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Designed to work safely alongside humans, collaborative robots need to be capable

partners in human-robot teams. Besides having key capabilities like detecting gestures,

recognizing objects, grasping them, and handing them over, these robots need to

seamlessly adapt their behavior for efficient human-robot collaboration. In this context we

present the fast, supervised Proactive Incremental Learning (PIL) framework for learning

associations between human hand gestures and the intended robotic manipulation

actions. With the proactive aspect, the robot is competent to predict the human’s intent

and perform an action without waiting for an instruction. The incremental aspect enables

the robot to learn associations on the fly while performing a task. It is a probabilistic,

statistically-driven approach. As a proof of concept, we focus on a table assembly

task where the robot assists its human partner. We investigate how the accuracy of

gesture detection affects the number of interactions required to complete the task. We

also conducted a human-robot interaction study with non-roboticist users comparing a

proactive with a reactive robot that waits for instructions.

Keywords: human-robot collaboration, proactive learning, gesture understanding, intention prediction, user study

1. INTRODUCTION

Human teams are exceptionally good at conducting collaborative tasks, from apparently trivial
tasks like moving furniture to complex tasks like playing a symphony. Humans can communicate
task-relevant information by verbal as well as nonverbal channels such as gestures. Presumably this
is one of the reasons why working in teams is seen to be beneficial. Humans can also predict the
intent of the partner by observing the current state of a task. We need collaborative robots with
suchlike capabilities for effective human-robot teams.

Thanks to advances in the field of robot control and computer vision, it has been possible to
develop frameworks for human-robot teams to perform collaborative tasks. Consider a domestic
scenario like table assembly as illustrated in Figure 1. The overall task is composed of sub-tasks like
detecting a gesture, identifying the targeted object, grasping the object, handing the object to the
user, or placing the object within reach of the user.

In such tasks, different users will have different preferences for the sequence of actions
expected from the robot. Certainly, a robot taking these preferences into account and having an
operational flexibility would be favored for natural human-robot interaction (HRI). We go one
step further and endow the robot with proactive behavior—to predict the intent of the user and
act accordingly–based on observing the past and the current state of the task. To establish a robot
system with these abilities we present the fast, supervised Proactive Incremental Learning (PIL)
framework. This work expands upon our previous version of the framework (Shukla et al, 2017a).
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FIGURE 1 | Robin (our robot) assists the user in the assembly of a table. The user performs gestures like pointing and give me to which Robin reacts by grasping the

object and handing it over, respectively.

The PIL framework is designed to learn the associations
between human hand gestures and the robot’s manipulation
actions. The robot can perform a manipulation action given that
it is aware of three main attributes: the state of the human, the
state of the objects to manipulate, and its own state. The state of
the human is the instruction command given by the user; here,
it is a static hand gesture performed by the user. The state of
an object is given by whether it is in the robot’s hand or not.
The robot’s own state is given by the manipulation action it just
finished performing. These attributes together define the state of
the system. The next manipulation action which the robot will
perform is selected based on the probability of an action given
the state of the system.

1.1. Motivation and Contribution
Our framework is motivated by joint intention theory for
sequential actions, proposed by Cohen and Levesque (1991)
to design a collaborative framework. One of the ways the
authors describe collaboration is the joint stepwise execution,
where a team intends to do a sequential action by having a
mutual belief about the state of the goal at each step thereafter
embarking on the remainder of a task. Interesting works (Chao
et al., 2010; Myagmarjav and Sridharan, 2015; Cruz et al., 2016)
have shown how a human or an oracle can teach a robot the
associations between instructions and actions. However, these
frameworks include a prior training phase as part of the pipeline
to perform a task. On the other hand, the PIL framework is free
of prior learning of the associations. Rather, the gesture-action
associations are learnt incrementally on the fly, an advantage in
terms of total interaction time. In our previous work (Shukla
et al, 2017b) we showed benefits of proactive learning over a
pre-trained system in overall interaction time.

The PIL framework is a probabilistic, statistically driven
approach. It comprises of two main aspects:

(1) Its proactive nature enables the robot to predict the intent
of the user. The proactive behavior becomes active once the
associations begin to consolidate, i.e., after some number of
interactions. Consequently, based on the learnt probabilities
of the gesture-action associations, the robot can decide on
the most likely action.

(2) Its incremental learning paradigm gives the user the freedom
to establish gesture-action associations at will. Training and

testing are not two distinct phases in the PIL framework.
Instead, both are active till the system reaches the goal.
Additionally, the PIL framework comprises of an action
anticipation module that enables the robot to anticipate its
next action. The action anticipation module is active when
the gesture-action associations are not known.

We use the gaze of the robot to establish common ground
between the robot and the user. Since our robot cannot speak
and does not use a screen to communicate its intentions, it uses
its head (or gaze) to complete the communication cycle. Studies
have shown how gaze can serve to indicate the readiness of the
robot (Bee et al., 2009) or to signal planned actions followed by an
action (Huang et al., 2015). In the work by Fischer et al. (2015),
the authors explore the effects of social gaze in a collaborative
toolbox assembly scenario with naive users. Their analyses show
that a robot with active gaze engages people faster compared to
the one without it. Our framework incorporates gaze in ways
found to be effective in these studies. We use the gaze of the
robot for two main purposes, (1) to establish mutual belief, i.e.,
to indicate to the user the action it is about to take, and (2) to
indicate when it is ready for the next instruction. For example,
the robot will look at its hand if it is going to either close it or
open it, or it will look at the object if it is going to reach for it.

The human hand is naturally deformable and varies in
shape, size, and color, which makes hand pose estimation a
challenging field of research. The table assembly task in this
work takes place in close proximity; therefore it is likely that
the robot (due to a limited field of view) can only see the
user’s hand. Thus it becomes irrelevant to observe full-body
gestures. Owing to these reasons, we restrict ourselves to use
static hand gestures from the Innsbruck Multi-view Hand
Gestures (IMHG) dataset1 (Shukla et al., 2016) to instruct the
robot. They were designed based on our previous HRI study
(Jensen et al., 2015) conducted with participants having no
experience in interacting with the robot. They are closely related
to the semantic content of verbal language. These gestures can
be categorized based on Quek (1995)’s taxonomy as shown
in Figure 2.

Furthermore, hand gestures inherently provide spatial
information of the user’s hand (Shukla et al., 2015). Gesture

1https://iis.uibk.ac.at/datasets/imhg
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FIGURE 2 | Taxonomy of hand gestures of the IMHG dataset.

detection systems are prone to misclassification due to various
factors including lighting conditions, gesture appearance
ambiguities, etc. The PIL framework enables the robot to
proactively correct misclassified gestures. We simulated
a HRI scenario of assembling a table to study the effect
of the accuracy of gesture detection in performing the
assembly.

To present realistic findings of the PIL framework, we
conducted a human-robot interaction study in the real robot
environment with non-roboticist participants. The HRI scenario
designed for the study is as shown in Figure 1, where the user
has to assemble a table and the robot’s role is to assist the
user. Two robot behaviors were implemented on the real robot,
reactive and proactive. In the reactive behavior, the robot learns
associations incrementally but it cannot predict the user’s intent.
It always waits for an instruction from the user before taking any
action. In the proactive behavior, the robot behaves using the PIL
framework.

In summary, the contributions of this paper are

1. the PIL framework with a novel probabilistic action
anticipation module,

2. the study of the effect of the rate of gesture detection on the
overall interaction, and

3. a human-robot interaction study with naive users comparing
reactive and proactive behaviors of the robot.

1.2. Related Work
In the field of human-robot collaboration, numerous studies
(Bandera et al., 2012; Rozo et al., 2016) demonstrated
the advantage of active, human-in-the-loop interaction. The
framework proposed by Lenz et al. (2008) allows the joint
action of humans and robots for an assembly task. Their
system can anticipate human behavior based on the learnt
sequence, ensuring smooth collaboration. An active-learning

architecture proposed by Myagmarjav and Sridharan (2015)
can be trained with limited knowledge of the task. It enables
the robot to ask task-relevant questions to acquire information
from the user. The work by Chao et al. (2010) belongs to
the same category. Nevertheless, a pertinent difference with
these methods is that PIL does not require an explicit training
phase.

Based on Q-learning (Watkins and Dayan, 1992), Thomaz
and Breazeal (2006) introduced the Interactive Reinforcement
Learning (IRL) method. In this approach, the user is able to
provide positive and negative rewards during training in response
to the robot’s manipulation action. The authors demonstrated
that human-generated reward can be fast compared to classical
reinforcement learning. Along these lines, in the work by Suay
and Chernova (2011) the user provides guidance signals to
constrain the robot’s exploration toward a limited set of actions.
Here, the user provides feedback for every action. Najar et al.
(2016) proposed a similar IRL method to learn the meaning of
the guidance signals by using evaluative feedback instead of task
rewards. Recent work by Rozo et al. (2016) is built on the same
concepts. In contrast to our approach, the IRL methods do not
incorporate proactive robot behavior.

Our framework is along the lines of the work discussed
below in the sense that it provides the robot with proactive
behavior in a collaboration task. Huang and Mutlu (2016)
presented an anticipatory control method that enables the
robot to proactively perform a pick-and-place task based on
anticipated actions of their human partners. Their anticipation
module is trained using eye-tracking glasses which track the
gaze of the user. The authors showed that anticipatory control
responded to the user significantly faster than a reactive control
method that does not anticipate the user’s intent. Hawkins
et al. (2014) constructed a probabilistic graphical model to
anticipate human action. In their work, users wore brightly-
colored surgical gloves while giving instructions to the robot.
Caccavale and Finzi (2017)’s attentional behavior-based system
uses a hierarchical architecture. It recognizes human activities
and intentions in a simulated environment to pick and place
objects. All three approaches require prior learning of the task to
model the anticipatory behavior. Contrary to these approaches,
we use hand gestures which are a natural, unencumbered, non-
contact, and prop-free mode of interaction in the real robot
environment.

In our previous implementation of the framework (Shukla
et al, 2017a), the robot randomly performed an action if the
association between the state of the system and the action
was unknown. After each action the robot receives feedback
(positive or negative) from the user. If the action was given a
negative feedback then it randomly chooses another action. One
contribution of this work is a probabilistic action anticipation
module that ranks candidate actions. The rank of an action is
decided based on the probability of the action given the three
attributes of the state of the system. Details of action anticipation
module are discussed in section 3.2. The action anticipation
module helps to sort the sequence of the manipulation actions
instead of choosing them randomly, therefore speeding-up the
task.

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2018 | Volume 12 | Article 7

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Shukla et al. Learning Semantics of Gestural Instruction

2. HUMAN-ROBOT COLLABORATION
SCENARIO

2.1. Human Gestures and Robot Actions
The HRI scenario is set up with “Robin” (our robot)—an
anthropomorphic configuration of two KUKA light-weight robot
arms, two Schunk SDH-2 hands, and a KIT robotic head (Asfour
et al., 2008)—in a simulated and a real environment. Only the
left arm of Robin is active during the task. To simulate the HRI
environment we use the V-REP robot simulator2. We use the
KOMO motion planner (Toussaint, 2014) to plan and execute
robot arm movements. The simulation and the motion planner
are illustrated in Figure 3. The goal of the robot is to assist its
human partner by delivering legs of the table.

Let G = {pointing,give me,grasp, release} be the set of
four instructional gestures performed by the user. The intended
semantics of these gestures are as follows: pointing indicates
an object or a position in the workspace, give me means to
bring the object toward the user, grasp means to close its hand,
releasemeans to open its hand. Nonetheless, the PIL framework
provides the flexibility to learn these semantics as per the user’s
choice. Since Robin learns the associations based on the user’s
feedback, let F = {ok, ¬ok} be the set of known feedback signals.
The signals ok, ¬ok are given by performing thumb up and
thumb down gestures, respectively. The HRI study by Jensen
et al. (2015) shows that for an appropriate robot action often no
feedback or rarely positive feedback is given. On the other hand,
users consistently gave negative feedback for unexpected actions.
Therefore, in addition to thumb up, we also consider no feedback
as ok. The appearances of gestures in G and in F are known
to Robin’s gesture detection system prior to the task, however
not their meanings. We use our probabilistic appearance-based
pose estimation (PAPE) method (Erkent et al., 2016; Shukla
et al., 2016) to detect hand gestures. It is based on probabilistic
representations of objects and scenes by Teney and Piater (2014).

Let A = {open, close,object,human, location} be the
set of five actions available to Robin: open is to open its
own hand, close is to close its own hand, object is to
move its hand above a given object, human is to move its
hand toward the user, and location is to move its hand to a
given location indicated by the user in the workspace. In our
previous work (Shukla et al, 2017a) we discussed benefits of
the robot’s gaze; therefore all actions in A are preceded by a
directed gaze. Let E = {hand,object,palm,position, face}
be the set of five gaze directions. Robin uses the first four
gaze directions to communicate to the user the action it is
going to perform next. Gaze directed at its own hand indicates
that action open or close will be performed next. It will
direct its gaze at the object to indicate action object. Robin
will gaze position to indicate location, whereas gazing at the
user’s give me gesture is represented by palm. Lastly, Robin
can look at the user’s face indicating that it is ready for the
next gesture. These associations between gaze directions in E
and the actions in A are known to the user prior to the
task.

2http://www.coppeliarobotics.com/

FIGURE 3 | (Top) Simulated scene of Robin in V-REP; (Bottom) KOMO

motion planner to plan and execute manipulation actions.

The state of the object to be manipulated mainly depends on
the state of Robin’s hand. The two states of its hand representing
whether or not it is currently holding an object are defined by the
set H = {occupied, free}.

2.2. Task Execution
The state s of the system consists of three attributes at any time
step t. It is defined as st = 〈gt , at , ht〉, where gt ∈ G is the
gesture detected by the robot, at ∈ A is the action the robot
performed at step t, and ht ∈ H is the state of the robot’s hand.
Let R = {gt , at , ht} be the set of these attributes. At each step t
of the assembly, the robot records three entities, the state st of
the system, the action at+1 ∈ A the robot will perform next, and
the feedback signal ft+1 ∈ F given by the human partner after
the action. As mentioned earlier, each action at+1 is preceded by
a gaze movement et+1 ∈ E. The predicted gesture is given by
gt+1 ∈ G.

Consider the sequence of septuples as shown in Table 1,
describing handover of four legs of the table. Each block
delimited by dotted lines is one gesture-action association (e.g.,
steps 1–4), and each block delimited by solid lines is one
handover (e.g., steps 1–10). Since e = 〈face〉 is not associated
with any action in A, it is excluded from the sequence of
interactions in Table 1. However, Robin looks at the user’s face
after action at+1. For the purpose of explanation let us consider
that gestures are detected accurately. Initially, Robin is at a home
position with its hand open, and the four legs of the table are kept
within its reachable workspace.
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TABLE 1 | An example trace of the interactions leading to four handovers while learning gesture-action associations.

t gt at ht et+1 ft+1 at+1 gt+1

1 pointing open free position ¬ok location

2 open free palm ¬ok human

3 open free hand ¬ok close

4 open free object ok object
.................................................................................................................................................................................................................................................

5 grasp object free palm ¬ok human

6 object free position ¬ok location

7 object free hand ok close
.................................................................................................................................................................................................................................................

8 give me close occupied palm ok human
.................................................................................................................................................................................................................................................

9 release human occupied position ¬ok location

10 human occupied hand ok open

11 pointing open free object ok object grasp
.................................................................................................................................................................................................................................................

12 grasp object free hand ok close give me
.................................................................................................................................................................................................................................................

13 pointing close occupied palm ¬ok human

14 close occupied object ¬ok object

15 close occupied hand ¬ok open

16 close occupied position ok location
.................................................................................................................................................................................................................................................

17 release location occupied hand ok open

palm human

object object

18 pointing open free object ok object grasp
.................................................................................................................................................................................................................................................

19 pointing object free object ok object

hand close

position location

palm human
.................................................................................................................................................................................................................................................

20 grasp object free hand ok close give me
.................................................................................................................................................................................................................................................

21 pointing close occupied position ok location release
.................................................................................................................................................................................................................................................

22 release location occupied hand ok open pointing

23 pointing open free object ok object grasp
.................................................................................................................................................................................................................................................

24 grasp object free hand ok close pointing
.................................................................................................................................................................................................................................................

25 pointing close occupied position ok location release
.................................................................................................................................................................................................................................................

26 give me location occupied hand ¬ok open

27 palm ok human

object object
.................................................................................................................................................................................................................................................

28 release human occupied hand ok open pointing

At step t = 1, the user points at one of the legs of the table.
Robin’s vision system detects the hand gesture as pointing. Since
no associations have been recorded so far, the probability of
choosing an action is uniformly distributed over all the actions
from A. At this point, Robin cannot anticipate action a1+1;
therefore it randomly selects one of the actions, here location.
The gaze paired with action a1+1 = 〈location〉 is e1+1 =
〈position〉, i.e., to look at a location in the workspace. The user
observes the robot looking at a location indicating it wants to
move its empty hand there. Knowing that the position gaze in
a free hand state indicates an imminent location action, here the
user immediately reacts by giving¬ok feedback because location
is not the desired action. The actions colored in red in column

at+1 are not executed. Similarly, ¬ok is also given upon the
next, randomly-selected palm gaze, which is paired with action
human. Finally, at step t = 4 the user gives ok, the object gaze
signaling that the robot is about to perform the intended object

action. It is to be noted that action open is not indicated since the
robot just performed action at = 〈open〉 and ht = 〈free〉. The
PIL framework will eliminate redundant actions.

Next, the user instructs Robin to grasp the object by
performing the grasp gesture. A similar procedure as above
follows and Robin learns the association between the gesture
grasp and the action close. At some point, the robot will have
learnt that it has to execute the object action given that it had
performed action open, the state of its hand is free, and the state
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of the user is pointing. Consequently, at t = 11 the gesture
prediction is activated. It rightly predicts g11+1 = 〈grasp〉
based on prior knowledge. Though based on learnt probabilities,
predicting g12+1 = 〈give me〉 is not incorrect; it fails because the
user decides to deviate from the learnt sequence. The correct and
incorrect gesture predictions are highlighted in green and red in
column gt+1, respectively.

The gaze states highlighted in blue in column et+1 indicate
when Robin’s action anticipation module is active. If action at+1
is unknown given the state st of the system then Robin uses the
acquired knowledge to anticipate an action given the attributes
in R, i.e., gt , at , ht . It ranks candidate actions by computing
the conditional probabilities of an action given these attributes.
Initially, Robin fails at t = 13 since the acquired information
is insufficient. However, at t = 17 and t = 19 the actions are
ranked such that the anticipated action is in coherence with the
user’s desired action. The action location is not one of the ranked
actions. The action performed by the robot a17 = 〈location〉;
therefore it is redundant to indicate the same action. At t = 20
the predicted gesture could be give me or pointing since both
have happened only once. In such cases, when gestures have equal
probabilities the PIL framework randomly chooses one of the
gestures. At t = 25 Robin performs action a25+1 = 〈location〉
and predicts g25+1 = 〈release〉. It ranks open first at t = 26
indicating it with gaze e26+1 = 〈hand〉. These predictions are
in line with the interaction so far, but then the user decides to
change the course of the sequence. It can be seen at t = 26 that
the user instructs the robot to hand over the grasped leg instead
of delivering it to the target pointed at. Robin then hands over
the leg at t = 27. This procedure continues till all legs have been
handed to the user.

3. PROACTIVE INCREMENTAL LEARNING

The PIL framework is designed to reach the final state of the
task minimizing both the number of user-demonstrated gestures
as well as the number of robot actions. Let us consider the
collaborative table assembly scenario from section 2 with N the
number of legs Robin has to hand over to the user. The PIL
framework consists of three modules: (1) incremental gesture-
action association, (2) action anticipation, and (3) proactive
gesture prediction and correction.

3.1. Incremental Gesture-Action
Association
The underlying assumption of the PIL framework is that the user
wants to complete the task in aminimum number of interactions.
The robot hence learns P(at+1|st) denoting the probability of an
action at+1 to be executed given the system’s current state st . At
first, the probabilities are distributed uniformly among all the
manipulation actions of the robot. The robot uses the feedback
from the user to incrementally learn these probabilities at every
step t. The action at+1 to perform given the state st of the system
is selected as

at+1 = argmax
a

P(a|st). (1)

As mentioned previously, each action is paired with a gaze
movement that precedes the actual action. The user then provides
feedback ok or ¬ok based on whether the robot has indicated an
appropriate action to advance toward the goal. If the user signals
ok then the robot goes ahead executing the action; otherwise it
will indicate another action using its gaze.

Let T be a 4-D table storing, at each step t, the frequency of
ok feedback signals given to an interaction, where the interaction
comprises of the state of the system and the next action. The
frequencies in T then form the basis of frequentist probability
estimates P(a|s) of the associations. As the task progresses, the
frequencies in T for interactions (st , at+1) are updated. We can
thus compute the probability of an action a given the state s of
the system as

P(a|s) =
T(s, a)

|A|
∑

i=1
T(s, ai)

. (2)

The frequencies in T are update based on the user’s feedback.
If the user signals ok for an indicated action at+1 then cell
T(st , at+1) is incremented as

T(st , at+1)← T(st , at+1)+ 1. (3)

If the user rejects the indicated action by ¬ok feedback then
the frequencies of all state-action associations other than the
currently-indicated action are incremented by 1. The frequencies
of all possible actions a×t+1 ∈ A except at+1 are updated as

T(st , a
×
t+1)← T(st , a

×
t+1)+ 1, a×t+1 6= at+1. (4)

We refer to this as a complement feedback technique.
Previous methods (Suay and Chernova, 2011; Najar et al.,

2016) give either −1 or 0 for ¬ok feedback. If we update
Equation 3 with −1 for ¬ok then frequencies in T can attain
negative values, making it difficult to derive probability estimates
P(a|s) from them. Moreover, the frequencies in T will be
updated without actually representing the occurrence of the
state-action (st , at+1) pairs. Similarly, if zero is assigned to ¬ok
feedback then frequencies in T will remain unchanged. Thus,
a ¬ok would be equivalent to no feedback at all, discarding
a useful piece of information from the user. In contrast, the
complement feedback technique maintains the probabilistic
nature of the PIL framework by taking both positive and negative
user feedback into account while guaranteeing positive and
consistent probability estimates. For example, at t = 1 in
Table 1, s1 = 〈pointing,open, free〉, e1+1 = 〈position〉,
and a1+1 = 〈location〉, the robot receives ¬ok feedback.
As a consequence, T(s1, location) is not incremented whereas
T(s1,human), T(s1, close), T(s1,open), and T(s1,object) are
incremented by 1.

3.2. Action Anticipation
The key advancement of PIL compared to its precursor (Shukla
et al, 2017a) is to anticipate the most likely robot actions
if gesture-action associations are unknown. This results in
a substantial reduction in the number of steps necessary to
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complete a task. The PIL framework computes a probability
distribution over all possible manipulation actions and ranks
them from most anticipated to least anticipated. To anticipate
the next action at+1, the framework computes two conditional
probabilities for each action in A given the attributes of the state
st = 〈gt , at , ht〉 of the system, namely the conditional probability

P(at+1|ri) =
P(at+1, ri)

P(ri)
(5)

of an action given only one attribute ri ∈ R, and the conditional
probability

P(at+1|ri, rj) =
P(at+1, ri, rj)

P(ri, rj)
, i 6= j (6)

of an action given two attributes ri, rj ∈ R simultaneously.
Despite the three attributes of s, at most only two attributes are
used to estimate themost anticipated action. If all three attributes
of s are used then Equation (6) will be equivalent to Equation
(2). In such a case, to learn a new state-action association an
action will be randomly chosen since all actions will have equal
probabilities.

Initially, the joint probabilities P(at+1, ri) and P(at+1, ri, rj)
are unknown and taken to be uniform. They are estimated
by counting observations in T indexed by attributes of st and
at+1. Using the conditional probabilities in Equations (5, 6), we
compute the score q for each candidate action at+1 ∈ A as

qat+1 = max
i,j

(

P(at+1|ri), P(at+1|ri, rj)
)

, i 6= j. (7)

The action that maximizes score q is ranked as the most
likely anticipated action with the remaining actions ranked in
descending order of q.

3.3. Proactive Gesture Prediction and
Correction
The particularity of the PIL framework is minimizing the effort
of the user, i.e., the number of gestures performed by the user,
thereupon it lessens the overall interaction time. The proactive
gesture prediction enables the robot to decide on action at+2
associated with gt+1. The prediction module is active once the
framework has recorded the frequency of ok signals given to
interactions in T. In addition to T, the framework also stores
the history of interactions. The robot refers to the history of
interactions to compute the probability of the next gesture gt+1
given the current state st of the system and the associated
action at+1, i.e., P(gt+1|st , at+1). The gesture attaining the highest
probability P(gt+1|st , at+1) is selected as the predicted gesture
gt+1. However, if the user decides to diverge from the learnt
sequence then a different gesture can be performed after the
execution of at+1.

Poor accuracy of a gesture detection system generally causes
misclassification of an instruction gesture and as a result, it can
evoke an invalid state of the system. For example, pointing
is misclassified as grasp when the robot is holding an object.
Invalidity of a state may be detected in two main ways: (1) A

gesture is detected with a low confidence score irrespective of the
state of the system; therefore it is discarded. (2) A misclassified
gesture is incompatible with the state of the system irrespective
of the confidence score. We address this problem with a
methodology similar to that described for gesture prediction. The
gesture correction module too is activated after associations are
recorded in T. If the detected gesture gt yields an invalid state
then no at+1 is selected. At this point, the system checks for all
the associations followed by (st−1, at) with ok feedback.

The framework computes the P(gt|st−1, at). The gesture with
the highest probability is chosen as the corrected gesture. Based
on the updated state st , the robot then performs gaze et+1 which is
paired with at+1. The user always has the freedom to provide¬ok
feedback and discard robot’s selection. The robot then selects
the next best action and indicates it using gaze. If none of the
previously-learnt manipulation actions are acceptable by the user
then the robot explores other state-action associations with ¬ok
feedback.

Consider again the sequence of interactions in Table 1. At
t = 22, if g22 = 〈release〉 is misclassified as grasp, it would
trigger an invalid state. It is not possible for the robot to grasp an
object when the state of the hand is occupied. At this point, the
system then decides that gesture correction is necessary. Based
on the learnt probabilities the most likely gesture to occur after
s22−1 = 〈pointing, close,occupied〉 when a22 = 〈location〉
is release. The detected gesture is corrected from grasp to
release, and the robot proceeds to perform the action open.

4. EXPERIMENTS

We conducted three sets of quantitative experiments to evaluate
the PIL framework. The experiments involved assembling tables,
where the robot assists by handing legs of the tables over to
the user. In other words, the table assembly task is used to
examine the efficacy of the framework to learn the gesture-action
associations. The first two experiments are aimed at evaluating
performance of the PIL framework in comparison to the state of
the art. The objective of these experiments is to optimize the effort
required to perform table assemblies. This includes learning of
the gesture-action associations while performing the assembly
task, until the task has been completed. Learning is always active
because the user has the freedom to change the sequence of task
execution or semantics of gestures during the task. We compare
the following methods:

1. A reactive system and IRL methods (Suay and Chernova,
2011; Najar et al., 2016), capable of learning gesture-
action associations, but lacking gesture predicting and action
anticipating capabilities;

2. PIL1 (Shukla et al, 2017a), capable of learning gesture-action
associations as well as predicting the user’s next gesture and
proactively correcting misclassified gestures;

3. PIL2 (the proposed framework), an extension of PIL1 that
adds action anticipation capabilities.

The first experiment was performed in a simulated environment
as shown in Figure 3. We evaluated two objective metrics, the
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number of hand gestures performed by the user and the number
of the robot’s manipulation actions. The second experiment used
the real robot to measure three evaluation metrics, namely,
interaction effort, neglect tolerance, and robot attention demand,
for human-robot interaction as proposed by Olsen and Goodrich
(2003). Lastly, we conducted a within-subject HRI study with
naive users to obtain subjective responses for comparing reactive
and proactive robot behaviors. These responses show us how the
two robot behaviors were perceived by the participants in regards
to their performance during the table assembly. Like the first
experiment we also evaluated the two objective metrics from the
video recordings of the HRI study to compare them with the
subjective responses of the users.

4.1. Simulated Environment
We simulated the table assembly scenario described in section 2
by iteratively assembling three tables. In total the robot has
to hand over 12 table legs either into the user’s palm or to a
pointed location in the workspace. We repeated this interaction
20 times. The necessary gestures and feedback are provided via
an external user interface. We simulated three detection rates
d = {0.6, 0.8, 1.0} to evaluate the effect of accuracy of the
gesture detection system on the number of hand gestures and
the number of robot actions needed to complete the task. We
quantitatively compared the proposed PIL framework (PIL2)
with four existing approaches: two interactive reinforcement
learning (IRL) methods, IRL1 (Suay and Chernova, 2011) and
IRL2 (Najar et al., 2016), our previous version of PIL (PIL1)
(Shukla et al, 2017a), and reactive robot behavior.

The IRL methods have shown promising results in learning
tasks involving human feedback. The two IRL implementations
were adapted for the table assembly scenario. The learning rate α

and the discount factor γ for IRL1 and IRL2 are set as mentioned
by the authors to α = 0.3, γ = 0.75 and α = 0.3, γ =

0.0, respectively. The authors of IRL2 argue that γ = 0.0 is
more suitable for learning from human feedback. It allows a
task to be divided into a sequence of single-step tasks. Note
though that γ = 0.0 would take into account only immediate
rewards, therefore rendering the reinforcement learning aspect
incongruous for overall task learning. Additionally, we also
present results of both IRL methods at a higher learning rate
α = 0.9. In our previous work (Shukla et al, 2017b) we showed
how the robot’s gaze facilitates communication and speeds up
completion of the task. Therefore, for a fair comparison we
incorporate gaze into both IRL methods. Also, no feedback was
considered as ok feedback.

As mentioned before, our previous PIL implementation
(PIL1) does not include the action anticipationmodule. However,
it can proactively predict the intent of the user, i.e., gesture, and
perform an action if the gesture-action association is known.
On the other hand, the reactive robot learns the associations
incrementally but waits for an instructional gesture at every step
after each action. The reactive robot can neither perform gesture
prediction or correction, nor can it anticipate the next action.

Figure 4 shows comparisons with respect to the number of
hand gestures performed by the user and the number of robot
actions. The number of hand gestures by the user is the sum of
the number of instructional gestures from G and the number

of feedback gestures from F. The number of robot actions is
the sum of the number of manipulation actions from A and the
number of gaze movements from E. A general observation from
the plots is that as the detection rate increases the effort of the user
and the number of robot actions reduces for all the approaches.
The IRL methods are reactive in nature, i.e., they require an
instructional gesture at every step. As a consequence, they neither
predict the next gesture nor anticipate the next action. Therefore
they need more gestures as well as robot actions. Interestingly,
the factor by which the effort reduces as the detection rate
increases is significantly smaller for PIL2 as compared to the
other methods. Clearly, PIL2 capitalizes on its action anticipation
module resulting in fast human-robot interaction, even at low
gesture detection rates.

Figure 4 shows that numbers for both aforementioned criteria
reduce significantly with the PIL1 framework and even more
with the proposed PIL2 framework. Since PIL2 is able to predict
the user’s next gesture and it is able to anticipate the next
robot action, it frees the user from the effort of performing an
instructional gesture or a feedback gesture. Likewise anticipating
robot actions reduces the number of robot’s gaze movements
since each action is preceded by a gaze. The proactive behavior
allows the robot to proceed with the task without attention from
the user.

4.2. Real Environment
The experiment with the real robot consisted of the same
interaction setup as described in section 4.1. We computed
three evaluation metrics, viz., Interaction Effort (IE), Neglect
Tolerance (NT), and Robot Attention Demand (RAD). These
are all time-based metrics that attempt to maximize the speed of
performance, minimize mistakes, and measure the autonomy of
the robot.

Interaction effort is the amount of time the user has to invest
in interacting with the robot. We compute IE as the cumulative
sum of the time taken by the robot to detect hand gestures,
both instruction gestures from G and feedback gestures from
F. The user needs to maintain the gesture until it has been
detected. Once the gesture is detected the robot acknowledges
this with an immediate gaze suggesting the next action. It takes
1.5–2.5 s for the PAPE method to detect one instance of the hand
gestures of the IMHG dataset (Shukla et al., 2016). The goal of
the system is to reduce IE and lead the robot toward proactive
behavior. Neglect tolerance represents tasks which a robot can
perform without human supervision. The NT was computed as
the cumulative sum of the time taken by the robot to perform
various sub-tasks, namely planning the trajectory of the robot
arm using KOMO, executing the trajectory, opening and closing
its hand, and executing its gaze movements. Both IE and NT are
measured in seconds.

Robot attention demand is the relation between IE and NT,
given by

RAD =
IE

IE+NT
. (8)

RAD is a unitless quantity that represents the effort that the user
expends in interacting with the robot relative to the total robot
time. A good human-robot interaction system tries to minimize
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FIGURE 4 | Effect of the gesture detection rate on the table assembly task. (Left) Number of hand gestures needed at various detection rates; (Right) Number of

robot actions needed at various detection rates.

the RAD value. A low RAD indicates that the user can focus on
other tasks besides interacting with the robot. Since RAD mainly
measures the effort that the user has to invest in the interaction
we compare the proposed PIL2 approach with PIL1 and the
reactive robot behavior.

We evaluate our method by assembling three tables with
the real robot and measuring execution times. We repeat the
experiment five times, the results of which are presented in
Figure 5. The IE and RAD values clearly show that the user
has more free time while interacting using the PIL2 framework
compared to the other two approaches (PIL1 and reactive).
In the proposed scenario of table assembly, a high NT does
not necessarily suggest a better HRI. The value of NT can be
increased by slowing down the speed of the robot, yet we would
like to finish assembling the table in the shortest time possible.
Although NT is higher for reactive behavior and for PIL1 than
for PIL2, it does not imply a better experience since the overall
interaction time increases due to a higher number of robot
actions.

4.3. User Study
Like for the previous two experiments we chose the table
assembly scenario also for our user study. As participants
perceived Robin’s arm movements as too slow (Jensen et al.,
2017), to avoid boredom during the experiment, we merged
action close with action object, and action open with
actions human and location. Before starting the experiment,
participants were informed about the overall task, available
gestures, Robin’s workspace, its actions, and its field of view. To

the participants were also explained the associations between
Robin’s gaze movements and actions. In particular, three gaze
movements were explained. Robin would perform: (1) gaze
object prior to reaching and grasping an object, (2) gaze
palm before delivering the grasped object into the participant’s
hand (action human), and (3) gaze position before placing
the grasped object at a targeted location in the workspace
(location). The interactions were recorded after receiving
a written consent of the participants. Two questionnaires
were asked to be completed, a demographic questionnaire
before the experiment and a post-experiment feedback
questionnaire.

A total of 22 participants (14 female, 8 male) took part in
our study, with a mean age of 30.3 and a standard deviation of
7.0 years. Participants were from non-robotic fields of studies
like law, medicine, linguistics, biology, physics, or economics.
Their experience with a robot was limited to having seen one
at an exhibition or in movies; therefore, no actual experience
in collaborating with a robot was collected previously. All
participants were asked to assemble two tables, where Robin
interacted once using the reactive behavior and once using the
proactive behavior. They were divided into two groups, based on
which behavior they encountered first. Group 1 first interacted
with the reactive robot and subsequently with the proactive robot,
whereas group 2 first interacted with the proactive robot followed
by the reactive robot. No information about the two distinct
behaviors of the robot was given to the participants except that
the second assembly restarts the task from scratch without any
memory of the previous assembly.
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FIGURE 5 | Comparison of HRI evaluation metrics for Reactive behavior, PIL1, and PIL2.

We test three hypotheses in this study:

H1: The proactive robot will be perceived as an efficient partner
to work with.

H2: The reactive robot will be deemed as an engaging robot
throughout the interaction.

H3: Participants will consider the proactive robot as a quick
learner compared to the reactive robot.

We analyse two objective criteria similar to the experiment in
section 4.1, the number of hand gestures performed by the user
and the number of robot actions in both assemblies. The results
comparing the two groups are shown in Table 2, where µ is
the mean and σ is the standard deviation. In both groups some
participants did not take into account the gaze of the robot, more
so during the proactive behavior. They performed gestures even
when the robot was busy with an action, e.g., grasping or moving
its arm, i.e., during a robot gaze other than face. Therefore
the standard deviation is higher for proactive behavior than for
reactive behavior. This shows that, perhaps for some participants
it was straightforward to adapt to the reactive robot than to the
proactive robot. Nevertheless, the proactive robot requires fewer
gestures and actions to finish the task.

During the user study we observed great variation in the
behavior of participants when they performed a gesture. For
example, some gestures were inadvertently shown outside Robin’s
field-of-view; some gestures were shown for a very short period
of time resulting in no detection; some participants first gave
verbal instructions before resorting to hand gestures. Due to such
nonuniformity in behavior of the participants we do not compute
time-based objective metrics like IE, NT, and RAD for naive
users.

The goal of this user study was to compare three principal
aspects of both behaviors: (1) workload on the participants, (2)

TABLE 2 | Objective results comparing proactive and reactive behaviors of the

robot.

# Hand gestures # Robot actions

Group Behavior µ σ µ σ

1 Reactive 9.4 0.5 28.5 1.9

Proactive 5.8 1.9 23.5 1.3

2 Reactive 9.2 0.4 28.0 1.8

Proactive 6.5 2.1 23.8 1.5

productivity of the robot, and (3) interactivity of the robot. Since
the table assembly task does not require intense physical effort,
the workload is enquired as the effort the participants had to put
into performing gestures, and the time taken to complete the
assembly. The productivity of the robot is how the participants
perceived the learning capability of the robot, and how efficient it
would be in performing a repetitive task in a factory-like-setting
to help a human-worker. Finally, the interactivity of the robot
is how the participants rated the robot’s skill to communicate
its intentions about next actions, and to what degree users felt
engaged during the interaction. The following questions from the
post-experiment questionnaire provide us subjective information
to compare both behaviors:

Q1: In which assembly did you feel the most effort?
Q2: Which assembly did you feel the most time consuming?
Q3: How would you rate the task learning capability of the robot

during both assemblies?
Q4: Which behavior of the robot would you prefer in a factory

setting to assemble 30 tables?
Q5: How would you rate the robot’s skill to communicate its

intentions about its next action?
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Q6: How engaging was the robot in each assembly?

Figures 6–8 show accumulated responses from participants of
both groups.

The responses to questions Q1 and Q2 are summarized in
Figure 6. The users were asked to rate both, table assembly 1 and
table assembly 2. It can be seen that most users felt the workload
was reduced when the robot predicted their gestures and acted
accordingly. Most users rated the proactive behavior for least
effort and time while the reactive behavior got a majority formost
effort and time. Overall ratings are in favor of the proactive robot.
These responses concur with the objective evaluation shown in
Table 2.

The proactive framework mainly focuses on learning the
gesture-action associations; consequently, the robot also learns
the sequences of actions. Since the proactive robot is capable
of acting on its own, most of the participants in both groups
perceived it as a better learner than the reactive robot. This
can be observed from the responses to questions Q3 and Q4,
shown in Figure 7 which enquire the productivity of the robot.
Evidently, in both groups the proactive behavior was preferred
in an imaginary factory-like-setting when doing a repetitive task.
Some participants however favored the reactive behavior which
might imply that they would like to have full control over when
the robot performs an action.

The responses toQ5 andQ6which investigate the interactivity

of the robot are depicted in Figure 8. Despite the various benefits

of using gaze as shown in previous HRI studies, the gaze of the

robot was not perceived as humanlike—intuitive to interpret—
to indicate its intention (or the next action). The responses of

the participants were inclined toward machinelike gaze—it is

not intuitive and needs additional effort to interpret—for both
behaviors. Conversely, gaze proved to be an important factor

in engaging the users duringe interaction. The reactive behavior

emerges as an engaging robot as compared to the proactive
behavior since the former always performs a face gaze after each

manipulation action and waits for the next instruction.
In addition to the subjective responses, we asked the

participants to express the experience in their own words. The
comments from the participants provide further insight on how

both behaviors of the robot were perceived. We quote a few
comments of the participants of both groups in favor of the

reactive robot and the proactive robot in Tables 3, 4, respectively.

Participants of group 1 refer the reactive robot as assembly 1 and

the proactive robot as assembly 2, whereas in group 2, assembly 1
and assembly 2 implies the proactive robot and the reactive robot,
respectively. The comments in Table 3 indicate that although

the proactive robot is efficient to perform the task, for some
participants it is not a preferred choice. It can be deduced from

FIGURE 6 | Workload on the participants while doing the task with the proactive and the reactive behavior.

FIGURE 7 | Productivity of the robot in the proactive and the reactive behavior.
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FIGURE 8 | Interactivity of the robot in the proactive and the reactive behavior.

TABLE 3 | Comments in favor of the reactive robot.

GROUP 1

1. “Assembly one was more fun, the robot seemed more interactive and more

humanistic. The second assembly seemed more automated, however was

slightly quicker.”

2. “Assembly 1 required a lot more effort, but since the robot was more reliant

on instructions, there was also more communication. In Assembly 2, the

robot was much more efficient, but it felt more like he was giving me orders,

since his actions were less informed by my imperatives, but my actions

were more informed by his.”

GROUP 2

1. “In my opinion Assembly 1 was more efficient, but Assembly 2 felt more

human. So I would prefer to work with Assembly 2.”

2. “Assembly 1 the robot kept going without waiting for my instructions.

Assembly 2 the robot was completely engaged.”

the comments that the participants felt the reactive robot was
a better choice since it gave them better control over when the
robot performs an action as well as it kept them engaged during
the task using the gaze face. On the other hand, the comments
in Table 4 reflect that participants appreciated the proactive
robot for performing the task quickly and liked its increased
level of autonomy. The comments suggests that working with
the proactive robot seemed more comforting than the reactive
robot.

These comments and the responses from post-experiment
questionnaire support all the three hypotheses.

5. DISCUSSION

For human-robot collaboration scenarios, both verbal and non-
verbal modes of communication come with a challenge of
teaching semantics of instructions to the robot. In most HRI
frameworks the robots are capable of responding to a small
number of pre-programmed instructions (Mavridis, 2015). By
means of these instructions the user can interact with the robot
to perform a task. However, with such frameworks the user is
obliged to follow a strict mapping between instructions and robot
actions; there is no learning. On the other hand, the main goal of

TABLE 4 | Comments in favor of the proactive robot.

GROUP 1

1. “I found the robot is well responding to my indications. In general, I felt more

comfortable in interacting with the robot for Assembly 2 rather than for

Assembly 1.”

2. “Assembly 1 was more difficult, since the robot seemed to take longer to

process my commands whereas in assembly 2, it felt as if it was already

“expecting” my commands and thus processed them faster and more

accurately.”

GROUP 2

1. “There was a decisive difference and slower response with assembly 2. It

was a curious experience. I did not know if I was supposed to look into the

face/eyes or the camera under it to make contact with the machine.”

2. “Hard to differentiate, I feel Assembly one was more responsive.”

the PIL framework is to give freedom to users to teach semantics
of instructions as they choose. Unlike previous works (Lenz et al.,
2008; Myagmarjav and Sridharan, 2015), in PIL the mapping
between an instruction and a robot actionmaterializes during the
task, therefore bypassing a training phase. We demonstrated in
our previous work (Shukla et al, 2017b) the advantage of learning
semantics of instructions while performing the task using PIL
over pre-trained associations.

As discussed earlier, we use static hand gestures as the means
of instructing the robot. However, the PIL framework can be used
with other modes of communication such as speech, dynamic
gestures, etc. The PIL framework allows the user to incrementally
teach association between a hand gesture and a robot action.
Currently, the robot is aware of appearances of the instructional
gestures G and semantics of the feedback gestures F. Although
for PIL play to its full strength, users should be allowed to
introduce new gestures during a task. One possibility could be to
incorporate on-the-fly gesture learning in the PIL framework. It
is a topic of active research in gesture recognition (Fanello et al.,
2013; Cabrera and Wachs, 2017; Cabrera et al., 2017). Once a
gesture is recorded, the user can teach its association with a robot
action. In addition to learning new associations during one task,
it should be possible to reuse/modify the learnt associations when
performing other tasks.
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Our quantitative analysis reported in section 4 demonstrates
that a robot with intent prediction capabilities can reduce the
user’s effort and can facilitate achieving the task quickly. While
a reactive robot behavior waits for an instruction from the user at
every step of the task, it compels the user to engage with the robot.
This was also observed in our user study where non-roboticist
participants had to assemble two tables with the robot behaving
either proactively or reactively. The proactive robot begins to
act independently after acquiring sufficient knowledge about the
task. The learning capability of the proactive robot was greatly
appreciated by most participants. Although the proactive robot
scores high in learning and efficiency, it comes at the cost of poor
interactivity with the user.

Some practical issues arose during the user study while
working with the proactive robot. Sometimes the robot
proactively took the decision to deliver a leg of the table while the
user was still busy attaching another leg. In an another instance,
it was observed in post-study video analysis that a participant had
already planned to show a gesture to the robot but had to retract
since it began to execute an action. While the proactive robot
focussed on efficiency and reducing the user’s effort, nonetheless
it was perceived as automated, unengaging behavior by some
participants. Contrary to our assumption, for a small set of
participants the reactive robot emerged as a preferred choice
since they can control when the robot should execute an action.

While much of our work presented in this paper is focussed
on robot learning gesture-action associations, we also studied
how the gaze of the robot was perceived by the participants
of our user study. Building on prior research (Ruesch et al.,
2008; Bee et al., 2009; Fischer et al., 2015), we used the gaze
of the robot to indicate the action it is about to perform and
to indicate when it is ready for the next instruction. The study
by Huang et al. (2015) demonstrates how a robot can facilitate
a collaborative task by observing human gaze cues. However,
the reverse, i.e., the human observing the robot’s gaze cues,
was not found to be equally effective. Unlike human-human
interaction where use of gaze cues is strikingly productive, in
our study the robot’s gaze was found to be counter-intuitive.
The subjective responses of the participants shown in Figure 8

indicate that, except for gaze face they had to invest effort
into interpreting gaze movements associated with actions. To
overcome such challenges, future frameworks must further
exploit and experiment with gaze interaction models inspired by
human-human interaction (Boucher et al., 2012). For example,
the robot can alternate between the face gaze and the gaze
associated with an action to draw the user’s focus of attention
toward the next action.

6. CONCLUSIONS

We proposed a fast, supervised PIL framework to learn
the associations between human hand gestures and robot
manipulation actions. We also introduced an action anticipation
module to reduce the number of user gestures as well as the robot
actions required. The results from simulated and real-world
experiments show that the proposed PIL framework outperforms

state-of-the-art methods. Moreover, working with the proactive
robot reduces the interaction effort (IE) since it learns to predict
the next gesture.

The results of our user study uncover differences as seen from
a non-roboticist’s perspective. In general, the participants of our
user study favor collaboration with the proactive robot. Yet, a
small faction did not feel comfortable with the robot making
its own decisions, thus favor the reactive robot. Further, in the
case of both behaviors the robot’s gaze was majorly perceived as
machinelike, i.e., not intuitive, to indicate the next action. On the
other hand, the proactive behavior was perceived as an efficient
choice despite lacking interactive capabilities due to increased
autonomy.

Based on these results and observations we conclude that the
following facets are essential to design an effective human-robot
collaboration framework

1. the user should be able to teach the robot semantics of
instructions at will,

2. the robot should act proactively to achieve the goal in fewer
interactions, and

3. the user should be kept in the learning loop using means like
the gaze of the robot.

The responses of the user study suggests that future collaborative
frameworks must be able to switch between the proactive and
the reactive behavior. For example, if the user is busy in a task
and cannot receive an object then the robot should pause its
action and wait until the user is free. The robot can continue once
the user gives an instruction to proceed. The robot can alter its
behavior during the interaction by monitoring user’s gestures at
all time. Moreover, the gaze of the robot requires improvement
on ways to indicate intent of the robot.
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