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Although both infancy and artificial intelligence (AI) researchers are interested in

developing systems that produce adaptive, functional behavior, the two disciplines rarely

capitalize on their complementary expertise. Here, we used soccer-playing robots to

test a central question about the development of infant walking. During natural activity,

infants’ locomotor paths are immensely varied. They walk along curved, multi-directional

paths with frequent starts and stops. Is the variability observed in spontaneous infant

walking a “feature” or a “bug?” In other words, is variability beneficial for functional

walking performance? To address this question, we trained soccer-playing robots on

walking paths generated by infants during free play and tested them in simulated

games of “RoboCup.” In Tournament 1, we compared the functional performance of a

simulated robot soccer team trained on infants’ natural paths with teams trained on less

varied, geometric paths—straight lines, circles, and squares. Across 1,000 head-to-head

simulated soccer matches, the infant-trained team consistently beat all teams trained

with less varied walking paths. In Tournament 2, we compared teams trained on different

clusters of infant walking paths. The team trained with the most varied combination

of path shape, step direction, number of steps, and number of starts and stops

outperformed teams trained with less varied paths. This evidence indicates that variety is

a crucial feature supporting functional walking performance. More generally, we propose

that robotics provides a fruitful avenue for testing hypotheses about infant development;

reciprocally, observations of infant behavior may inform research on artificial intelligence.

Keywords: infant walking, locomotion, bipedal robotics, robot soccer, natural gait

INTRODUCTION

Both infancy and artificial intelligence (AI) researchers are interested in developing systems
that produce adaptive, functional behavior. Infancy researchers have the benefit of starting with
infants—one of nature’s most flexible and generative learning machines. Through observation,
infancy researchers work backward to reverse engineer infants’ underlying learning mechanisms
and develop formal theories. These theories, however, are often difficult to test experimentally;
controlled rearing environments and training regimens are notoriously slow, burdensome, and in
some cases, outright impossible. AI researchers have the benefit of building models, but can gain
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insights into the processes of change by studying natural learning
systems (Gómez et al., 2004; Cangelosi et al., 2015). Here,
we use the computational power of AI to test an otherwise
intractable developmental question: What is the best way to learn
a generative skill like walking?

VARIETY IN SPONTANEOUS INFANT
WALKING: A FEATURE OR A BUG?

Variety is essential for functional motor behavior. Movements
must be tailored to the changing constraints of the body,
environment, and task (Gibson, 1979; Newell, 1986; Bernstein,
1996). Functional walking, for example, is a highly creative
process. It requires more than alternating leg movements to get
from A to B. No step is ever repeated in exactly the same way
or under exactly the same conditions. To successfully navigate
the environment, walking must be continually modified to suit
changes in local conditions—different surfaces (e.g., walking on
pavement or sand), changes in layout (e.g., walking uphill or over
flat ground), and obstacles along the path (e.g., clutter, elevations,
and other agents who move). Thus, functional walking requires
agents to navigate varied paths to adapt to moment-to-moment
changes in body-environment relations (Adolph, 2008; Adolph
and Robinson, 2015). How does anyone, let alone an infant, learn
such a generative skill? What sort of training regimen facilitates
the acquisition of flexible, creative, adaptive motor action?

Decades of research on the development of walking have
focused on the acquisition of periodic gait—the ability to
maintain steady-state velocity in a straight line using a series
of alternating steps (Adolph et al., 2003; Ivanenko et al., 2004;
Chang et al., 2006; Hallemans et al., 2006; Bisi and Stagni,
2015; Bril et al., 2015). With straight-line walking as the “gold
standard,” research on motor learning and rehabilitation has
focused on training uniform, alternating steps (Cherng et al.,
2007; Ivanenko et al., 2007; Ulrich et al., 2008; Reisman et al.,
2009; Willoughby et al., 2010). Although such training leads
to improvements in strength, and indeed improvements in
straight-line walking, it does little to improve the functional,
flexible, adaptive, walking skills needed to navigate a real-
world environment. So, what does? A growing literature on
motor learning recognizes the beneficial role of variable practice
(Moxley, 1979; Catalano and Kleiner, 1984; Van Rossum, 1990;
Schmidt, 2003; Davids et al., 2006; Ranganathan and Newell,
2013). The principle at the heart of this line of research is that
more variability in practice leads to greater flexibility outside the
training environment.

Initially, infant walking is highly variable. Infants’ gait is
inconsistent from step to step (Clark et al., 1988; Bonneuil
and Bril, 2012). Infants cannot reproduce leg movements
consistently, they cannot walk quickly, they cannot walk far, and
they fall a lot (Adolph et al., 2012). New walkers are bad walkers,
but they get better with experience (Adolph and Robinson, 2015).
Moreover, individual infants display a tremendous variety of path
shapes during spontaneous walking in free play. They produce
both short and long bouts; they generate curving, serpentine, and
zigzag paths; they double back on themselves; they step in every

direction and sometimes take multiple steps on the same foot
(Adolph et al., 2012; Lee et al., 2017). These varied paths steer
infants around toys and people, but infants also take varied paths
over open ground, when nothing is in the way (Hoch et al., 2017).

Is the variety in infant walking paths a feature or a bug? If
variety is a feature, then infants’ early experience with varied
walking paths may be beneficial for learning functional walking.
If variety is a bug, then infants’ varied paths may add noise that
impedes or, at best, has no consequences for learning.More likely,
it is both. Learning on varied walking paths presumably has both
costs and benefits depending on the task. Recent work suggests
that early experience with varied walking paths may be an
essential component of infants’ natural training regimen. Short
bouts, curving paths, and omnidirectional steps are endemic
from infants’ first steps until many months after walk onset (Lee
et al., 2017). Inconsistency goes away with walking experience.
Varied paths do not.

HUMANOID ROBOTS LEARNING TO
WALK: ROBOCUP!

Much like infants, for robots, functional movement in a
realistic physical environment (simulated or real world)
requires a behavioral flexibility. In the robot world, successful,
functional locomotor performance is assessed with robot soccer
competitions. Why soccer? Historically, computer scientists
believed that a truly intelligent artificial agent might be able
to beat a human at chess (1997; Deep Blue), at trivia (2011;
Watson), or more complicated strategy games (2017; Alpha-Go).
However, in 1997, the same year Deep Blue defeated chess
grandmaster and former world chess champion Garry Kasparov,
a new breed of AI researchers decided that rather than learning
and implementing a set of rules, true intelligence might look
something more like generative, adaptive, embodied motor
action. To meet this challenge, they created RoboCup—the
world’s premier robot soccer competition (Visser and Burkhard,
2007). The original call of the RoboCup initiative was to create
a team of autonomous humanoid robots that could beat the
human soccer world cup champions by the year 2050 (Kitano
et al., 1997; Burkhard et al., 2002).

Soccer competitions are a good measure of functional
locomotor performance because players cannot simply enact a set
of rules or merely produce repetitive movements. Seeing many
“moves” into the future, as in chess, is not sufficient. Instead,
soccer players must take rapid steps in every direction along
curved and sharply turning paths—all while the locations of the
ball, players on both teams, and the relative positions of the goals
are changing. Thus, soccer-playing robots, like infants, must learn
in a way that facilitates flexible, goal-directed locomotion in a
continually changing environment.

Previous studies showed that training robots with
omnidirectional walking paths decreased falls and increased
speed and distance traveled, leading to smoother and faster turns
compared to training on unidirectional walking (Urieli et al.,
2011). Likewise, training robots on infants’ walking paths may
improve robots’ locomotor performance.
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CURRENT STUDIES

In the current studies, we used simulated soccer-playing robots
as a model system to ask whether infants’ naturally varied
walking paths are beneficial for learning functional walking.
Although the full variety of infants’ walking experiences is
unknown, the quantity is massive. Infants take an estimated
2,400 steps and travel the length of 7.7 American football
fields in 1 h of free play with caregivers (Adolph et al., 2012).
Thus, any experimental training regimen with infants would
likely be swamped by the sheer quantity of their everyday
experiences. Given that it is not feasible to control infants’
everyday walking experience (or even record their walking
paths over a waking day), we exploited the computational
power of RoboCup to experimentally test the hypothesis that
paths varying in shape, step direction, number of steps, and
number of starts and stops are better training for functional
walking than less varied paths. Specifically, we compared the
outcomes of different robot training regimens using simulated
robot-soccer competitions. By using simulated robots as models
of real-world infant walking, we could control the training
regimen and obtain robust estimates of performance over
thousands of games of RoboCup. In the current studies, we
aimed to: (1) experimentally examine the role of varied paths
in learning functional walking, and (2) test whether differences
in the natural variety of infant walking paths affect functional
performance. We addressed these aims in two simulated robot
soccer tournaments.

To address our first aim, in Tournament 1, we trained
one team of robots on a training course composed of infants’
natural—and highly varied—walking paths. The “opposing”
teams were trained using uniform geometric paths: straight-lines,
squares, and circles. To evaluate the success of the different
training regimens, each pair of teams played off in a series of
head-to-head soccer games. We predicted that the robot team
trained on infant paths would outperform the teams trained on
less variable geometric paths (infant-trained robots would score
more goals and win more games).

To address our second aim, in Tournament 2, we compared
robots trained on infant walking paths that varied in several
aspects—shape, step direction, number of steps, and number
of starts and stops. Variety in path shape—some straighter and
some curvier paths—reflects the ability to control the two sides
of the body independently. Variety in step direction—forward,
backward, and sideways—reflects the ability to produce steps in
every direction. Variety in the number of steps reflects the ability
to produce both short and long bouts of locomotion. Finally,
the number of starts and stops reflects the ability to initiate
and control disequilibrium. We clustered infants into five groups
based on these measures of path variety and trained soccer teams
according to the five sets of paths. It is important to note that
soccer involves more than just walking. Players must also have
the ability to kick the ball and collaborate with others. However,
because the current studies focus on walking, all other skills
remained constant and equal across teams. Therefore, if one team
performed significantly better than another, the advantage was
due to differences in walking training.

GENERAL METHODS

Infant Walking Paths
We observed the walking paths of 90 infants (49 girls, 41
boys) from the New York City area during free play in a large
laboratory playroom (6 × 9m) as shown in Figure 1A. Play
sessions lasted 20min. Infants’ age ranged from 10.75 to 19.53
months (M = 15.28) and their walking experience ranged from
0.10 to 9.01months (M= 3.09). The study protocol was approved
by the New York University Institutional Review Board. Infants’
parents gave written consent for participation. For those parents
who gave additional permission, videos from the session are
shared on Databrary.org. We recorded infants’ walking paths
from four camera views: a fixed overhead view captured the entire
playroom, two fixed cameras recorded side views of the room,
and a camera held by an experimenter recorded a close-up view
of the infant. The experimenter did not interact with infants or
caregivers during the session.

FIGURE 1 | (A) Layout of the laboratory playroom. (B) Simulated RoboCup soccer field.
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To define the training paths for the infant-trained robots, we
first identified bouts of walking. Using Datavyu (datavyu.org),
a primary coder scored the onset (when infants’ foot lifted
off the floor) and offset of each walking bout (when infants
were stationary for ≥500ms). A second coder independently
scored 25% of each session to ensure inter-observer agreement,
rs > 0.96, ps < 0.001 for number of bouts, bout duration,
number of steps per bout. To define the shape of each
path and the angle between consecutive steps, a coder
used Matlab software (DLTDataViewer; https://www.unc.edu/~
thedrick/software1.html) tomanually digitize the location of each
step using an overhead camera view that covered the entire
playroom. If infants’ feet were momentarily occluded, coders
estimated their location based on the preceding and following
steps. We used the xy coordinates of these points to map the
paths infants took through the playroom (adjusting for lens and
perspective distortion). Using known distances, we verified that
the digitizing method returned < 1% error per bout.

Robot Simulations
To ensure robustness, each pair of teams competed in 1,000 head-
to-head matches. Because such a large number of real-world
competitions is impractical, we used a computer simulation
environment—RoboCup 3D—as a low cost, high efficiency
alternative to real model testing (Boedecker and Asada, 2008;
Xu and Vatankhah, 2013). In addition, previous work showed
that walking parameters learned through RoboCup simulations
can be translated to effective walking parameters for physical
robots (Farchy et al., 2013). The RoboCup 3D simulation
environment is based on SimSpark (http://simspark.sourceforge.
net/), a generic, physical, multiagent system simulator that
uses the Open Dynamics Engine library (ODE; http://www.ode.
org/). The library provides rigid body dynamics with collision
detection, friction, and support for the modeling of advanced
motorized hinge joints used in the humanoid agents.

The robots used in the simulation are loosely modeled after
the Aldebaran Nao robot (http://www.aldebaran-robotics.com).
All robots have a height of 57 cm, a mass of 4.5 kg, and 22 degrees
of freedom (six in each leg, four in each arm, and two in the neck).
Each robot has proprioception of all joints, pressure sensors on its
feet, two gyrometers, and an accelerometer. The joint perceptors
and effectors enable monitoring and control of the hinge joints.
Joint effectors allow the robot to specify the torque and direction
in which to move.

Robot Walk Engine and Optimization
To walk, a request for velocity and a destination for the feet and
torso are sent to a walk engine, which uses this request, together
with inverse kinematic and sensor information, to determine
the next desired joint positions. The engine sends these joint
positions to proportional-integral-derivative (PID) controllers
that convert the positions into torque commands, which are then
sent to the simulator for processing.

We used an open source parameterized walk engine
(MacAlpine and Stone, 2016) that first selects a path for the torso
to follow, and then determines where the feet should be with
respect to the torso’s location. More than 40 parameters are used

to calculate the position of the feet with respect to the torso. A full
description of the technical and mathematical details of the walk
can be found in MacAlpine et al. (2012a).

The parameters for the walk engine are initialized based on
previous testing on an actual Nao robot (MacAlpine et al., 2012a).
Robots that use walk engines with these values, without any
further parameter optimization (i.e., training to walk), are stable
but slow walkers. We refer to these robots as “no-training” and
used them as a baseline. All other teams were trained through
walking optimization.

In the walking optimization, we wished to improve robots’
stability during various situations encountered during soccer
game play and to increase their speed. In this procedure, the
robot learns a set of parameters by walking toward a series
of destinations on the field (goToTarget optimization sub-task;
MacAlpine et al., 2012a). The robot is rewarded based on the
distance traveled toward the destination. If the robot reaches
a destination ahead of time, it receives extra reward based on
the distance it could have traveled given the remaining time.
The robot also has “stop destinations,” where it is penalized
for overshooting the destination. Finally, the robot receives a
penalty if it falls during the optimization run (for full equations
describing the robot reward system, see MacAlpine et al., 2012a).
Over the course of the optimization, robots learn to walk
increasingly faster, with fewer errors. Because it is impractical to
optimize all 40 parameters, we selected a subset of 25 parameters,
based on their high potential impact on the speed and stability of
the robots (see Tables 1, 4 for the list of selected parameters and
further details in MacAlpine et al., 2012a). Moreover, because we
focused on walking optimization, all phases of optimization that
relate to other skills (e.g., teaching robots how to dribble or kick
the ball) were similar to previous work and were held constant
across teams (Urieli et al., 2011; MacAlpine et al., 2012a).

Soccer Game Procedure
We evaluated the success of each training regimen using a
tournament of soccer games among teams of eleven simulated
robot players. All players on a team were trained in the same
way. Each team competed to get a ball into the other team’s goal
(Figure 1B). The games consisted of two 5-m halves (without
stopping the time). Each half began with a kick-off, and all players
were located on their team’s side of the field.

We calculated the number of goals scored per team per
match, and the number of wins in each set of 1,000 head-to-
head matches. As in human soccer, the team that scored the
most goals at the end of the game won. If the score was even,
we declared a tie. To evaluate the success of each team (and
thereby the success of its training regimen), we focused on the
magnitude and consistency of their wins. The magnitude of each
team’s wins is expressed by their average goal difference, or the
average number of goals scored relative to the number of goals
conceded. Consistency is expressed by a high number of league
points across the tournament. Using the standard league point
system in human soccer, a team gains 3 points for a win, 1
point for a tie, and 0 points for a loss. Importantly, the motion
targets used during the soccer matches are similar no matter
what walk is used for training. That is, robots walk to the same
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TABLE 1 | Final values of optimized parameters after each training regimen in Tournament 1.

Parameter Infants Square Circle Line No-training

Maximum size of steps (radians) 0.54 1.74 0.67 1.59 1.22

Maximum size of steps for x coordinates (mm) 78.42 157.90 135.17 201.10 50.00

Maximum size of steps for y coordinates (mm) 123.22 33.43 56.67 35.80 40.00

How much center of mass is shifted from side to side (mm) −39.08 −23.83 −11.39 3.44 20.00

Height of the torso from ground (mm) 147.88 120.17 165.90 80.57 175.00

Maximum height of foot from ground during step (mm) 84.67 93.97 87.59 76.70 20.00

Fraction of a phase the swing foot remains still before moving 0.35 0.16 0.09 −0.08 0.20

Fraction of a phase that the swing foot on the ground before lifting −0.12 −0.12 −0.70 −0.81 0.20

Duration of single step in seconds 0.04 0.06 0.08 0.08 0.38

Expected difference between commanded COM and sensed COM 86.22 42.35 13.47 −6.33 0.00

Factor of how fast the step sizes change per time cycle 0.06 0.06 0.07 0.07 0.03

Maximum COM error in millimeters before the steps are slowed 30.26 64.88 44.80 108.90 7.50

Maximum COM error in millimeters before all velocity reach 0 172.86 129.77 60.37 134.70 12.50

Constant offset between the torso and feet (mm) 0.99 2.33 2.26 −1.01 2.50

Factor of the step size applied to the forwards position of the torso 1.01 0.80 0.79 0.57 0.50

Angle of foot when it hits the ground in radians 0.38 1.09 0.92 1.14 0.60

Fraction of a phase that the swing foot spends in the air 1.44 1.21 1.84 1.78 0.60

Proportional controller values for the torso angles – tilt 0.13 −0.05 −0.07 −0.08 0.15

Proportional controller values for the torso angles – roll 0.05 −0.07 0.22 0.80 0.20

Proportional controller values for controlling COM (x) 1.25 1.19 0.87 0.98 1.00

Proportional controller values for controlling COM (y) 1.62 0.95 1.13 0.56 1.00

Proportional controller values for controlling COM (z) 0.10 0.22 0.03 0.39 0.00

Proportional controller values for moving arms (x) −0.04 0.15 −0.07 −0.16 0.00

Proportional controller values for moving arms (y) 0.27 −0.15 0.14 0.56 0.00

target positions near the ball even if they struggle to do so given
their current walking capability. Therefore, an analysis of small
differences in locomotion during the matches is not informative
for determining differences in functional walking. However,
differences in locomotion between teams can accumulate over
time to produce differences in scoring.

TOURNAMENT 1: INFANT PATHS VS.
GEOMETRIC PATHS

Training Regimens
Our first aim was to examine the role of varied paths in learning
functional walking. We compared a team trained on natural,
varied infant walking paths to four teams trained on uniform,
geometric walking paths. To create the infant training course,
we randomly selected 15 infant play sessions. We then took
the coordinates of each infant path and mapped those points
onto the soccer field where each grid space is 1 × 1m2. For
each session, we capped stationary periods at 2 s, and then
randomly sampled a 4-min block of walking time plus stops.
Although infants stop for longer periods, after 2 s, the robot is
usually fully stabilized, so longer pauses have no additional merit.
Three infants had fewer than 4min of walking plus stops, so
their paths were repeated until 4min accumulated. Then, we
concatenated the randomly sampled 4-min blocks from each of
the 15 infants to create a 1-h long training course (a realistic

duration for training in terms of computational time complexity).
This training path was used to optimize the infant-trained team
in Tournament 1. During training, the robots walked sequentially
toward each step specified by infants’ paths. Whenever the infant
stopped walking, the robot also stopped walking and stood in
place.

For the less varied training regimens, we optimized the
walking engine parameters by training the robots on either a
straight-line, circle, or square path. The straight-line teamwalked
continually forward for 10 walking segments in which the robots
walked for 7 s and then stopped for 2 s. The straight-line team’s
walking parameters were fit using the average of these 10 walking
attempts. The circle team walked along a fixed-size circular path
where the target heading was updated every second for 20 s
and then stopped for 2 s. The square team walked once around
the square before stopping for 2 s and then once around the
square stopping for 2 s at each corner in alternation (the size of
the square was determined by the robot’s walk - 5 s of walking
per side, 20 s total). Both the square team and the circle team
repeated their walks 7 times. All teams’ walking parameters were
fit using the average of all repetitions. In previous work, the
fitness values of robots trained on geometric paths plateaued after
200 generations of learning. In the current study, the duration of
each training regimen was sufficient to include 300 generations
of learning, thus there was no need for further training time.
The final team used the initial parameters of the walk engine
without any optimization (the no-training team; see Methods).
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After the training phase, the five teams competed in a RoboCup
3D simulation.

Results and Discussion
Overall, more variety in training led to better performance. Final
values of the walking parameters (Table 1; see MacAlpine et al.,
2012b for more details) indicate that training on varied paths
leads to improvements in the optimization process in terms of
stability (e.g., larger step size applied to the forward position of
the torso, smaller foot angle at ground contact, higher proportion

of stationary time for the swing foot), speed (e.g., shorter duration
of single steps), and shifts in direction (e.g., smaller steps). The
infant-trained team, which had the most varied paths, beat all
other training regimens in terms of consistency (as measured
by League points) and magnitude (as measured by average goal
difference scores).

The infant-trained team won Tournament 1 with 9,701
League points, winning 2,888 games, tying 1,037, and losing
only 75. The square-trained team came in second, followed
by the circle-trained team, the line-trained team, and the

FIGURE 2 | Tournament 1 results: Infant paths vs. Geometric paths. (A) Accumulated league points, indicating consistency of training success. (B) Each team’s wins

(rows) against all possible opponents (columns) Color denotes the number of wins and does not include ties between teams. (C) Average goal difference, indicating

magnitude of training success. The infant-trained team scored more goals and conceded fewer than all other teams. (D) The average number of goals scored by each

team (rows) against all other opponents (columns). The infant-trained team scored fewer goals against more variably trained teams (squares, circles).
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TABLE 2 | Scoring table for Tournament 1 describing results across all games.

Team League points Wins Losses Ties Goals scored (M ± SE) Goals conceded (M ± SE)

Infants 9,701 2,888 75 1,037 2.43 ± 0.04 0.02 ± 0.003

Squares 7,463 1,898 333 1,769 1.03 ± 0.02 0.09 ± 0.01

Circles 6,602 1,696 790 1,514 1.21 ± 0.03 0.25 ± 0.01

Lines 2,927 611 2,295 1,094 0.20 ± 0.01 1.14 ± 0.02

No-training 400 0 3,600 400 0 ± 0 3.36 ± 0.03

TABLE 3 | Pairwise comparisons for the average goal differences in Tournament 1.

Competition M SE t p

Lines v. no-training 0.79 0.02 33.74 < 0.001

Circles v. no-training 3.89 0.03 117.84 < 0.001

Squares v. no-training 2.91 0.03 85.31 < 0.001

Infants v. no-training 5.85 0.02 306.49 < 0.001

Circles v. lines 0.88 0.03 33.77 < 0.001

Squares v. lines 0.94 0.03 35.54 < 0.001

Infants v. lines 2.74 0.03 98.95 < 0.001

Squares v. circles 0.15 0.02 9.19 < 0.001

Infants v. circles 0.77 0.03 31.71 < 0.001

Infants v. squares 0.25 0.02 13.21 < 0.001

no-training team, respectively (Figure 2A; see Table 2 for full
description of the competition results). As in previous studies
(MacAlpine et al., 2012a), the no-training team never beat a
trained team (0 wins, see Table 2), demonstrating the essential
value of optimizing the walk engine. Figure 2B depicts the
wins of each team (rows) against all possible opponents
(columns). The blue gradient in the infant team row shows
that as the variety of the opponent’s path increased, the
number of infant team wins decreased. These findings suggest
that more varied training regimens generalized to the new
task constraints of RoboCup and led to better functional
performance.

The infant-trained team also won in terms of magnitude by
achieving a larger average goal difference across the tournament
[Figure 2C; F(4, 19995) = 5595.91, p < 0.001, one-way ANOVA
on average goal difference]. As shown in Figure 2C, the infant
team had the highest average goal difference followed by the
circle and square teams (which did not differ, p = 1.00),
the line team, and the no-training teams, respectively (all
other Bonferroni post-hoc tests ps < 0.001). Figure 2D depicts
the average number of goals scored against each possible
opponent. The blue gradient in the infants’ row shows that
as the variety of the opponent’s path increased, the number
of goals infants scored decreased (see Table 3 for pairwise
comparisons). Taken together, the results of Tournament 1
indicate that the variety in infants’ paths is a feature that leads
to better functional walking as indexed by success in robot
soccer. Moreover, path variety promotes generalization to new,
untrained paths.

TOURNAMENT 2: INDIVIDUAL
DIFFERENCES IN THE VARIETY OF
INFANT PATHS

Training Regimens
Our second aim was to test whether differences in the natural
variety of infant walking paths affect functional performance. To
ensure that team differences in variety did not depend on the
number of infants contributing to the robot-training regimen, we
created 5 equal sized groups of 15 infants by clustering the paths
of the 75 infants who did not contribute to the training regimen
for Tournament 1. We used a k-means clustering algorithm with
k = 5 (Spath, 1985). To maintain equal sized groups, we applied
an equal cardinality constraint to the clusters while keeping them
as spatially cohesive as possible (Zhu et al., 2010).

Clusters were based on variation in four interdependent
aspects of walking: path shape, step direction, number of steps,
and number of starts and stops. We calculated variety in
path shape as the standard error of path curvature. For bouts of
≥4 steps, we calculated path curvature by averaging the overall
path curvature (the shortest distance between the start and end
points of the bout divided by the total distance traveled) and step-
to-step curvature (calculated the same way from each series of
3 points in the bout). We calculated variety in step direction as
the standard error of the change in degrees of the plane angle
between each pair of steps. We calculated variety in path length
as the standard error of the number of infant steps per walking
bout. Finally, we calculated the number of starts and stops as the
total number of bouts.

Following the same procedure used for the infant-trained
team in Tournament 1, we created 5 robot-training courses
using the paths of the 15 infants in each group. Thus, the robot
training courses represented the combination of dimensions in
each group of infant paths. Figure 3 shows the 5 infant-trained
teams, distinguished by color. The green team was characterized
by a high variation in step direction (SD of the change in degrees
between each pair of steps) and a high number of stops and low
variation in path shape (SD of path curvature) and relatively low
variation in path length (SD of the number of steps per bout).
The yellow team was characterized by relatively high variation in
path shape and a high number of stops and low variation in step
direction and path length. The blue team was characterized by a
high variation in path shape and path length and a low number
of stops and relatively low variation in step direction. The red
teamwas characterized by high variation in path shape and length
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FIGURE 3 | Exemplar robot training paths. (A) Exemplar paths from each of the five robot training courses built from clustered infants’ walking paths. Colored lines

show the path trajectory, dashes indicate steps, black dots indicate stops. (B) Bars showing relative combinations of walking features for each team’s training course.

Values are scaled from the minimum to the maximum across teams.

TABLE 4 | Final values of optimized parameters after each training regimen in Tournament 2.

Parameter Purple Red Blue Yellow Green

Maximum size of steps (radians) 0.71 0.61 0.66 0.79 0.99

Maximum size of steps for x coordinates (mm) 91.2 73.37 71.93 76.00 93.94

Maximum size of steps for y coordinates (mm) 126.2 143.41 134.73 113.96 156.08

How much center of mass is shifted from side to side (mm) −52.12 −27.27 −25.47 −10.13 −20.69

Height of the torso from ground (mm) 172.8 145.84 149.45 131.63 113.35

Maximum height of foot from ground during step (mm) 79.86 111.73 120.14 104.72 73.33

Fraction of a phase the swing foot remains still before moving 0.57 0.68 0.70 0.66 0.69

Fraction of a phase that the swing foot on the ground before lifting −0.02 0.31 0.33 0.29 0.40

Duration of single step in seconds 0.04 0.06 0.06 0.06 0.05

Expected difference between commanded COM and sensed COM −5.28 −38.29 36.42 −92.53 −20.70

Factor of how fast the step sizes change per time cycle 0.06 0.06 0.05 0.06 0.08

Maximum COM error in millimeters before the steps are slowed 6.53 15.68 26.03 25.69 −33.54

Maximum COM error in millimeters before all velocity reach 0 216.11 154.91 110.82 200.95 135.28

Constant offset between the torso and feet (mm) 4.05 1.39 −0.23 3.44 0.37

Factor of the step size applied to the forwards position of the torso 1.07 1.06 1.10 1.08 1.10

Angle of foot when it hits the ground in radians 0.77 0.59 0.64 0.67 0.48

Fraction of a phase that the swing foot spends in the air 1.32 0.88 0.90 0.94 0.68

Proportional controller values for the torso angles – tilt 0.22 −0.09 0.22 0.14 −0.40

Proportional controller values for the torso angles – roll 0.1 0.01 0.20 0.01 −0.08

Proportional controller values for controlling COM (x) 1.8 1.19 1.37 1.28 1.59

Proportional controller values for controlling COM (y) 0.18 0.63 0.64 1.16 0.65

Proportional controller values for controlling COM (z) 0.01 0.1 0.09 0.17 0.25

Proportional controller values for moving arms (x) 0.38 −0.31 −0.38 −0.05 −0.04

Proportional controller values for moving arms (y) 0.57 0.16 0.57 0.44 0.27

and a relatively low number of stops and low variation in step
direction. The purple team had relatively high variation along
all dimensions. Figure 3A depicts examples of paths from each
training course. As a baseline, we trained an additional team on
a straight-line training course, just as the line-trained team in
Tournament 1.

Results and Discussion
Overall, natural differences in the variety of infants’ paths resulted
in a consistent pattern of wins and losses in RoboCup, suggesting
that some combinations of variation are more beneficial for

functional walking than others. Final values of the optimized
walking parameters (Table 4) indicate that although all teams
were trained on variable paths, variability in more aspects of
walking leads to improved whole-body control (e.g., longer
constant offset between the torso and the feet, higher proportion
of time the swing foot spends in the air, torso higher from the
ground) and faster movement (e.g., shorter duration of single
steps).

The purple-trained team won Tournament 2, with 11,786
League points, winning 3,420 games, tying 1,526, and losing
only 54. The red-trained team came in second, followed by
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TABLE 5 | Scoring table for Tournament 2 describing results across all games.

Team League points Wins Losses Ties Goals scored (M ± SE) Goals conceded (M ± SE)

Purple 11,786 3,420 54 1,526 1.46 ± 0.02 0.02 ± 0.001

Red 9,307 2,407 507 2,086 0.89 ± 0.02 0.13 ± 0.01

Blue 8,052 1,982 912 2,106 0.74 ± 0.01 0.23 ± 0.01

Yellow 7,561 1,795 1,029 2,176 0.63 ± 0.01 0.26 ± 0.01

Green 3,655 912 3,169 919 0.30 ± 0.01 1.15 ± 0.02

Lines 155 0 4,845 155 0 ± 0 2.26 ± 0.01

the blue-trained team, yellow-trained team, green-trained team,
and the line-trained team. As expected, the line-trained team
performed worse than any team trained on infant paths. The
line-trained team never beat an infant-trained team, scored no
goals, and accumulated 155 ties (see Table 5 and number of
league points in Figure 4A). Figure 4B depicts the wins of each
team (rows) against all possible opponents (columns). The blue
gradients across rows show the patterns of wins and losses.
The win/loss matrix is not symmetrical because teams may
tie.

The purple-trained team also had the highest average goal
difference across the tournament [F(5, 29994) = 5281.72, p< 0.001,
one-way ANOVA on average goal difference]. As shown in
Figure 4C, the purple-trained team was followed by the red-
trained team, the blue-trained team, the yellow trained team,
the green-trained team, and the line-trained team, respectively
(all Bonferroni post-hoc tests ps < 0.001). Figure 4D shows
the goals scored (rows) and conceded (columns) for each set
of competitions (see Table 6 for pairwise comparisons). Taken
together, the results from Tournament 2 suggest that teams
trained on a training course with high variability across most
features fared better than teams trained on a course that had low
variability on at least one feature.

GENERAL DISCUSSION

We combined the power of robotic modeling with the power
of behavioral observation in infancy research. Specifically, we
tested the functional utility of varied paths in infant walking using
simulated soccer-playing robots, a model that shares many of
the critical components of real-world infant walking (embodied
agents moving purposefully through a changing environment).
We found that optimizing simulated robot walking using more
varied paths in a solitary, uniform training environment led to
better functional outcomes in the new context of soccer, where
the robots moved through a changeable environment filled with
other agents. We suggest that infants’ early experience with
varied walking paths constitutes a natural training set that is a
feature—not a bug—of learning functional walking.

The Importance of Variety for Functional
Performance: Tournament 1
With a changing body in a changing environment, learning
fixed motor solutions is maladaptive (Adolph and Robinson,
2015). Instead, infants must learn to tailor their motor actions

to dynamic body-environment relations. Indeed, experienced
walking infants display tremendous flexibility and generativity.
They distinguish safe from risky ground within two degrees of
slant while navigating slopes, and one centimeter of accuracy
while crossing drop-offs, gaps, and bridges (for reviews, see
Adolph and Robinson, 2015; Adolph and Franchak, 2016).
They update their assessment of whether slopes are walkable to
take heavy shoulder-packs or slippery-soled shoes into account
(Adolph andAvolio, 2000; Adolph et al., 2010). Theymodify their
walking patterns (e.g., by altering step length and velocity) while
approaching and crossing obstacles (Gill et al., 2009; Kretch and
Adolph, 2017). And they find new solutions on the fly such as
scooting down steep slopes, backing down drop-offs, and using
handrails to cross narrow bridges (Adolph and Robinson, 2015).

How do infants learn such flexible, functional motor
behaviors? A central principle in motor control is that variable
practice minimizes the tendency to learn a fixed motor solution
for a specific motor problem and encourages generalization to
new variants of the task (Schmidt, 1975). But few laboratory
training studies have focused on infant motor skill acquisition,
and none involved a training regimen comparable to the
magnitude and variety of infants’ everyday walking experiences.
Outside the laboratory, the flux of everyday life is replete
with varied walking paths, varied footwear and clothing, varied
ground surfaces and layouts, and varied tasks and activities.
Infants’ natural walking experience—“variable practice” writ
large—may ensure that they learn flexible rather than fixed
behaviors.

In the current studies, varied practice was operationally
defined as variations in walking paths. Accordingly, in
Tournament 1, teams with no training, or teams trained to
walk along a straight line performed worst. Their narrow
experiences did not prepare them to deal with the variety of
movements needed to succeed in soccer. Robots trained on more
varied paths (circles, squares) faired better. These teams had
more experience turning, controlling the two sides of the body
differently, and stopping to change direction. The infant-trained
team experienced the most varied paths and performed best.
Experiencing a wider variety of paths during training better led
to more functional and adaptive performance in soccer.

Variety Is a Feature of Learning to Walk in
Infants: Tournament 2
Every infant walking path was varied, and each dimension
of variation was present in every robot team. However,
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FIGURE 4 | Tournament 2 results: individual differences in infant paths. (A) Accumulated league points, indicating consistency of training success. (B) Each team’s

wins (rows) against all possible opponents (columns). Color denotes the number of wins and does not include ties between teams. (C) Average goal difference,

indicating magnitude of training success. The purple team scored more goals and conceded fewer than all other teams. (D) The average number of goals scored by

each team (rows) against all other opponents (columns). Teams that had high variability in path shape, step direction, and bout length, and had a higher number of

starts and stops were more likely to win.

because the dimensions are interdependent, high variability
on all dimensions is unlikely. For example, a high number
of stops likely limits the number of steps in a path, and
consequently limits the variability in path shape and step
direction. This interdependence among aspects of path variation
is a fundamental characteristic of infant walking. Thus, no
single feature of variation can explain the pattern of results
in Tournament 2, and no single feature was more important

than any other. Instead, the relative combination of dimensions
differed among training regimens and these differences were
crucial for functional performance. Teams that performed
best showed high variability on multiple dimensions of path
variation and did not show low variability on any dimension.
It is important to note that we tested variability in path
features and not the average values. For example, high
variability in path curvature does not imply more curved
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TABLE 6 | Pairwise comparisons for the average goal differences in Tournament 2.

Competition M SE t p

Green v. lines 1.51 0.03 59.11 <0.001

Yellow v. lines 2.06 0.03 71.55 <0.001

Blue v. lines 2.25 0.03 83.57 <0.001

Red v. lines 2.39 0.03 89.93 <0.001

Purple v. lines 3.10 0.03 105.55 <0.001

Yellow v. green 0.84 0.03 32.13 <0.001

Blue v. green 1.13 0.03 41.09 <0.001

Red v. green 1.39 0.03 48.40 <0.001

Purple v. green 2.36 0.03 68.52 <0.001

Blue v. yellow 0.06 0.02 2.93 0.003

Red v. yellow 0.26 0.02 12.66 <0.001

Purple v. yellow 0.69 0.02 28.79 <0.001

Red v. blue 0.20 0.02 10.68 <0.001

Purple v. blue 0.20 0.02 28.68 <0.001

Purple v. red 0.41 0.02 18.60 <0.001

bouts overall, but rather a wide range of path shapes—
some that were straighter and some that were more curved.
Findings from Tournament 2 show that varied experience
with multiple walking dimensions results in better functional
walking.

Is training on the most varied infant paths sufficient to
beat the current RoboCup world champions? Possibly. The
winning 2017 robot soccer team, “UT-Austin Villa,” in the
relevant division (3D simulation league) was also optimized
for varied walking using a hand selected training course
(MacAlpine and Stone, 2018). There are many ways to
manipulate training paths to optimize variability. Future work
should investigate which specific aspects of variable walking
helped our infant team outscore the geometrically trained
teams. Simulated “infant-based” training paths that isolate
one aspect of variability may help to parse the necessarily
interdependent aspects of variability found in real infant
walking paths. Future studies along these lines may provide
important insights for AI researchers and roboticists about
how to improve walking in robots. Regardless, our findings
focus on infants and suggest that their everyday walking
experience serves as useful training set for functional walking.
Through incidental learning in the course of free play, infants

likely learn to walk using a highly adaptive natural training
regimen.

CONCLUSION

What is the best way to learn a generative skill, like
functional walking? Answers to this kind of developmental
question require appropriate models. Walking and other flexible,
adaptive motor skills develop in real bodies, performing real
tasks, in real environments. Robots are good models for
development because they, like infants, must learn to cope
with a body embedded in an environment (Adolph and

Robinson, 2015). Similarly, RoboCup is a good domain to test
functional walking performance because it requires robots to
update their actions in response to a dynamically changing
environment. Using robots allowed us to demonstrate that
variety in everyday spontaneous activity leads to improved
functional performance. Reciprocally, we suggest that AI
researchers may benefit by observing everyday learning in
human infants and other animals that acquire functional,
adaptive performance.
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