show that our technique can be easily applied and
effectively solve optimization problems with genetic algorithms.

The rest of paper is organized as follows. Section Manuscript
Formatting presents background. Section Higher-order Logic
Representation of Crossover Operators: Basic Elements describes
the formal model of cross operations with HOL4. In sections
Higher-order Logic Representation and Formal Verification
of One-point Crossover Operators and Higher-order Logic
Representation and Formal Verification of Multi-Point
Crossover Operators, we formalize and prove one-point
and multi-point crossover operators with HOL4, respectively.
Section Discussion discusses the proposed technique. Section
Evaluation evaluates the proposed work with a case study
for implementing our technique to solve path planning in
robotic applications. Finally, we conclude this paper in section
Conclusion.

MANUSCRIPT FORMATTING

Population
In order to complete the formalization of crossover operators,
we must formalize the population that is the base of the
evolution of genetic algorithms and the workspace of crossover
operators. According to the collective property of the population,
a population is defined as the abstract set and is represented as
“: bool list - > bool” in HOL4. We use the symbol D to represent
the non-empty set of a population. In addition, in order to ensure
that crossover operations can be carried out in the formalized
population D to generate new chromosomes, population D also
needs to meet the following two properties:

• Non-unitary: There are at least two chromosomes in
population D, and the two chromosomes are not the same.

• Closure: Offspring chromosomes generated by a crossover
operator which involves two chromosomes in population D
still belong to population D.

Crossover Operations
A crossover operation is defined as the behavioral process in
which offspring are produced by crossover operators. A crossover
operation intercepts two parent chromosomes at the crossover
point, and reconnects the dissected gene segments to create a
new chromosome. Figure 1 illustrate how a crossover operation
works.

To implement the higher-order logic formalization of
crossover operations, we can abstract the process shown in
Figure 1. into three elements, namely, the operation object,
the operation position and the basic operation. Based on this
abstraction, Figure 2 shows a structural model. In Figure 2,
chromosomes are individuals in population D; chromosome
p and chromosome q as operation objects that represent the
two parent chromosomes; cross-term l denotes the operation
position which is the set of crossover points; the basic operations
consisting of TAKE, DROP and APPEND are the behavior
operations used to complete gene exchange.

FIGURE 1 | The workflow of a cross operation.

As shown in Figure 2, the operation objects and operation
positions in the general model of crossover operations constitute
the basic variables of the formal model, and the basic operations
in the general structural model construct the behavior of the
formal model. Moreover, the basic variables and the basic
behavior operations will form the formal model of the crossover
operation.

HIGHER-ORDER LOGIC
REPRESENTATION OF CROSSOVER
OPERATORS: BASIC ELEMENTS

To realize the formalization of crossover operations, the
prerequisite work is to use the higher-order logic to represent
the basic elements of crossover operations. Therefore, the higher-
order logic representation of the three basic elements in the above
model and the proofs of their related properties are presented in
this section.

Higher-Order Logic Representation of
Chromosomes
Since a chromosome is an arrangement of a limited number of
genes, the data structure of chromosomes in HOL4 is defined as
a list; the data type of elements in the list is defined as Boolean
(: bool). Then a chromosome can be represented as a Boolean
list (: bool list). Correspondingly, two parent chromosomes of an
operation object can be represented by p and q respectively, p =

p1 . . . pn,q = q1 . . . qn,p ∈ D,q ∈ D. Here pi (: bool) (1≤ i≤n) is
the gene that constitutes the chromosome p (: bool list);qi (: bool)
(1≤ i≤n) is the gene that forms the chromosome q (: bool list).

Higher-Order Logic Representation of
Cross-Term
The crossover position in crossover operations, called cross-
term, is represented by a natural number. Thus, its data type is
defined as natural number (: num) in HOL4. Since the crossover
operators include one-point crossover andmulti-point crossover,
the number of crossover points may be one or more. Therefore,
the data structure of cross-term in HOL4 is defined as natural
number lists (: num list) and represented by l (: num list).
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FIGURE 2 | A structure model of crossover operations.

Higher-Order Logic Representation of
Basic Operations
As described above, the data structure of both chromosomes and
cross-term are defined as lists. By analyzing the list theory base
in HOL4, the operation functions, namely, TAKE, DROP and
APPEND, exactly match the three basic operation functions in
the general model. Therefore, TAKE is used to get the first n genes
of chromosome p, abbreviated as p ↑ n; DROP is used to obtain
the genes after the n-th position of chromosome p, abbreviated
as q ↓ n; APPEND is utilized to connect the two chromosome
fragments p1 and q1 to form a new chromosome, abbreviated as
p1 ++ q1.

The mathematical description of the three basic operations
(TAKE, DROP and APPEND) is presented as follows.

For any p, q ∈ D, let n be the length of p, m the crossover
point, k the length of q, where m, n, k ∈ N. The basic operations
are defined as:

p TAKE m =

{

(p1, · · · , pm) if m < n,
p if m ≥ n.

p DROP m =

{

(pm+1, · · · , pn) if m < n,
[] if m ≥ n.

p APPEND q = (p1, · · · , pn, q1, · · · , qk).

Here, [] denotes an empty list.
Based on the above definitions, the higher-order logic
representations of the three basic operations in HOL4 can
be expressed respectively as follows:

> val TAKE=

[] |− (!l. TAKE 0 l = []) /\
!n x l. TAKE (SUC n) (x::l)= x::TAKE n l: thm
> val DROP=

[] |− (!l. DROP 0 l = l) /\
!n x l. DROP (SUC n) (x::l)= DROP n l: thm
> val APPEND=

[] |− (!l. []++ l = l) /\
!l1 l2 h. h::l1++ l2= h::(l1++ l2): thm

Formal Verification of Basic Operations
In HOL4 library, TAKE and DROP are used to manipulate
the list, and they have two parameters, i.e., natural number
and list. Function TAKE can cut the child list of list before
the natural number, and function DROP can cut the child
list of list after the natural number. In order to prove the
properties of the formalized crossover operators, it is necessary
to prove the properties of TAKE and DROP (Darmochwal and
Nakamura, 1991; Kotowicz, 1993; Uchibori and Endou, 1999;
Vidal et al., 2008; Nawaz et al., 2013). Since the existing properties
of APPEND in HOL4 are sufficient, there is no need for more
proofs. The basic properties of TAKE and DROP are classified as
follows and their mathematical descriptions are given below.

Properties of TAKE: for any p, q ∈ D,m, n ∈ N

∗ [] ↑ n= [] (1)

p ↑ 0 = [] (2)

∗ ((p ↑ m) ↑ n) = (p ↑ MIN(m, n)) (3)

∗ (p ↑ MIN(m, n)) = ((p ↑ n) ↑ m) (4)

∗ ((p ↑ m) ↑ n) = ((p ↑ n) ↑ m) (5)

LENGTH p = LENGTH q ==>

∗ LENGTH (p ↑ n) = LENGTH (q ↑ n)
(6)

LENGTH (p ↑ n) =

MIN(n, ( LENGTH p ))
(7)

((m<= LENGTH p)/\(m<=n)) ==>

∗ (m<= LENGTH (p ↑ n))
(8)

(m<= LENGTH p ) ==>

∗ (m = LENGTH (p ↑ m) )
(9)

( LENGTH p <=n) ==>

((p++q) ↑ n = p++

∗ (q ↑ (n− LENGTH p )))

(10)
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LENGTH (p ↑ n) =

if(n<= LENGTH p )

then n

else (LENGTH p)

(11)

(LENGTH p ) <=n ==> p ↑ n = p (12)

(n<= LENGTH p ) ==>

((p++q) ↑ n = p ↑ n)
(13)

( LENGTH p <n) ==>

((p++q) ↑ n = p++

(q ↑ (n− LENGTH p )))

(14)

( LENGTH p <n) ==>

((p++q) ↑ n = p++

(q ↑ (n− LENGTH p )))

(15)

(m<= LENGTH p) ∧ (n<=m) ==>

(((p ↑ m) ↑ n) =p ↑ n)
(16)

Properties of DROP: for any p, q ∈ D, m, n ∈ N

∗ [] ↓ n= [] (17)

p ↓ 0 =p (18)

p ↓ 0 =q ==> p = q (19)

∗ ((p ↓ m) ↓ n) = (p ↓ (m+n)) (20)

∗ (p ↓ (m+n)) = ((p ↓ n) ↓ m) (21)

∗ ((p ↓ m) ↓ n) = ((p ↓ n) ↓ m) (22)

LENGTH p = LENGTH q ==>

∗ LENGTH (p ↓ n ) = LENGTH (q ↓ n )
(23)

LENGTH (p ↓ n) = (LENGTH p)−n (24)

(LENGTH p ) <=n ==> p ↓ n= [] (25)

(n<= LENGTH p ) ==>

((p++q) ↓ n= (p ↓ n)++q)
(26)

( LENGTH p <=n) ==>

((p++q) ↓ n = q ↓ (n− LENGTH p ))
(27)

((n+m) <= LENGTH p) ==>

(((p ↓ m) ↓ n) =p ↓ (n+m))
(28)

The relation between TAKE and DROP: for any p, q ∈D,m, n ∈N

∗ (p ↑ n) ↓ n= [] (29)

∗ (p ↓ n) ↑ m= (p ↑ (m+n)) ↓ n (30)

∗ (p ↑ n) ↓ m= (p ↓ m) ↑ (n−m) (31)

In the above equations, the properties with ∗ are required to be
proved in this paper, while these properties without ∗ have existed
in HOL4 and need not be proved.

FIGURE 3 | Basic flow chart of crossover operations.

Formal Modeling and Implementation of
Crossover Operations with HOL4
As mentioned above, crossover operations are the process of
generating offspring. In order to establish a formal model of
crossover operation, we first construct the basic implementation
flow of generating offspring based on the general structural
model of crossover operation, as shown in Figure 3.

In Figure 3, p and q are two parent chromosomes; l is the
cross-term that represents the crossover position; l= [s] indicates
that there is only one crossover point s; chromosome p’ is the
offspring chromosome generated.

The basic implementation of crossover operation in Figure 3

can only be used for one-point crossover operator. In order
to apply the formalized crossover operation to other crossover
operators, the crossover process is improved according to the
characteristics of multi-point crossover operators.

In general, the process of multi-point crossover can be
regarded as the repetition of one-point crossover. Therefore,
when the number of crossover points are n (n > 1) in cross-
term l, the operation objects of TAKE andDROP are the offspring
chromosomes generated by n-1 rounds of crossover.

Let CROSSOVER represent a crossover operation.
CROSSOVER crosses the chromosomes p and q in turns
according to the crossover points in cross-term l. According to
the features of the functional language, recursive methods can be
used to achieve the repeated process between one-point crossover
and multi-point crossover. Figure 4 shows the implementation
process of crossover operations.

As shown in Figure 4, CROSSOVER l p q is the offspring
chromosome generated by the crossover operation with two
parent chromosomes p and q. Similarly, CROSSOVER l q p
is another offspring chromosome generated by the crossover
operation with two parent chromosomes q and p. To complete
the gene exchange, a crossover operation uses two basic
operations, namely, TAKE and DROP. The operation object of
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TAKE and DROP also contains the crossover operation itself, so
the whole process contains two recursive lines. Because the two
recursive lines are parallel, the method employed is called double
recursion. According to the execution diagram of the double
recursion, it can be observed that the recursion procedure is to
reduce the size of the cross-term, while the regression process is
to exchange genes at each crossover point in turn.

In Figure 4, the implementation procedure of the crossover
operation can be viewed as a binary tree where the number
of crossover points corresponds to the height of the binary
tree. For the special case in which there is only one crossover
point, the height of the full binary tree is one. Therefore, the
crossover operation with the double recursion method, which
can be used to construct one-point crossover and multi-point
crossover, possesses generality. Moreover, the implementation
process of this crossover operation can also be used to form
other crossover operators such as uniform crossover operators
and partially matched crossover operators.

According to the implementation process of the crossover
operation, the mathematical description of the crossover
operation is given as follows:

CROSSOVER l p q =







p if l = [],
((CROSSOVER t p q) ↑ h) if l = h : :t.
++ ((CROSSOVER t q p) ↓ h)

Based on the above mathematical description, the higher-order
logic implementation of the crossover operation inHOL4 is given
as follows:

> val CROSSOVER_def=
[] |− (!p q. CROSSOVER [] p q= p) /\
!h t p q.
CROSSOVER (h::t) p q=
TAKE h (CROSSOVER t p q)++

DROP h (CROSSOVER t q p): thm

The higher-order logic description of the crossover operation
is an important preliminary work for formalizing crossover
operators. We further describe the one-point crossover operator
and multi-point crossover operator using higher-order logic in
HOL4 and complete the proofs of their relevant properties next.

HIGHER-ORDER LOGIC
REPRESENTATION AND FORMAL
VERIFICATION OF ONE-POINT
CROSSOVER OPERATORS

One-point crossover operator selects two chromosomes in
population D as two parent chromosomes and one random
crossover point, and then exchanges the chromosome segments
at the crossover point to obtain two new offspring chromosomes.

Two parent chromosomes in population D are defined as
follows:

p = p1, p2, ..., pn
q = q1, q2, ..., qn

p and q represent the two parent chromosomes; pi (1≤i≤n) and
qi (1≤i≤n) express the genes that make up the chromosomes.

Choose an random intersection i(1≤i≤n),then generate two
new offspring:

p′ = p1, ..., pi, qi+1, ..., qn
q′ = q1, ..., qi, pi+1, ..., pn

p′ and q′ denote the two offspring; pi (1≤i≤n) and qi (1≤i≤n)
express the genes that make up the chromosomes.

Formalization of One-Point Crossover
Operator in HOL4
From the definition of the one-point crossover operator, it is
known that the one-point crossover operator generates two
chromosomes at the same time, while the crossover operation
can only produce one offspring chromosome every time. Thus,
the implementation of the one-point crossover operator needs
two crossover operations. Since the two offspring are generated
at the same time and their relation is parallel, two-tuples are used
to indicate the relation between two offspring generated in the
mathematical description of the one-point crossover operator as
follows:

⊙ n p q= (CROSSOVER [n] p q,
CROSSOVER [n] q p ).

Symbol ⊙̄ represents an one-point crossover operator;
CROSSOVER denotes the crossover operation; p and q are
two parent chromosomes in population D; [n] is the crossover
term with one crossover point n.

Based on the above mathematical descriptions, the higher-
order logic description of the one-point crossover operator in
HOL4 is as follows:

> val ONEPOINT_CROSSOVER_def=
[] |− !n p q.
ONEPOINT_CROSSOVER n (p,q)=

(CROSSOVER [n] p q, CROSSOVER [n] q p): thm

Verification of One-Point Crossover
Operator
In order to ensure the correctness of one-point crossover
operator, we prove the four basic properties of the one-point
crossover operator in HOL4.

Theorem 1: Given any p, q ∈ D and a random
crossover point n, if LENGTH p = LENGTH q, then
LENGTH (CROSSOVER [n] p q) = LENGTH p. The
higher-order logic description is as follows:

> val OCROSSOVER_LENGTH=

[] |− !n p q.
p IN D /\q IN D /\
(LENGTH p= LENGTH q)==>

(LENGTH (CROSSOVER [n] p q)=
LENGTH p): thm

Theorem 1 ensures that the one-point crossover does not change
the length of chromosome.
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FIGURE 4 | Implementation flow of crossover operations.

Theorem 2: Given any p, q ∈ D, if LENGTH p = LENGTH q,
0 is the crossover point, then CROSSOVER [0] p q = q. The
higher-order logic description is as follows:

> val OCROSSOVER_ZERO=

[] |− !p q.
p IN D /\q IN D
/\(LENGTH p= LENGTH q)==>

(CROSSOVER [0] p q= q): thm

Theorem 2 shows that when crossover point is 0, the offspring
generated by one-point crossover operator are the same as parent
chromosomes, but the order is exchanged, that is, the first
offspring is the second parent and the second child is the first
parent.

Theorem 3: Given any p, q ∈ D, if LENGTH p = LENGTH q,
n is the crossover point andLENGTH p<n, then
CROSSOVER [n] p q = p. The higher-order logic description is
as follows:

> val OCROSSOVER_TOO_LONG=

[] |− !n p q.
p IN D /\q IN D /\
(LENGTH p= LENGTH q) /\
LENGTH p < n==>

(CROSSOVER [n] p q= p): thm

Theorem 3 guarantees that if the position of the crossing point
is larger than the length of chromosome, then the offspring
produced by the one-point crossover operator are the same as
the parent chromosomes.

Theorem 4: Given any p, q ∈ D, if LENGTH p = LENGTH q,
n is the crossover point and LENGTH p = n, then
CROSSOVER [n] p q = p. The higher-order logic description is
as follows:

> val OCROSSOVER_EQ=

[] |− !n p q.
p IN D /\q IN D /\

(LENGTH p= LENGTH q) /\
(n= LENGTH p)==>

(CROSSOVER [n] p q= p): thm

Theorem 4 holds the property that if the position of the
intersection is equal to the length of chromosome, the offspring
generated by the one-point crossover operator are the same as the
parents.

As mentioned above, Theorems 1-4 mainly reflect the relation
between the positions of crossover points and the results
produced by the one-point crossover operator. In addition, the
formalization of the one-point crossover operator provides a
good foundation for our analysis and design of formalization of
the multi-point crossover operator.
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HIGHER-ORDER LOGIC
REPRESENTATION AND FORMAL
VERIFICATION OF MULTI-POINT
CROSSOVER OPERATORS

With a multi-point crossover operator, two chromosomes in
population D are selected as two parent chromosomes, and with
n crossover points, we exchange the chromosome segments to
eventually obtain two new offspring chromosomes.

Two parent chromosomes in population D are:

p = p1, p2, ..., pn
q = q1, q2, ..., qn

p and q represent the two parent chromosomes; pi (1≤i≤n) and
qi (1≤i≤n) represent the genes that make up the chromosomes.

By randomly selecting n crossover points: i, j, k,. . . ., the
offspring produced can be represented as follows:

p′ = p1, ..., pi, qi+1, ..., qj, pj+1, ..., pk, qk+1...
q′ = q1, ..., qi, pi+1, ..., pj, qj+1, ..., qk, pk+1...

Here, p′ and q′ denote the two offspring; pi (1≤i≤n).

Formalization of Multi-Point Crossover
Operator in HOL4
From the definition of the multi-point crossover operator, we
can see that the multi-point crossover operator is similar to the
one-point crossover operator. In both cases, progeny is generated
in parallel. The difference is the number of crossover points.
Therefore, the creation of multi-point crossover also needs two
crossover operations. However, the cross-term denoted by l is
an arrangement of multiple crossover points rather than only
one point. When describing the multi-point crossover with
mathematical methods, we still use two-tuples to represent the
parallel relation between two offspring.

Therefore, the mathematical description of the multi-point
crossover operator obtained is as follows:

⊗ l (p,q) = (CROSSOVER l p q , CROSSOVER l q p).

Symbol ⊗ represents multi-point crossover operator;
CROSSOVER denotes crossover operation; p and q are two
parent chromosomes in population D; l is the cross-term with
multiple crossover points.

Based on the above mathematical description, a multi-point
crossover operator in HOL4 can be denoted as follows:

> val MULTIPOINT_CROSSOVER_def=
[] |− !l p q.
MULTIPOINT_CROSSOVER l (p,q)=
(CROSSOVER l p q, CROSSOVER l q p): thm

Verification of Multi-Point Crossover
Operator
To ensure that the higher-order logic representation of a multi-
point crossover operator is correct, its propertiesmust be verified.

In the following, Theorems 6 and 7 describe the relation between
the crossover point and offspring generated by the multi-point
crossover operator; Theorems 8-9 and Theorems 14-16 mainly
show that the results produced by the multi-point crossover
operator are independent of the arrangement of cross-term;
Theorem 10 guarantees that the elimination of two identical
elements in a cross-term does not affect the results obtained by
the multi-point crossover operator.

Theorem 5: Given any p, q ∈ D, any cross-
term l, if LENGTH p = LENGTH q, then
LENGTH( CROSSOVER l p q) =LENGTH p. The higher-order
logic description is as follows:

> val XCROSSOVER_LENGTH=

[]|− !l p q.
p IN D /\q IN D /\

(LENGTH p= LENGTH q)==>

(LENGTH (CROSSOVER l p q)= LENGTH p): thm

Theorem 5 ensures that the length of new chromosomes
generated by the multi-point crossover is equal to the length of
two parent chromosomes p and q.

Theorem 6: Given any p, q ∈ D, any cross-term l, if
LENGTH p = LENGTH q, then CROSSOVER (0 : :l) p q =

CROSSOVER l q p. The higher-order logic description is as
follows:

> val XCROSSOVER_ZERO_APPEND=

[] |− !p q l.
p IN D /\q IN D==>

(CROSSOVER (0::l) p q= CROSSOVER l q p): thm

Theorem 6 shows that in the case of the same chromosomes p
and q, adding a crossover point 0 at the beginning of the cross-
term l does not change the progeny generated by the multi-point
crossover.

Theorem 7: Given any p, q ∈ D, any cross-term l,
if LENGTH p = LENGTH q and LENGTH p ≤ n, then
CROSSOVER (n::l) p q = CROSSOVER l p q. The higher-order
logic description is as follows:

> val XCROSSOVER_TOO_LENGTH=

[] |− !p q n l.
p IN D /\q IN D /\

(LENGTH p= LENGTH q) /\LENGTH p <= n==>

(CROSSOVER (n::l) p q= CROSSOVER l p q): thm

Theorem 7 guarantees that in the case of the same parent
chromosomes p and q, when n is not less than the length of
chromosome, adding a crossover point n at the beginning of
the cross-term l does not change the progeny generated by
multi-point crossover.

Theorem 8: Given any p, q ∈ D, any cross-
term l, l1, l2, if LENGTH p = ccLENGTH q and
CROSSOVER l1 p q = CROSSOVER l2 p q, then
CROSSOVER (l++l1) p q = CROSSOVER (l++l2) p q .
The higher-order logic description is as follows:

> val XCROSSOVER_EQ=

[]|− !l1 l2.
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(!p q.p IN D /\q IN D /\
(LENGTH p= LENGTH q) /\

(CROSSOVER l1 p q= CROSSOVER l2 p q))==>

!p q l. CROSSOVER (l ++ l1) p q=
CROSSOVER (l ++ l2) p q: thm

Theorem 8 shows that in the case of the same parent
chromosomes p and q, if the offspring generated by the multi-
point crossover with cross-term l1 are equal to the offspring
produced by the multi-point crossover with cross-term l2, adding
cross-term l at the beginning of the cross-term l1 and l2
respectively does not change the equivalency of the progeny
generated in the same way.

Theorem 9: Given any p, q ∈ D, any cross-term
l, any m, n ∈ N, if LENGTH p = LENGTH q, then
CROSSOVER (n : :(m : :l)) p q = CROSSOVER (m : :(n : :l)) p q.
The higher-order logic description is as follows:

> val XCROSSOVER_SWAP=

[] |− !p q l m n.
p IN D /\q IN D /\

(LENGTH p= LENGTH q)==>

(CROSSOVER (n::m::l) p q=
CROSSOVER (m::n::l) p q): thm

Theorem 9 holds the property that in the case of the same parent
chromosomes p and q, two crossover points with different order
are added respectively at the beginning of cross-term l, then the
progeny produced by the multi-point crossover with the new two
cross-terms respectively are the same.

Theorem 10: Given any p, q ∈ D, any cross-
term l, any n ∈ N, if LENGTH p = LENGTH q, then
CROSSOVER (n : :(n : :l)) p q = CROSSOVER l p q. The
higher-order logic description is as follows:

> val XCROSSOVER_SAME=

[] |− !p q l n.
p IN D /\q IN D /\
(LENGTH p= LENGTH q)==>

(CROSSOVER (n::n::l) p q= CROSSOVER l p q): thm

Theorem 10 guarantees that in the case of the same parent
chromosomes p and q, if we add two identical crossover points
at the beginning of the cross-term l to obtain a new cross-term,
the offspring generated by multi-point crossover operator with
the new cross-term are the equal to those generated with cross-
term l. In other words, the elimination of two identical elements
in cross-term does not affect the results generated by multi-point
crossover.

From Theorems 8–10, we can see that the results produced by
the multi-point crossover operator used in genetic algorithms are
related to the position of crossover points, and independent of
the order of crossover points.

To demonstrate that the results generated by the multi-
point crossover are not affected by the order of cross-
term, the concept of strictly increasing list is used to verify
the properties of the crossover operator. Strictly increasing
list means that the elements in the list are in ascending
order, and two identical elements are eliminated in the

list. If cross-term l’ is the strictly increasing list of cross-
term l, the property that progeny generated by the multi-
point crossover operator are not affected by the order of
cross-term, can be expressed as: CROSSOVER l p q =

CROSSOVER l′ p q.
In order to get the strictly increasing list of any list in

HOL4, it is necessary to define two predicates INSERT_PL and
CANON_PL. Given a strictly increasing list l and a natural
number n, when n is not in list 1, predicate INSERT_PL can
produce a new strictly increasing list with element n; otherwise
it gets a new list that has the eliminated element n. The function
of predicate CANON_PL is to get the strictly increasing list l’ of
any given list l.

The higher-order logic presentations of predicate INSERT_PL
and predicate CANON_PL are expressed as follows:

> val INSERT_PL=

[] |− (!n. INSERT_PL n []= [n]) /\
!n h t.

INSERT_PL n (h::t)=
if n < h then n::h::t else if n= h
then t else h::INSERT_PL n t: thm

> val CANON_PL=

[] |− (CANON_PL []= []) /\
!h t. CANON_PL (h::t)=

INSERT_PL h (CANON_PL t): thm

To ensure that the definitions of the two predicates are correct,
we need to prove the properties of the strictly increasing list.
The property of the strictly increasing list can be described as
“any element in a strictly increasing list is smaller than the next
element”. Predicate INCREASE_PRO is used to represent this
property in HOL4, and its higher-order logic description is as
follows:

> val INCREASE_PRO=

[] |- (INCREASE_PRO [] <=> T) /\
!t1 h1. INCREASE_PRO (h1::t1) <=>

case t1 of []=> T |h2::t2=>

h1 < h2 /\INCREASE_PRO (h2::t2): thm

In addition, it is also required to prove the following properties
of the strictly increasing list:

Theorem 11: Given any cross-term l, any m, n ∈ N, if

INCREASE_PRO(n : :l) andm<n, then INCREASE_PRO(m : :l).
The higher-order logic description is as follows:

> val LIST_INCREASE_ONE=

[] |− !l m n. INCREASE_PRO (n::l) /\
m < n==> INCREASE_PRO (m::l): thm

Theorem 11 shows that if adding a natural number n at the
beginning of list l possesses the strictly increasing property, then

adding a natural numberm that is smaller than n at the beginning

of list l can still get a new strictly increasing list.
Theorem 12: Given any cross-term l, any n ∈ N,

if INCREASE_PRO l, then INSERT_PL n l still meets
INCREASE_PRO(INSERT_PL n l). The higher-order logic
description is as follows:
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> val LIST_INCREASE_INSERT=

[] |- !l n. INCREASE_PRO l ==>

INCREASE_PRO (INSERT_PL n l): thm

Theorem 12 ensures that if l is a strictly increasing list and a
natural number n is inserted into list 1 by predicate INSERT_PL,
then the new list obtained is still a strictly increasing list.

In order to prove the theorem 13, we need to give the following
lemma:

Lemma 1: Given any cross-term l, any m, n ∈ N, if
INCREASE_PRO(m : :n : :l), thenm<n and INCREASE_PRO(n :

:l). The higher-order logic description is as follows:

> val LIST_INCREASE_IMP=

[] |− !l m n. INCREASE_PRO (m::n::l)==>

m < n /\INCREASE_PRO (n::l): thm

Lemma 1 shows that if (m : :n : :l) is a strictly increasing list, then
(n : :l) is a strictly increasing list andm < n.

Theorem 13: Given any cross-term l, if INCREASE_PRO l,
then CANON_PL l = l. The higher-order logic description is as
follows:

> val LIST_INCREASE_CANON= [] |−
!l. INCREASE_PRO l ==> (CANON_PL l = l): thm

Theorem 13 illustrates that if the arrangement of a list is strictly
incremental, then the list is a strictly increasing list.

The proofs of Theorems 11–13 ensure the correctness of the
strictly increasing list defined in HOL4. By using the definition of
strictly increasing list, the following properties of the multi-point
crossover operator can be further proved.

Theorem 14: Given any p, q ∈ D, any cross-term l. l′ is the
strictly increasing list of l, if LENGTH p = LENGTH q, then
CROSSOVER l p q = CROSSOVERl′ p q. The higher-order logic
description is as follows:

> val CANON_XCROSSOVER_EQ=

[] |− !p q l n.
p IN D /\q IN D /\
(LENGTH p= LENGTH q)==>

(CROSSOVER (CANON l) p q=
CROSSOVER l p q): thm

Theorem 14 guarantees that in the case of the same parent
chromosomes p and q, the progeny generated by multi-point
crossover with cross-term l are equal to the ones produced in
the same way with the strictly increasing list of l. It is also more
straightforward to illustrate that the results of the multi-point
crossover are independent of the order of the elements in the
cross-term.

Theorem 15: Given any p, q ∈ D, any
cross-term l. l′ is the strictly increasing list of
l, any n ∈ N. if LENGTH p = LENGTH q, then
CROSSOVER (INSERT_PL n l′) p q = CROSSOVER (n : :l) p q.
The higher-order logic description is as follows:

> val LINCREASE_XCROSSOVER_N=

[] |− !p q l n.
p IN D /\q IN D /\

(LENGTH p= LENGTH q)==>

(CROSSOVER (INSERT_PL n l) p q=
CROSSOVER (n::l) p q): thm

Theorem 15 shows that in the case of the same parent
chromosomes p and q, if the crossover point n is inserted into
cross-term l and l’ respectively, where l’ is the strictly increasing
list of l, then the results obtained by the multi-point crossover
under these two new cross-terms are the same.

Theorem 16: Given any p, q ∈ D, any
cross-term l1, l2, if LENGTH p = LENGTH q
and (CANON_PL l1) = (CANON_PL l2), then
CROSSOVER l1 p q = CROSSOVER l2 p q. The higher-order
logic description is as follows:

> val CANON_XCROSSOVER_DEQ=

[] |− !p q l1 l2.
p IN D /\q IN D /\
(LENGTH p= LENGTH q) /\
(CANON_PL l1= CANON_PL l2)==>

(CROSSOVER l1 p q= CROSSOVER l2 p q): thm

Theorem 16 ensures that in the case of the same parent
chromosomes p and q, if the strictly increasing list of different
cross-terms are the same, then the offspring respectively
produced by the multi-point crossover under the different cross-
terms are the same.

DISCUSSION

As shown above, one-point and multi-point crossover operators
are formalized and verified. The proposed technique is general
and can applied in formalizing and verifying other genetic
operators in genetic algorithms such as mutation. Mutation
is another genetic operator that can preserve genetic diversity
in such a way local minima caused by similar populations of
chromosomes can be avoided. With mutation, one or more gene
values in a chromosome can be changed from its initial state so
a better solution may be achieved. To implement mutation, a
common method is to generate a random variable for each bit
in a chromosome sequence that is used to determine whether or
not a particular bit will be amended. To realize the formalization
and verification of mutation operations, first, we need to use
the higher-order logic to represent basic elements, and then we
can construct the formal modeling and perform verification with
HOL4. This will be investigated in our future work.

EVALUATION

Experimental Setup
We conduct the experiment in Windows 7 with the specific tool
HOL4, and the programing language is ML. In the experiment,
robot path planning based on GA is described by ML, and
the cross operation in algorithm is described by multi-point
crossover mentioned in this paper. We proved the effectiveness
of our formal model of crossover by running the algorithm in
HOL4 successfully. In addition, we do not need to specify the
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inputs because of the advantage of theorem proving, and HOL4
will exhaust all the cases space, i.e., covering all inputs. The final
output will show that robot can avoid collisions in any input
situation.

Case Study on Robotics
Genetic Algorithms have many advantages compared with
traditional optimization methods. In this section, we present a
case study on robotics, in which a genetic algorithm with the
two-point crossover operator implemented by HOL4 is applied
in robot path planning. We give the specific formal description
and collision free verification.

The workspace of the robot is a 2-D environment. We assume
that the location and size of obstacles are known, and the
obstacles will stay the same during the movement of robot. The
robot working space is modeled with grids following Cartesian
coordinates. As shown in Figure 5, the lower left corner of the
grid array is the coordinate origin, the right direction of the
horizontal axis is the forward direction of x axis, and the up
direction of the vertical axis is the forward direction of y axis.
Each grid interval corresponds to a unit length on the coordinate
axis, and any grid can be uniquely identified by (x, y). The length
and width of a grid is defined as 10 units of distance, S represents
the starting point of the robot, G represents the target point of
the robot, and black grids are used to represent obstacles.

The moving path of the robot is represented by the
chromosome. We defined the chromosome through a real list,
where the subscript of the list represents the value of the
coordinate x, and the gene is the value of the list, which represents
the value of the coordinate y. The population is composed of
a certain number of chromosomes, and its size is 20. In order
to guarantee the global optimality of the genetic algorithm, the
initial population is randomly generated.

The fitness function directly affects the computation efficiency
and time of the genetic algorithm. In the path planning of the
robot, the design of the fitness function needs to consider the
length of the path and collision avoidance. Therefore, the fitness
function is set to the sum of the path length and the obstacles’
coordinates. It is represented as:

L = L1+ L2 =

N
∑

i=1

√

(yi+1 − yi)2 + 1+ A

m
∑

j=1

(xj + yj)

Here, L1 represents the distance between two adjacent coordinate
points, and L2 represents the obstacle coordinates. When i = xj
and yi = yj, A is 100; otherwise A is 0. N = 10 indicates that the
space coordinate has 10 unit lengths,m represents the number of
obstacles. In this way, the fitness function is very large when there
are obstacles in the path. In order to simplify the calculation in
HOL4, we modified the function as follows:

L′ =

N
∑

i=1

(yi+1 − yi)
2 + 10+ A

m
∑

j=1

(xj + yj)

In this function, L1 represents the sum of squares of the distance
between two points. Although we modified the calculated way of

FIGURE 5 | Schematic diagram of the robot motion space.

L1, it does not affect the comparative relationship between the
length of the path of two chromosomes. Thus, the new fitness
function can also be used to evaluate the optimal path in the path
planning. According to the property of the shortest path, we can
see that the lower the fitness value of the chromosome is, the
better the path will become.

In this genetic algorithm, we use three basic genetic operators:
selection, crossover, and mutation. In the selection operator, we
use ranking selection, by which each individual in the population
is ranked from low to high according to the fitness, the selected
probability of the forward 80% individuals in the population is
6.25%, and the remaining 20% is 0. In the crossover operator, we
use the two-point crossover operator, the crossover probability
is 0.9, and the two intersections are generated randomly. In
the mutation operator, we use the basic bit mutation, the
mutation probability is 0.08, and themutation position is selected
randomly.

Next, we present how to define each operators using HOL4.
The selection operator is defined as follows:

val Pi = FST (List.nth (QuickresultList, hd
Random.rangelist(0,16) (1,Random.newgen())))

QuickresultList preserves the chromosome and its fitness
value according to fitness value from low to high. hd
Random.rangelist(0,16) (1,Random.newgen()) indicates the
selected chromosome subscript with equal probability. FST
deletes the selected fitness value of the chromosome and returns
the selected chromosome to the chromosome Pi◦

The crossover operator is defined as follows:

fun TWOIPOINT_CROSSOVER l (p,q) = (CROSSOVER l p
q,CROSSOVER l q p)

TWOIPOINT_CROSSOVER is the formalized crossover
operator, CROSSOVER is the formalized crossover operation.
With the two-point crossover, TWOIPOINT_CROSSOVER l
(p,q) will transfer a cross-term l to two crossover points.
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The mutation operator is defined as follows:

fun BMUTATION (pih::pil) point = List.take ((pih::pil),point-
1) @ ((Random.rangelist(1,11)(1,Random.newgen()) @
List.drop ((pih::pil),point)))

BMUTATION represents the mutation operator, pih::pil
is the chromosomes to be mutated, point indicates the
mutation point randomly produced. List.take ((pih::pil),
point-1) obtains the genes before the mutation point,
Random.rangelist(1,11)(1,Random.newgen()) can select the
allele gene by equal probability at the mutation position,
List.drop ((pih::pil),point) obtains the genes after the mutation
point, @ is used to connect the gene segments obtained by the
three functions after the mutation.

With the genetic algorithm, we can obtain the optimization
collision free path. In order to ensure that the genetic algorithm
can find the final path and meet the collision free conditions, we
need verify the final path. In this paper, the array of coordinate
points of the final path represented by the list. If one of the
elements in the list is equal to the coordinate of the obstacle, the
final path does not meet the property of collision free.

The verification result is shown as follow:

val BP = INTER ([(1,2),(2,4),(3,6),(4,7),(5,8),(6,8),(7,9),(8,9),
(9,9),(10,10)],
[(5,7),(7,8),(8,8),(9,8)]);
> val BP = []: int list

Among them, INNER refers to the formal description of the
property of collision free is shown below:

val BP= INTER (PATH, O);

It is used to determine whether the two lists have the same
elements. If there is no such elements, it outputs the empty
list; otherwise, it generates the new list of the same elements.
PATH is the list of the final robot path generated by the
genetic algorithm, PATH=[(x1,y1),. . . ,(x10,y10)], (xi,yi)(1≤i≤10)
indicates the coordinates of the final path. O is the list of
the Coordinates of the obstacles,O=[(xO1,yO1),. . . (xOm,yOm)],
(xOi,yOi)(1≤i≤m) indicates the Coordinates of the obstacles,
andm represents the number of the obstacles.

The BP is final result. It is an empty list, illustrating the optimal
or near optimal path generated by the genetic algorithm has no
common elements with the obstacles. Thus, the final path meets
the collision free condition.

CONCLUSION

In this paper, we formalized crossover operations with
higher-order logic based on HOL4 that is easy to be
deployed with its user-friendly programing environment.
We implemented our technique to solve a path planning
problem using a genetic algorithm with our formalized crossover
operations, and the results show the effectiveness of our
technique.

There are two directions for the future work. First, it is
interesting to extend formalized crossover operations to other

applications such as energy optimization for embedded systems
(Wang et al., 2011) and non-volatile memory (Chen et al.,
2016; Long et al., 2016; Wang et al., 2016; Liu et al., 2017),
and construct a crossover operator library in HOL4. Moreover,
we can further formalize genetic algorithms using formalized
crossover operators. Based on this, the formalized genetic
algorithm can be used to create the general tactics in HOL4,
thus improving the automation level of the interactive theorem
proving system.
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