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In this paper, we propose an active perception method for recognizing object categories

based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables

a robot to form object categories using multimodal information, e.g., visual, auditory,

and haptic information, which can be observed by performing actions on an object.

However, performing many actions on a target object requires a long time. In a real-time

scenario, i.e., when the time is limited, the robot has to determine the set of actions

that is most effective for recognizing a target object. We propose an active perception

for MHDP method that uses the information gain (IG) maximization criterion and lazy

greedy algorithm. We show that the IG maximization criterion is optimal in the sense that

the criterion is equivalent to a minimization of the expected Kullback–Leibler divergence

between a final recognition state and the recognition state after the next set of actions.

However, a straightforward calculation of IG is practically impossible. Therefore, we derive

a Monte Carlo approximation method for IG by making use of a property of the MHDP.

We also show that the IG has submodular and non-decreasing properties as a set

function because of the structure of the graphical model of the MHDP. Therefore, the

IG maximization problem is reduced to a submodular maximization problem. This means

that greedy and lazy greedy algorithms are effective and have a theoretical justification

for their performance. We conducted an experiment using an upper-torso humanoid

robot and a second one using synthetic data. The experimental results show that the

method enables the robot to select a set of actions that allow it to recognize target objects

quickly and accurately. The numerical experiment using the synthetic data shows that

the proposed method can work appropriately even when the number of actions is large

and a set of target objects involves objects categorized into multiple classes. The results

support our theoretical outcomes.

Keywords: active perception, cognitive robotics, topic model, multimodal machine learning, submodular

maximization

1. INTRODUCTION

Active perception is a fundamental component of our cognitive skills. Human infants
autonomously and spontaneously perform actions on an object to determine its nature. The sensory
information that we can obtain usually depends on the actions performed on the target object.
For example, when people find a gift box placed in front of them, they cannot perceive its weight
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without holding the box, and they cannot determine its sound
without hitting or shaking it. In other words, we can obtain
sensory information about an object by selecting and executing
actions to manipulate it. Adequate action selection is important
for recognizing objects quickly and accurately. This example
about a human also holds for a robot. An autonomous robot
that moves and helps people in a living environment should
also select adequate actions to recognize target objects. For
example, when a person asks an autonomous robot to bring an
empty plastic bottle, the robot has to examine many objects by
applying several actions (Figure 1). This type of information is
important, because our object categories are formed on the basis
of multimodal information, i.e., not only visual information is
used, but also auditory, haptic, and other information. Therefore,
a computational model of the active perception should be
consistently based on a computational model for multimodal
object categorization and recognition.

In spite of the wide range of studies about active perception
(e.g., Borotschnig et al., 2000; Dutta Roy et al., 2004; Eidenberger
and Scharinger, 2010; Krainin et al., 2011; Ferreira et al., 2013)
and multimodal categorization for robots (e.g., Nakamura et al.,
2007, 2011a; Sinapov and Stoytchev, 2011; Celikkanat et al., 2014;
Sinapov et al., 2014), active perception methods for a robot,
i.e., action selection methods for perception for unsupervised
multimodal categorization, have not been sufficiently explored
(see section 2).

This paper considers the active perception problem for
unsupervised multimodal object categorization under the
condition that a robot has already obtained several action
primitives that are used to examine target objects. In the
context of this study, we need to study active perception
on an unsupervised multimodal categorization method having
generality as much as possible because it is believed that
unsupervised multimodal categorization is important for future
language learning by robots, and the findings obtained in this
study should be able to be applied to other unsupervised
multimodal categorization models. It was suggested that a child
forms a category based on his/her sensorimotor experience
before learning a word for the category in a Bayesian manner,
and learning the word is a matter of attaching a new label to
this preexisting category (Kemp et al., 2010). The multimodal
hierarchical Dirichlet process (MHDP) is a mathematically very
general and sophisticated nonparametric Bayesian multimodal
categorization method. Therefore, we adopt MHDP proposed by
Nakamura et al. (2011b) as a representative computational model
for unsupervised multimodal object categorization.

We develop an active perception method based on
the MHDP in this paper. The MHDP is a sophisticated,
fully Bayesian, probabilistic model for multimodal object
categorization (Nakamura et al., 2011b) that is developed by
enabling hierarchical Dirichlet process (HDP) (Teh et al., 2006)
to have multimodal emission distributions corresponding to
multiple sensor information1. Nakamura et al. (2011b) showed
that the MHDP enables a robot to form object categories

1HDP is a nonparametric Bayesian extension of latent Dirichlet allocation

(LDA) (Blei et al., 2003), which has been widely used for document-word

using multimodal information, i.e., visual, auditory, and haptic
information, in an unsupervised manner. The MHDP can
estimate the number of object categories as well because of the
nature of Bayesian nonparametrics.

This paper describes a new MHDP-based active perception
method for multimodal object recognition based on object
categories formed by a robot itself. We found that an active
perception method that has a good theoretical nature, i.e., the
performance of the greedy algorithm is theoretically guaranteed
(see section 4), can be derived for MHDP. Our formulation is
based on a hierarchical Bayesian model. If a cognitive system
of a robot is modeled by using hierarchical Bayesian model, a
recognition state are usually represented by posterior distribution
over latent variables, e.g., object categories. The purpose of an
active perception is to infer appropriate posterior distribution
with a small number of actions. In our approach, we propose
an action selection method that can reduce the distance between
inferred posterior distributions and true posterior distributions.

In this study, we define the active perception problem in
the context of unsupervised multimodal object categorization as
following. Which set of actions should a robot take to recognize a
target object as accurately as possible under the constraint that
the number of actions is restricted2? Our MHDP-based active
perception method uses an IG maximization criterion, Monte
Carlo approximation, and the lazy greedy algorithm. In this
paper, we show that the MHDP provides the following three
advantages for deriving an efficient active perception method.

1. The IG maximization criterion is optimal in the sense
that a selected set of actions minimizes the expected
Kullback–Leibler (KL) divergence between the final posterior
distribution estimated using the information regarding all
modalities and the posterior distribution of the category
estimated using the selected set of actions (see section 4.1).

2. The IG has a submodular and non-decreasing property as a
set function. Therefore, for performance, the greedy and lazy
greedy algorithms are guaranteed to be near-optimal strategies
(see section 4.2).

3. A Monte Carlo approximation method for the IG can be
derived by exploiting MHDP’s properties (see section 4.3).

Although the above properties follow from the theoretical
characteristics of the MHDP, this has never been pointed out in
previous studies.

The main contributions of this paper are that we

• develop an MHDP-based active perception method, and
• show its effectiveness through experiments using an upper-

torso humanoid robot and synthetic data.

The proposed active perception method can be used for general
purposes, i.e., not only for robots but also for other target

clustering. The nonparametric Bayesian extension allows HDP to estimate the

number of topics, i.e., clusters, as well.
2We can consider an extension of this problem by introducing different cost to

each action, i.e., different action requires different time and energy. However, for

simplicity, this paper focuses on the problem in which cost for each action is the

same.
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FIGURE 1 | Overview of active perception for multimodal object category recognition. The numbers attached to the arrows show a sample of the order of action

selection by the robot.

domains to which the MHDP can be applied. In addition, The
proposed method can be easily extended for other multimodal
categorization methods with similar graphical models, e.g.,
multimodal latent Dirichlet allocation (MLDA) (Nakamura et al.,
2009). However, in this paper, we focus on the MHDP and the
robot active perception scenario, and explain our method on the
basis of this task.

The remainder of this paper is organized as follows. Section 2
describes the background andwork related to our study. Section 3
briefly introduces the MHDP, proposed by Nakamura et al.
(2011b), which enables a robot to obtain object categories
by fusing multimodal sensor information in an unsupervised
manner. Section 4 describes our proposed action selection
method. Section 5 discusses the effectiveness of the action
selection method through experiments using an upper-torso
humanoid robot. Section 6 describes a supplemental experiment
using synthetic data. Section 7 concludes this paper.

2. BACKGROUND AND RELATED WORK

2.1. Multimodal Categorization
The human capability for object categorization is a fundamental
topic in cognitive science (Barsalou, 1999). In the field of robotics,
adaptive formation of object categories that considers a robot’s
embodiment, i.e., its sensory-motor system, is gathering attention
as a way to solve the symbol grounding problem (Harnad, 1990;
Taniguchi et al., 2016).

Recently, various computational models and machine
learning methods for multimodal object categorization have
been proposed in artificial intelligence, cognitive robotics, and
related research fields (Roy and Pentland, 2002; Natale et al.,
2004; Nakamura et al., 2007, 2009, 2011a,b, 2014; Iwahashi
et al., 2010; Sinapov and Stoytchev, 2011; Araki et al., 2012;
Griffith et al., 2012; Ando et al., 2013; Celikkanat et al., 2014;
Sinapov et al., 2014). For example, Sinapov and Stoytchev (2011)

proposed a graph-based multimodal categorization method
that allows a robot to recognize a new object by its similarity
to a set of familiar objects. They also built a robotic system
that categorizes 100 objects from multimodal information in a
supervised manner (Sinapov et al., 2014). Celikkanat et al. (2014)
modeled the context in terms of a set of concepts that allow
many-to-many relationships between objects and contexts using
LDA.

Our focus of this paper is not a supervised learning-based,
but an unsupervised learning-based multimodal categorization
method and an active perception method for categories formed
by the method. Of these, a series of statistical unsupervised
multimodal categorization methods for autonomous robots have
been proposed by extending LDA, i.e., a topic model (Nakamura
et al., 2007, 2009, 2011a,b, 2014; Araki et al., 2012; Ando et al.,
2013). All these methods are Bayesian generative models, and
the MHDP is a representative method of this series (Nakamura
et al., 2011b). The MHDP is an extension of the HDP, which was
proposed by Teh et al. (2006), and the HDP is a nonparametric
Bayesian extension of LDA (Blei et al., 2003). Concretely,
the generative model of the MHDP has multiple types of
emissions that correspond to various sensor data obtained
through various modality inputs. In the HDP, observation data
are usually represented as a bag-of-words (BoW). In contrast,
the observation data in the MHDP use bag-of-features (BoF)
representations for multimodal information. BoF is a histogram-
based feature representation that is generated by quantizing
observed feature vectors. Latent variables that are regarded as
indicators of topics in the HDP correspond to object categories
in the MHDP. Nakamura et al. (2011b) showed that the MHDP
enables a robot to categorize a large number of objects in a
home environment into categories that are similar to human
categorization results.

To obtain multimodal information, a robot has to perform
actions and interact with a target object in various ways, e.g.,
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grasping, shaking, or rotating the object. If the number of
actions and types of sensor information increase, multimodal
categorization and recognition can require a longer time. When
the recognition time is limited and/or if quick recognition is
required, it becomes important for a robot to select a small
number of actions that are effective for accurate recognition.
Action selection for recognition is often called active perception.
However, an active perception method for the MHDP has not
been proposed. This paper aims to provide an active perception
method for the MHDP.

2.2. Active Perception
Generally, active perception is one of the most important
cognitive capabilities of humans. From an engineering viewpoint,
active perception has many specific tasks, e.g., localization,
mapping, navigation, object recognition, object segmentation,
and self–other differentiation.

In machine learning, active learning is defined as a task in
which a method interactively queries an information source
to obtain the desired outputs at new data points to learn
efficiently Settles (2012). Active learning algorithms select an
unobserved input datum and ask a user (labeler) to provide a
training signal (label) in order to reduce uncertainty as quickly
as possible (Cohn et al., 1996; Muslea et al., 2006; Settles, 2012).
These algorithms usually assume a supervised learning problem.
This problem is related to the problem in this paper, but is
fundamentally different.

Historically, active vision, i.e., active visual perception, has
been studied as an important engineering problem in computer
vision. Dutta Roy et al. (2004) presented a comprehensive survey
of active three-dimensional object recognition. For example,
Borotschnig et al. (2000) proposed an active vision method in a
parametric eigenspace to improve the visual classification results.
Denzler and Brown (2002) proposed an information theoretic
action selection method to gather information that conveys the
true state of a system through an active camera. They used
the mutual information (MI) as a criterion for action selection.
Krainin et al. (2011) developed an active perception method in
which a mobile robot manipulates an object to build a three-
dimensional surface model of it. Their method uses the IG
criterion to determine when and how the robot should grasp the
object.

Modeling and/or recognizing a single object as well as
modeling a scene and/or segmenting objects are also important
tasks in the context of robotics. Eidenberger and Scharinger
(2010) proposed an active perception planning method for
scene modeling in a realistic environment. van Hoof et al.
(2012) proposed an active scene exploration method that enables
an autonomous robot to efficiently segment a scene into
its constituent objects by interacting with the objects in an
unstructured environment. They used IG as a criterion for action
selection. InfoMax control for acoustic exploration was proposed
by Rebguns et al. (2011).

Localization, mapping, and navigation are also targets of
active perception. Velez et al. (2012) presented an online
planning algorithm that enables a mobile robot to generate plans
that maximize the expected performance of object detection.

Burgard et al. (1997) proposed an active perception method for
localization. Action selection is performed by maximizing the
weighted sum of the expected entropy and expected costs. To
reduce the computational cost, they only consider a subset of
the next locations. Roy and Thrun (1999) proposed a coastal
navigation method for a robot to generate trajectories for its goal
by minimizing the positional uncertainty at the goal. Stachniss
et al. (2005) proposed an information-gain-based exploration
method for mapping and localization. Correa and Soto (2009)
proposed an active perception method for a mobile robot with
a visual sensor mounted on a pan-tilt mechanism to reduce
localization uncertainty. They used the IG criterion, which was
estimated using a particle filter.

In addition, various studies on active perception by a robot
have been conducted (Natale et al., 2004; Ji and Carin, 2006;
Schneider et al., 2009; Tuci et al., 2010; Saegusa et al., 2011;
Fishel and Loeb, 2012; Pape et al., 2012; Sushkov and Sammut,
2012; Gouko et al., 2013; Hogman et al., 2013; Ivaldi et al., 2014;
Zhang et al., 2017). In spite of a large number of contributions
about active perception, few theories of active perception for
multimodal object category recognition have been proposed. In
particular, an MHDP-based active perception method has not
yet been proposed, although the MHDP-based categorization
method and its series have obtained many successful results and
extensions.

2.3. Active Perception for Multimodal
Categorization
Sinapov et al. (2014) investigated multimodal categorization
and active perception by making a robot perform 10 different
behaviors; obtain visual, auditory, and haptic information;
explore 100 different objects, and classify them into 20 object
categories. In addition, they proposed an active behavior
selection method based on confusion matrices. They reported
that the method was able to reduce the exploration time by half
by dynamically selecting the next exploratory behavior. However,
their multimodal categorization is performed in a supervised
manner, and the theory of active perception is still heuristic. The
method does not have theoretical guarantees of performance.

IG-based active perception is popular, as shown above, but
the theoretical justification for using IG in each task is often
missing in many robotics papers. Moreover, in many cases in
robotics studies, IG cannot be evaluated directly, reliably, or
accurately. When one takes an IG criterion-based approach, how
to estimate the IG is an important problem. In this study, we
focus on MHDP-based active perception and develop an efficient
near-optimal method based on firm theoretical justification.

3. MULTIMODAL HIERARCHICAL
DIRICHLET PROCESS FOR STATISTICAL
MULTIMODAL CATEGORIZATION

We assume that a robot forms object categories using the
MHDP from multimodal sensory data. In this section, we briefly
introduce the MHDP on which our proposed active perception
method is based (Nakamura et al., 2011b). The MHDP assumes
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that an observation node in its graphical model corresponds
to an action and its corresponding modality. Nakamura et al.
(2011b) employed three observation nodes in their graphical
model, i.e., haptic, visual, and auditory information nodes. Three
actions, i.e., grasping, looking around, and shaking, correspond
to these modalities, respectively. However, the MHDP can be
easily extended to a model with additional types of sensory
inputs. It is without doubt that autonomous robots will also gain
more types of action for perception. For modeling more general
cases, an MHDP with M actions is described in this paper. A
graphical model of the MHDP is illustrated in Figure 2. In this
section, we describe the MHDP briefly. For more details, please
refer to Nakamura et al. (2011b).

The indexm ∈ M (#(M) = M) in Figure 2 represents the type
of information that corresponds to an action for perception, e.g.,
hitting an object to obtain its sound, grasping an object to test its
shape and hardness, or looking at all of an object by rotating it.
We assume that a robot has action primitives and it can execute
one of the actions by selecting the index of the action primitives.
The observation xmjn ∈ Xm is the m-th modality’s n-th feature

for the j-th target object. Xm represents a set of observation of
m-th modality. The observation xmjn is assumed to be drawn from

a categorical distribution whose parameter is θm
k
, where k is an

index of a latent topic. Each index k is drawn from a categorical
distribution whose parameter is β that is drawn from a Dirichlet
distribution parametrized by γ . Parameter θm

k
is assumed to be

drawn from the Dirichlet prior distribution whose parameter is
αm
0 . The MHDP assumes that a robot obtains each modality’s

sensory information as a BoF representation. Each latent variable
tmjn is drawn from a topic proportion, i.e., a parameter of a

multinomial distribution, of the j-th object πj whose prior is a
Dirichlet distribution parametrized by λ.

Similarly to the generative process of the original HDP (Teh
et al., 2006), the generative process of theMHDP can be described
as a Chinese restaurant franchise, which is the name of a special
type of probabilistic process in Bayesian nonparametrics (Teh
et al., 2005). The learning and recognition algorithms are both
derived using Gibbs sampling. In its learning process, the MHDP
estimates a latent variable tmjn for each feature of the j-th object

and a topic index kjt for each latent variable t. The combination
of latent variable and topic index corresponds to a topic in
LDA (Blei et al., 2003). Using the estimated latent variables, the
categorical distribution parameter θm

k
and topic proportion of the

j-th object πj are drawn from the posterior distribution.
The selection procedure for latent variable tmjn is as follows. The

prior probability that xmjn selects t is

P(tmjn = t|λ) =







∑

m wmNm
jt

λ+
∑

m wmNm
j −1

, (t = 1, · · · ,Tj),

λ
λ+

∑

m wmNm
j −1

, (t = Tj + 1),

where wm is a weight for the m-th modality, To balance the
influence of different modalities, wm are set as hyperparameters.
The weight wm increases the influence of the modality m on
multimodal category formation. Nm

jt is the number of m-th

modality observations that are allocated to t in the j-th object,

and λ is a hyperparameter. In the Chinese restaurant process,
if the number of observed features Njt =

∑

m wmNm
jt that

are allocated to t increases, the probability at which a new
observation is allocated to the latent variable t increases. Using
the prior distribution, the posterior probability that observation
xmjn is allocated to the latent variable t becomes

P(tmjn = t|Xm, λ) =
P(xmjn|X

m
k = kjt

)P(tmjn = t|λ)

P(xmjn|X
m \ {xmjn}, λ)

∝







P(xmjn|X
m
k = kjt

)

∑

m wmNm
jt

λ+
∑

m wmNm
j −1

, (t = 1, · · · ,Tj),

P(xmjn|X
m
k = kjt

) λ
λ+

∑

m wmNm
j −1

, (t = Tj + 1),

where Nm
j is the number of the m-th modality’s observations

about the j-th object. The set of observations that correspond
to the m-th modality and have the k-th topic in any object are
represented by Xm

k
.

In the Gibbs sampling procedure, a latent variable for each
observation is drawn from the posterior probability distribution.
If t = Tj + 1, a new observation is allocated to a new latent
variable. The dish selection procedure is as follows. The prior
probability that the k-th topic is allocated on the t-th latent
variable becomes

P(kjt = k|γ ) =

{
Mk

γ + M−1 , (k = 1, · · · ,K),
γ

γ + M−1 , (k = K + 1),

where K is the number of topic types, and Mk is the number of
latent variables on which the k-th topic is placed. Therefore, the
posterior probability that the k-th topic is allocated on the t-th
latent variable becomes

P(kjt = k|X, γ ) = P(Xjt|Xk)P(kjt = k|γ )

=

{

P(Xjt|Xk)
Mk

γ + M−1 , (k = 1, · · · ,K),

P(Xjt|Xk)
γ

γ + M−1 , (k = K + 1)

where X = ∪mX
m, Xk = ∪mX

m
k
, and Xjt is the set of the j-th

object’s observations allocated to the t-th latent variable. A topic
index for the latent variable t for the j-th object is drawn using the
posterior probability, where γ is a hyperparameter. If k = K + 1,
a new topic is placed on the latent variable.

By sampling tmjn and kjt , the Gibbs sampler performs

probabilistic object clustering:

tmjn ∼ P(tmjn|X
−mjn, λ), (1)

kjt ∼ P(kjt|X
−jt , γ ), (2)

where X−mjn = X \ {xmjn}, and X−jt = X \ Xjt . By sampling tmjn
for each observation in every object using (1) and sampling kjt
for each latent variable t in every object using (2), all of the latent
variables in the MHDP can be inferred.

If tmjn and kjt are given, the probability that the j-th object is

included in the k-th category becomes

P(k|Xj) =
6

Tj
t = 1δk(kjt)

∑

m wmNm
jt

∑

m wmNm
j

, (3)
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FIGURE 2 | Graphical representation of an MHDP with M modalities corresponding to actions for perception.

where Xj = ∪mX
m
j , w

m is the weight for the m-th modality and

δa(x) is a delta function.
When a robot attempts to recognize a new object after the

learning phase, the probability that feature xmjn is generated from

the k-th topic becomes

P(xmjn|X
m
k ) =

wmNm
kxmjn
+ αm

0

wmNm
k
+ dmαm

0

,

where dm denotes the dimension of them-th modality input, and
Nm
kxmjn

represents the number of features xmjn that is corresponding

to the index k. Topic kt allocated to t for a new object is sampled
from

kt ∼ P(kjt = k|X, γ ) ∝ P(Xjt|Xk)
γ

γ +M − 1
.

These sampling procedures play an important role in the Monte
Carlo approximation of our proposed method (see section 4.2.).

For a more detailed explanation of the MHDP, please
refer to Nakamura et al. (2011b). Basically, a robot can
autonomously learn object categories and recognize new objects
using the multimodal categorization procedure described above.
The performance and effectiveness of the method was evaluated
in the paper.

4. ACTIVE PERCEPTION METHOD

4.1. Basic Formulation
A robot should have already conducted several actions and
obtained information from several modalities when it attempts to
select next action set for recognizing a target object. For example,
visual information can usually be obtained by looking at the
front face of the j-th object from a distance before interacting
with the object physically. We assume that a robot has already
obtained information corresponding to a subset of modalities
moj ⊂ M, where the subscript o means“originally” obtained
modality information. When a robot faces a new object and has
not obtained any information,moj = ∅.

The purpose of object recognition in multimodal
categorization is different from conventional supervised
learning-based pattern recognition problems. In supervised
learning, the recognition result is evaluated by checking
whether the output is the same as the truth label. However,
in unsupervised learning, there are basically no truth labels.
Therefore, the performance of active perception should be
measured in a different manner.

The action set the robot selects is described as A =

{a1, a2, . . . , aNA} ∈ 2M\mo j , where 2M\mo j is a family of subsets
of M \moj, i.e., A ⊂ M \ moj, ai ∈ M \ moj and NA

represents the number of available actions. We consider an
effective action set for active perception to be one that largely
reduces the distance between the final recognition state after
the information from all modalities M is obtained and the
recognition state after the robot executes the selected action setA.
The recognition state is represented by the posterior distribution

P(zj|X
mo j∪A

j ). Here, zj = {{kjt}1≤t≤Tj , {t
m
jn}m∈M,1≤n≤Nm

j
} is a

latent variable representing the j-th object’s topic information,
whereXA

j = ∪m∈AX
m
j ,X

m
j = {x

m
j1 , . . . , x

m
jn, . . . , x

m
jNm

j
}. Probability

P(zj|X
mo j∪A

j ) represents the posterior distribution related to the

object category after taking actionsmoj and A.
The final recognition state, i.e., posterior distribution

over latent variables after obtaining the information from
all modalities M, becomes P(zj|X

M
j ). The purpose of active

perception is to select a set of actions that can estimate the
posterior distribution most accurately. When L actions can be
executed, if we employ KL divergence as the metric of the
difference between the two probability distributions,

minimize
A∈F

mo j
L

KL
(

P(zj|X
M
j ), P(zj|X

mo j∪A

j )
)

(4)

is a reasonable evaluation criterion for realizing effective active

perception, where F
mo j

L = {A|A ⊂ M \moj,NA ≤ L} is a feasible
set of actions.

However, neither the true XM
j nor X

mo j∪A

j can be observed

before taking A on the j-th target object, and hence cannot be
used at the moment of action selection. Therefore, a rational
alternative for the evaluation criterion is the expected value of
the KL divergence at the moment of action selection:

minimize
A∈F

mo j
L

E
X
M\mo j
j |X

mo j
j

[KL
(

P(zj|X
M
j ), P(zj|X

mo j∪A

j )
)

]. (5)

Here, we propose to use the IG maximization criterion to select
the next action set for active perception:

A∗j = argmax

A∈F
mo j
L

IG(zj;X
A
j |X

mo j

j ) (6)

= argmin

A∈F
mo j
L

E
XA
j |X

mo j
j

[KL
(

P(zj|X
mo j∪A

j ), P(zj|X
mo j

j )
)

], (7)
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where IG(X;Y|Z) is the IG of Y for X, which is calculated on the
basis of the probability distribution commonly conditioned by Z
as follows:

IG(X;Y|Z) = KL
(

P(X,Y|Z), P(X|Z)P(Y|Z)
)

.

By definition, the expected KL divergence is the same as IG(X;Y).
The definition of IG and its relation to KL divergence are as
follows.

IG(X;Y) = H(X)−H(X|Y)

= KL
(

P(X,Y), P(X)P(Y)
)

= EY [KL
(

P(X|Y), P(X)
)

].

The optimality of the proposed criterion (6) is supported by
Theorem 1.

Theorem 1. The set of next actions A ∈ F
mo j

L that maximizes the

IG(zj;X
A
j |X

mo j

j ) minimizes the expected KL divergence between

the posterior distribution over zj after all modality information has
been observed and after A has been executed.

argmin

A∈F
mo j
L

E
X
M\mo j
j |X

mo j
j

[KL
(

P(zj|X
M
j ), P(zj|X

mo j∪A

j )
)

]

= argmax

A∈F
mo j
L

IG(zj;X
A
j |X

mo j

j )

Proof: See Appendix A.

This theorem is essentially the result of well-known
characteristics of IG (see MacKay, 2003; Russo and Van Roy,
2016 for example). This means that maximizing IG is the optimal
policy for active perception in an MHDP-based multimodal
object category recognition task. As a special case, when only a
single action is permitted, the following corollary is satisfied.

Corollary 1.1. The next action m ∈ M \ moj that maximizes

IG(zj;X
m
j |X

mo j

j ) minimizes the expected KL divergence between

the posterior distribution over zj after all modality information has
been observed and after the action has been executed.

argmin
m∈M\mo j

E
X
M\mo j
j |X

mo j
j

[KL
(

P(zj|X
M
j ), P(zj|X

{m}∪mo j

j )
)

]

= argmax
m∈M\mo j

IG(zj;X
m
j |X

mo j

j ). (8)

Proof: By substituting {m} into A in Theorem 1, we can obtain
the corollary.

Using IG, the active perception strategy for the next single action
is simply described as follows:

m∗j = argmax
m∈M\mo j

IG(zj;X
m
j |X

mo j

j ). (9)

This means that the robot should select the action m∗j that can

obtain the X
m∗j
j that maximizes the IG for the recognition result

zj under the condition that the robot has already observed X
mo j

j .

However, we still have two problems, as follows.

1. The argmax operation in (6) is a combinatorial optimization
problem and incurs heavy computational cost when #(M\moj)
and L become large.

2. The calculation of IG(zj;X
A
j |X

mo j

j ) cannot be performed in a

straightforward manner.

Based on some properties of theMHDP, we can obtain reasonable
solutions for these two problems.

4.2. Sequential Decision Making as a
Submodular Maximization
If a robot wants to select L actions Aj = {a1, a2, . . . , aL} (ai ∈
M \ moj), it has to solve (6), i.e., a combinatorial optimization
problem. The number of combinations of L actions is #(M\mo j)CL,

which increases dramatically when the number of possible
actions #(M \ moj) and L increase. For example, Sinapov et al.
(2014) gave a robot 10 different behaviors in their experiment on
robotic multimodal categorization. Future autonomous robots
will have more available actions for interacting with a target
object and be able to obtain additional types of modality
information through these interactions. Hence, it is important to
develop an efficient solution for the combinatorial optimization
problem.

Here, the MHDP has advantages for solving this problem.

Theorem 2. The evaluation criterion for multimodal active

perception IG(zj;X
A
j |X

mo j

j ) is a submodular and non-decreasing

function with regard to A.

Proof: As shown in the graphical model of the MHDP in
Figure 2, the observations for eachmodalityXm

j are conditionally

independent under the condition that a set of latent variables
zj = {{kjt}1≤t≤Tj , {t

m
jn}m∈M,1≤n≤Nm

j
}is given. This satisfies the

conditions of the theorem by Krause and Guestrin (2005).

Therefore, IG(zj;X
m
j |X

mo j

j ) is a submodular and non-decreasing

function with regard to Xm
j .

Submodularity is a property similar to the convexity of a real-
valued function in a vector space. If a set function F :V → R
satisfies

F(A ∪ x)− F(A) ≥ F(A′ ∪ x)− F(A′),

where V is a finite set ∀A ⊂ A′ ⊆ V and x /∈ A, the set function
F has submodularity and is called a submodular function.

Function IG is not always a submodular function. However,
Krause et al. proved that IG(U;A) is submodular and non-
decreasing with regard to A ⊆ S if all of the elements of S are
conditionally independent under the condition that U is given.
With this theorem, Krause and Guestrin (2005) solved the sensor
allocation problem efficiently. Theorem 2means that the problem
(6) is reduced to a submodular maximization problem.

It is known that the greedy algorithm is an efficient strategy
for the submodular maximization problem. Nemhauser et al.
(1978) proved that the greedy algorithm can select a subset
that is at most a constant factor (1 − 1/e) worse than the
optimal set, if the evaluation function F(A) is submodular, non-
decreasing, and F(∅) = 0, where F(·) is a set function, and A
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is a set. If the evaluation function is a submodular set function,
a greedy algorithm is practically sufficient for selecting subsets
in many cases. In sum, a greedy algorithm gives a near-optimal
solution. However, the greedy algorithm is still inefficient because
it requires an evaluation of all choices at each step of a sequential
decision making process.

Minoux (1978) proposed lazy greedy algorithm to make the
greedy algorithm more efficient for the submodular evaluation
function. The lazy greedy algorithm can reduce the number
of evaluations by using the characteristics of a submodular
function.

4.3. Monte Carlo Approximation of IG
Equations (6) and (9) provide a robot with an appropriate
criterion for selecting an action to efficiently recognize a target
object. However, at first glance, it looks difficult to calculate
the IG. First, the calculation of the expectation procedure
E
XA
j |X

mo j
j

[·] requires a sum operation over all possible XA
j . The

number of possible XA
j exponentially increases when the number

of elements in the BoF increases. Second, the calculation of

P(zj|X
A∪mo j

j ) for each possible observation XA
j requires the

same computational cost as recognition in the multimodal
categorization itself. Therefore, the straightforward calculation
for solving (9) is computationally impossible in a practical
sense.

However, by exploiting a characteristic property of theMHDP,
a Monte Carlo approximation can be derived. First, we describe
IG as the expectation of a logarithm term.

IG(zj;X
m
j |X

mo j

j ) =
∑

zj , X
m
j

P(zj,X
m
j |X

mo j

j ) log
P(zj,X

m
j |X

mo j

j )

P(zj|X
mo j

j )P(Xm
j |X

mo j

j )

= E
zj , X

m
j |X

mo j
j

[

log
P(zj,X

m
j |X

mo j

j )

P(zj|X
mo j

j )P(Xm
j |X

mo j

j )

]

. (10)

An analytic evaluation of (10) is also practically impossible.
Therefore, we adopt a Monte Carlo method. Equation (10)
suggests that an efficient Monte Carlo approximation can be
performed as shown below if we can sample

(z
[k]
j ,X

m[k]
j ) ∼ P(zj,X

m
j |X

mo j

j ), (k ∈ {1, . . . ,K}).

Fortunately, the MHDP provides a sampling procedure for

z
[k]
j ∼ P(zj|X

mo j

j ) and X
m[k]
j ∼ P(Xm

j |z
[k]
j ) in its original

paper (Nakamura et al., 2011b). In the context of multimodal

categorization by a robot, X
m[k]
j ∼ P(Xm

j |z
[k]
j ) is a prediction of

an unobserved modality’s sensation using observed modalities’
sensations, i.e., cross-modal inference. The sampling process

of (z
[k]
j ,X

m[k]
j ) can be regarded as a mental simulation by a

robot that predicts the unobserved modality’s sensation leading
to a categorization result based on the predicted sensation and

observed information.

(10) ≈
1

K

∑

k

log
P(z

[k]
j ,X

m[k]
j |X

mo j

j )

P(z
[k]
j |X

mo j

j )P(X
m[k]
j |X

mo j

j )

=
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

P(X
m[k]
j |X

mo j

j )
︸ ︷︷ ︸

∗

. (11)

In (11), P(X
m[k]
j |z

[k]
j ,X

mo j

j ) in the numerator can be easily

calculated because all the parent nodes of X
m[k]
j are given in the

graphical model shown in Figure 2. However, P(X
m[k]
j |X

mo j

j ) in

the denominator cannot be evaluated in a straightforward way.
Again, a Monte Carlo method can be adopted, as follows:

(∗) = P(X
m[k]
j |X

mo j

j ) =
∑

zj

P(X
m[k]
j |zj,X

mo j

j )P(zj|X
mo j

j )

= E
zj|X

mo j
j

[P(X
m[k]
j |zj,X

mo j

j )]

≈
1

K ′

∑

k′

P(X
m[k]
j |z

[k′]
j ,X

mo j

j ) (12)

where K ′ is the number of samples for the second Monte Carlo
approximation. Fortunately, in this Monte Carlo approximation
(12), we can reuse the samples drawn in the previous Monte
Carlo approximation efficiently, i.e., K ′ = K. By substituting (12)
for (11), we finally obtain the approximate IG for the criterion of
active perception, i.e., our proposed method, as follows:

IG(zj;X
m
j |X

mo j

j ) ≈
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑

k′ P(X
m[k]
j |z

[k′]
j ,X

mo j

j )
.

Note that the computational cost for evaluating IG becomes
O(K2). In summary, a robot can approximately estimate the
IG for unobserved modality information by generating virtual
observations based on observed data and evaluating their
likelihood.

4.4. MHDP-Based Active Perception
Methods
We propose the use of the greedy and lazy greedy algorithms for
selecting L actions to recognize a target object on the basis of
the submodular property of IG. The final greedy and lazy greedy
algorithms for MHDP-based active perception, i.e., our proposed
methods, are shown in Algorithms 1 and 2, respectively.

The main contribution of the lazy greedy algorithm is to
reduce the computational cost of active perception. The majority
of the computational cost originates from the number of times
a robot evaluates IGm for determining action sequences. When
a robot has to choose L actions, the brute-force algorithm that

directly evaluates all alternatives A ∈ F
mo j

L using (6) requires

#(M\mo j)CL evaluations of IG(zj;X
A
j |X

mo j

j ). In contrast, the greedy

algorithm requires {#(M \moj) + (#(M \moj) − 1) + . . . +

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2018 | Volume 12 | Article 22

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Taniguchi et al. MHDP-Based Active Perception

Algorithm 1 Greedy algorithm.

Require: MHDP is trained using a training data set.
The j-th object is found.

moj is initialized, and X
mo j

j is observed.

for l = 1 to L do

for allm ∈ M \moj do

for k = 1 to K do

Draw

(z
[k]
j ,X

m[k]
j ) ∼ P(zj,X

m
j |X

mo j

j )

end for

IGm ←
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑

k′ P(X
m[k]
j |z

[k′]
j ,X

mo j

j )

end for

m∗← argmax
m

IGm

Execute the m∗-th action to the j-th target object and obtain
Xm∗

j .

moj ← moj ∪ {m
∗}

end for

(#(M \moj)−L+1)} evaluations of IG(zj;X
m
j |X

mo j

j ), i.e.,O(ML).

The lazy greedy algorithm incurs the same computational cost as
the greedy algorithm only in the worst case. However, practically,
the number of re-evaluations in the lazy greedy algorithm
is quite small. Therefore, the computational cost of the lazy
greedy algorithm increases almost in proportion to L, i.e., almost
linearly. The memory requirement of the proposed method is
also quite small. Both the greedy and lazy greedy algorithms only
require memory for IGm for each modality and K samples for the
Monte Carlo approximation. These requirements are negligibly
small compared with the MHDP itself.

Note that the IGm is not the exact IG, but an approximation.
Therefore, the differences between IG and IGm may harm the
performance of greedy and lazy greedy algorithms to a certain
extent. However, the algorithms are expected to work practically.
We evaluated the algorithms through experiments.

5. EXPERIMENT 1: HUMANOID ROBOT

5.1. Conditions
An experiment using an upper-torso humanoid robot was
conducted to verify the proposed active perception method
in the real-world environment. In this experiment, RIC-
Torso, developed by the RT Corporation, was used (see
Figure 3). RIC-Torso is an upper-torso humanoid robot
that has two robot hands. We prepared an experimental
environment that is similar to the one in the original MHDP
paper (Nakamura et al., 2011b). The robot has four available

Algorithm 2 Lazy greedy algorithm.

Require: The MHDP is trained using a training data set.
The j-th object is found.

moj is initialized, and X
mo j

j is observed.
for allm ∈ M \moj do

for k = 1 to K do

Draw

(z
[k]
j ,X

m[k]
j ) ∼ P(zj,X

m
j |X

mo j

j )

end for

IGm ←
1

K

∑

k

log
P(X

m[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑

k′ P(X
m[k]
j |z

[k′]
j ,X

mo j

j )

end for

m∗ ← argmax
m

IGm

Execute the m∗-th action to the j-th target object and obtain
Xm∗

j .

moj ← moj ∪ {m
∗}

Prepare a stack S for the modality indices and initialize it.
for allm ∈ M \moj do

push(S, (m, IGm))
end for

for l = 1 to L− 1 do
repeat

S← descending_sort(S) // w.r.t. IGm

(m1, IGm1 )← pop(S) , (m2, IGm2 )← pop(S)
// Re-evaluate IGm1 as follows.
for k = 1 to K do

Draw

(z
[k]
j ,X

m1[k]
j ) ∼ P(zj,X

m1

j |X
mo j

j )

end for

IGm1 ←
1

K

∑

k

log
P(X

m1[k]
j |z

[k]
j ,X

mo j

j )

1
K

∑

k′ P(X
m1[k]
j |z

[k′]
j ,X

mo j

j )

push(S, (m2, IGm2 )), push(S, (m1, IGm1 ))
until IGm1 ≥ IGm2

m∗ ← m1

pop(S)
Execute the m∗-th action to the j-th target object and obtain
Xm∗

j .

moj ← moj ∪ {m
∗}

end for

actions and four corresponding modality information. The set
of modalities was M = {mv,mas,mah,mh}, which represent
visual information, auditory information obtained by shaking
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an object, one by hitting an object and haptic information,
respectively.

5.1.1. Visual Information (mv)
Visual information was obtained from the Xtion PRO LIVE set
on the head of the robot. The camera was regarded as the eyes of
the robot. The robot captured 74 images of a target object while it
rotated on a turntable (see Figure 3). The size of each image was
re-sized to 320 × 240. Scale-invariant feature transform (SIFT)
feature vectors were extracted from each captured image (Lowe,
2004). A certain number of 128-dimensional feature vectors
were obtained from each image. Note that the SIFT feature
did not consider hue information. All of the obtained feature
vectors were transformed into BoF representations using k-
means clustering with k = 25. The number of clusters k
was determined empirically, considering prior works (Nakamura
et al., 2011b; Araki et al., 2012). The k-means clustering was
performed using data from all objects in a training set, and the
centroids of the clusters were determined. BoF representations
were used as observation data for the visual modality of the
MHDP. The index for this modality was defined asmv.

5.1.2. Auditory Information (mas and mah)
Auditory information was obtained from a multipowered
shotgun microphone NTG-2 by RODE Microphone. The
microphone was regarded as the ear of the robot. In this
experiment, two types of auditory information were acquired.
One was generated by hitting the object, and the other was
generated by shaking it. The two sounds were regarded as
different auditory information and hence different modality
observations in the MHDP model. The two actions, i.e., hitting
and shaking, were manually programmed for the robot. Each
action was implemented as a fixed trajectory. When the robot
began to execute an action, it also started recording the
objects’s sound (see Figure 3). The sound was recorded until
two seconds after the robot finished the action. The recorded
auditory data were temporally divided into frames, and each
frame was transformed into 13-dimensional Mel-frequency
cepstral coefficients (MFCCs). The MFCC feature vectors were
transformed into BoF representations using k-means clustering

FIGURE 3 | A humanoid robot used in the experiment.

with k = 25 in the same way as the visual information.
The indices of these modalities were defined as mas and mah,
respectively, for “shake” and “hit.”

5.1.3. Haptic Information (mh)
Haptic information was obtained by grasping a target object
using the robot’s hand. When the robot attempted to obtain
haptic information from an object placed in front of it, it moved
its hand to the object and gradually closed its hand until a certain
amount of counterforce was detected (see Figure 3). The joint
angle of the hand was measured when the hand touched the
target object and when the hand stopped. The two variables
and difference between the two angles were used as a three-
dimensional feature vector. When obtaining haptic information,
the robot grasped the target object 10 times and obtained 10
feature vectors. The feature vectors were transformed into BoF
representations using k-means clustering with k = 5 in the same
way as for the other information types. The index of the haptic
modality was defined asmh.

5.1.4. Multimodal Information as BoF

Representations
In summary, a robot could obtain multimodal information from
four modalities for perception. The dimensions of the BoFs were
set to 25, 25, 25, and 5 formv,mas,mah, andmh, respectively. The
dimension of each BoF corresponds to the number of clusters
for k-means clustering. The numbers of clusters, i.e., the sizes
of the dictionaries, were empirically determined on the basis of
a preliminary experiment on multimodal categorization. All of
the training datasets were used to train the dictionaries. The
histograms of the feature vectors, i.e., the BoFs, were resampled

to make their counts Nmv

j = 100,Nmas

j = 80,Nmah

j = 130,

and Nmh

j = 30. The weight of each modality wm was set to 1.

The formation of multimodal object categories itself is out of the
scope of this paper. Therefore, the constants were empirically
determined so that the robot could form object categories that
are similar to human participants. The number of samples K in
the Monte Carlo approximation for estimating IG was set to K =
5, 000. The constant K was determined empirically. The effect of
K will be examined in the experiment as well (see Figure 11).

5.1.5. Target Objects
For the target objects, 17 types of commodities were prepared
for the experiment shown in Figure 4. An object was provided
for obtaining a training data, i.e., data for object categorization,
and another object was provided for obtaining test data, i.e., data
for active perception, for each type of objects. Each index on the
right-hand side of the figure indicates the index of each object.
The hardness of the balls, the striking sounds of the cups, and the
sounds made while shaking the bottles were different depending
on the object categories. Therefore, ground-truth categorization
could not be achieved using visual information alone.

5.2. Procedure
The experimental procedure was as follows. First, the robot
formed object categories through multimodal categorization in
an unsupervised manner. An experimenter placed each object
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FIGURE 4 | (Left) target objects used in the experiment and (Right) categorization results obtained in the experiment.

in front of the robot one by one. In this training phase, two
objects for each type of objects were provided. The robot looked
at the object to obtain visual features, grasped it to obtain haptic
features, shook it to obtain auditory shaking features, and hit
it to obtain the auditory striking features. After obtaining the
multimodal information of the objects as a training data set,
the MHDP was trained using a Gibbs sampler. The results of
multimodal categorization are shown in Figure 4. The category
that has the highest posterior probability for each object is shown
in white. These results show that the robot can form multimodal
object categories using MHDP, as described in Nakamura et al.
(2011b). After the robot had formed object categories, we fixed
the latent variables for the training data set3.

Second, an experimental procedure for active perception was
conducted. An experimenter placed an object in front of the
robot. The robot observed the object using its camera, obtained
visual information, and setmoj = {m

v}. An object was provided
for each type of objects shown in Figure 4 to the robot one by
one. Therefore, 17 objects were used for evaluating each active
perception strategy. The sequential action selection and object
recognition were performed once per an object. At each step of
the sequential action selection, Gibbs sampler for MHDP was
performed and it updated its latent variables, i.e., recognition
state, of the MHDP. The robot then determined its next set
of actions for recognizing the target object using its active
perception strategy shown in Algorithms 1 and 2.

5.3. Results
5.3.1. Selecting the Next Action
First, we describe results for the first single action selection
after obtaining visual information. In this experiment, the

3The collected datasets for this experiment can be found in GitHub: https://github.

com/tanichu/data-active-perception-hmdp

robot had three choices for its next action, i.e., mas, mah,
and mh. To evaluate the results of active perception, we

used KL
(

P(k|XM
j ), P(k|X

A∪mo j

j )
)

, i.e., the distance between

the posterior distribution over the object categories
k in the final recognition state and that in the next
recognition state as an evaluation criterion on behalf of

KL
(

P(zj|X
M
j ), P(zj|X

A∪mo j

j )
)

, which is the original evaluation

criterion in (4). The computational cost for numerical evaluation

of KL
(

P(zj|X
M
j ), P(zj|X

A∪mo j

j )
)

using a Monte Carlo method

is too high because zj = {{kjt}1≤t≤Tj , {t
m
jn}m∈M,1≤n≤Nm

j
} has

so many variables and a posterior distributions over zj is very
complex.

Figure 5 (Top) shows samples of the KL divergence between
the posterior probabilities of the category after obtaining the
information from all modalities and after obtaining only visual
information.

With regard to some objects, e.g., objects 6 and 7, the
figure shows samples of that visual information seems to be
sufficient for the robot to recognize the objects as compared
the other objects4. However, with regard to many objects,
visual information alone could not lead the recognition state
to the final state. However, it could be reached using the
information of all modalities. Figure 5 (Middle) shows samples
of IGm calculated using the visual information for each action.
Figure 5 (Bottom) shows the KL divergence between the final
recognition state and the posterior probability estimated after
obtaining visual information and the information of each selected
action. We observe that an action with a higher value of IGm

tended to further reduce the KL divergence, as Theorem 1

4Note that currently we don’t have a good criteria of KL divergence to determine

whether performing further actions are necessary or not.
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FIGURE 5 | (Top) Samples of KL divergence between the final recognition state and the posterior probability estimated after obtaining only visual information,

(Middle) samples of estimated IGm for each object based on visual information (v), and (Bottom) samples of KL divergence between the final recognition state and

the posterior probability estimated after obtaining only visual information and each selected action where as, ah, h represent represent auditory information obtained

by shaking an object, one by hitting an object and haptic information, respectively. Our theory of multimodal active perception suggests that the action with the

highest information gain (shown in the middle) tends to lead its initial recognition state (whose KL divergence from the final recognition state is shown at the top) to a

recognition state whose KL divergence from the final recognition state (shown at the bottom) is the smallest. These figures suggest the probabilistic relationships were

satisfied as a whole.

suggests. Figure 6 shows the average KL divergence for the final
recognition state after executing an action selected by the IGm

criterion. Actions IG .min, IG .mid, and IG .max denote actions
that have the minimum, middle, and maximum values of IGm,
respectively. These results show that IG .max clearly reduced the
uncertainty of the target objects.

The precision of category recognition after an action
execution is summarized in Table 1. Basically, a category
recognition result is obtained as the posterior distribution (3) in
the MHDP. The category with the highest posterior probability
is considered to be the recognition result for illustrative purposes
in Table 1. Obtaining information by executing IG .max almost
always increased recognition performance.

Examples of changes in the posterior distribution are shown
in Figure 7 (Left, Right) for objects 8 (“metal cup”) and
12 (“empty plastic bottle”), respectively. The robot could not
clearly recognize the category of object 8 after obtaining visual
information. Action IGm in Figure 5 shows thatmah was IG .max

for the 8th object. Figure 7 (Left) shows that mah reduced the
uncertainty and allowed the robot to correctly recognize the
object, as evidenced by category 6, a metal cup. This means
that the robot noticed that the target object was a metal cup
by hitting it and listening to its metallic sound. The metal cup
did not make a sound when the robot shook it. Therefore, the
IG for mas was small. As Figure 7 (Right) shows, the robot first
recognized the 12th object as a plastic bottle containing bells
with high probability and as an empty plastic bottle with a low
probability. Figure 5 shows that the IGm criterion suggestedmah

as the first alternative andmas as the second alternative. Figure 7
(Right) shows that mas and mah could determine that the target
object was an empty plastic bottle, butmh could not.

As humans, we would expect to differentiate an empty
bottle from a bottle containing bells by shaking or hitting
the bottle, and differentiate a metal cup from a plastic
cup by hitting it. The proposed active perception method
constructively reproduced this behavior in a robotic system
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FIGURE 6 | Reduction in the KL divergence by executing an action selected

on the basis of the IGm maximization criterion. The KL divergences between

the recognition state after executing the second action and the final

recognition state are calculated for all objects and shown with box plot. This

shows that an action with more information brings the recognition of its state

closer to the final recognition state.

TABLE 1 | Number of successfully recognized objects.

v only v+IG.min v+IG.mid v+IG.max Full information

8/17 11/17 15/17 16/17 17/17

using an unsupervised multimodal machine learning
approach.

5.3.2. Selecting the Next Set of Multiple Actions
We evaluated the greedy and lazy greedy algorithms for active
perception sequential decision making. The KL divergence from
the final state for all target objects is averaged at each step
and shown in Figure 8. For each condition, the KL divergence
gradually decreased and reached almost zero. However, the
rate of decrease notably differed. As the theory of submodular
optimization suggests, the greedy algorithm was shown to be
a better solution on average and slightly worse than the best
case (Nemhauser et al., 1978). The best and worst cases were
selected after all types of sequential actions had been performed.
The “average” is the average of the KL divergence obtained by all
possible types of sequential actions. The results for the lazy greedy
algorithm were almost same as those of the greedy algorithm, as
Minoux (1978) suggested.

The sequential behaviors of IGm were observed to determine
if their behaviors were consistent with our theories. For example,
the changes in IGm at each step as the robot sequentially selected
its action to perform on object 10 using the greedy algorithm is
shown in Figure 9. Theorem 2 shows that the IG is a submodular
function. This predicts that IGm decreases monotonically when
a new action is executed in active perception. When the robot
obtained only visual information (v only in Figure 9), all values
of IGm were still large. Aftermah was executed on the basis of the

greedy algorithm, IGmah became zero. At the same time, IGmas

and IGmh decreased. In the same way, all values of IGm gradually
decreased monotonically.

Figure 10 shows the time series of the posterior probability
of the category for object 10 during sequential active perception.
Using only visual information, the robot misclassified the target
object as a plastic bottle containing bells (category 3). The action
sequence in reverse order did not allow the robot to recognize the
object as a steel can at its first step and change its recognition state
to an empty plastic bottle (category 4). After the second action,
i.e., grasping (mh), the robot recognized the object as a steel can.
In contrast, the greedy algorithm could determine that the target
object was in category 4, i.e., steel can, with its first action.

The effect of the number of samples K for the Monte
Carlo approximation was observed. Figure 11 shows the relation
between K and the standard deviation of the estimated IGm for
the 15th object for each action after obtaining a visual image.
This figure shows that estimation error gradually decreases
when K increases. Roughly speaking, K ≥ 1, 000 seems to be
required for an appropriate estimate of IGm in our experimental
setting. Evaluation of IGm required less than 1 second, which
is far shorter than the time required for action execution by a
robot. This means that our method can be used in a real-time
manner.

These empirical results show that the proposed method for
active perception allowed a robot to select appropriate actions
sequentially to recognize an object in the real-world environment
and in a real-time manner. It was shown that the theoretical
results were supported, even in the real-world environment.

6. EXPERIMENT 2: SYNTHETIC DATA

In experiment 1, the numbers of classes, actions, and modalities
as well as the size of dataset were limited. In addition, it was
difficult to control the robotic experimental settings so as to
check some interesting theoretical properties of our proposed
method. Therefore, we performed a supplemental experiment,
Experiment 2, using synthetic data comprising 21 object types,
63 objects, and 20 actions, i.e., modalities.

First, we checked the validity of our active perception method
when the number of types of actions increases. Second, we
checked how the method worked when two classes were assigned
to the same object. Although the MHDP can categorize an
object into two or more categories in a probabilistic manner,
each object was classified into a single category in the previous
experiment.

6.1. Conditions
A synthetic dataset was generated using the generativemodel that
the MHDP assumes (see Figure 2). We prepared 21 virtual object
classes, and three objects were generated from each object class,
i.e., we obtained 63 objects in total. Among the object classes, 14
object classes are “pure,” and seven object classes are “mixed.”
For each pure object class, a multinomial distribution was drawn
from the Dirichlet distribution corresponding to each modality.
We set the number of modalities M = 20. The hyperparameters
of the Dirichlet distributions of the modalities were set to αm

0 =
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FIGURE 7 | (Left) Posterior probability of the category for object 8 after executing each action. These results show that the action with the highest information gain,

i.e., ah, allowed the robot to efficiently estimate that the true object category was “metal cup”. (Right) Posterior probability of the category for object 12 after

executing each action. These results show that the actions with the highest and second highest information gain, i.e., ah and as, allowed the robot to efficiently

estimate that the true object category was “empty plastic bottle”.

FIGURE 8 | KL divergence from the final state at each step for each sequential

action selection procedure. Note that the line of the lazy greedy algorithm is

overlapped by that of the greedy algorithm.

0.4(m − 1) for m > 1. For m = 1, we set α1
0 = 10. For each

mixed object class, a multinomial distribution for each modality
was prepared by mixing the distributions of the two pure object
classes. Specifically, the multinomial distribution for the i-th
mixed object was obtained by averaging those of the (2i − 1)-th
and the 2i-th object classes. The observations for each modality
of each object were drawn from the multinomial distributions
corresponding to the object’s class. The count of the BoFs for
each modality was set to 20. Finally, 42 pure virtual objects and
21 mixed virtual objects were generated.

The experiment was performed almost in the same way as
experiment 1. First, multimodal categorization was performed
for the 63 virtual objects, and 14 categories were successfully
formed in an unsupervised manner. The posterior distributions
over the object categories are shown in Figure 12. Generally
speaking, mixed objects were categorized into two or more
classes. After categorization, a virtual robot was asked to
recognize all of the target objects using the proposed active
perception method.

6.2. Results
We compared the greedy, lazy greedy, and random algorithms
for the active perception sequential decision making process. The
random algorithm is a baseline method that determines the next
action randomly from the remaining actions that have not been

FIGURE 9 | IGm at each step for object 10 when the greedy algorithm is

used.

FIGURE 10 | Time series of the posterior probability of the category for object

10 during sequential action selection based on (top) the greedy algorithm, i.e.,

mah → mh → mas, and (bottom) its reverse order , i.e., mas → mh → mah.

taken. In other words, the random algorithm is the case in which
a robot does not employ any active perception algorithms.

The KL divergence from the final state for all target objects
is averaged at each step and shown in Figure 13. For each
condition, the KL divergence gradually decreased and reached
almost zero. However, the rate of decrease was different. The
greedy and lazy greedy algorithms were clearly shown to be better
solutions on average than the random algorithm. In contrast
with experiment 1, the best and worst cases could not practically
be calculated because of the prohibitive computational cost.
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Interestingly, the lazy greedy algorithm has almost the same
performance as the greedy algorithm, as the theory suggests,
although the laziness reduced the computational cost in reality.

FIGURE 11 | Standard deviation of the estimated information gain IGm for the

15th object. For each K, 100 values of the estimated information gain IGm

were obtained, and their standard deviation is shown.

FIGURE 12 | Categorization results for the posterior probability distributions

for each object.

FIGURE 13 | KL divergence from the final state at each step for each

sequential action selection procedure.

The number of times the robot evaluated IGm to determine
the action sequences for all executable counts of actions L =
1, 2, . . . ,M is summarized for each method. The number of times
the lazy greedy algorithm was required for each target object was
71.7 (SD = 5.2) on average, and that of the greedy algorithm was
190. Theoretically, the greedy and lazy greedy algorithms require
O(M2) evaluations. Practically, the number of re-evaluations
needed by the lazy greedy algorithm is quite small. In contrast, the
brute-force algorithm requires O(2M) evaluations, i.e., far more
evaluations of IG are required.

Next, a case in which two classes were assigned to the same
object was investigated. The target dataset contained “mixed”
objects. The results also imply that our method works well even
when two classes are assigned to the same object. This is because
our theory is completely derived on the basis of the probabilistic
generative model, i.e., the MHDP. We show a typical result.
Figure 14 shows the time series of the posterior probability
of the category for object 51, i.e., one of the mixed objects,
during sequential active perception. This shows that the greedy
and lazy greedy algorithms quickly categorized the target object
into two categories “correctly.” Our formulation assumes the
categorization result to be a posterior distribution. Therefore, this
type of probabilistic case can be treated naturally.

7. CONCLUSION AND DISCUSSION

In this paper, we described an MHDP-based active perception
method for robotic multimodal object category recognition. We
formulated a new active perception method on the basis of the
MHDP (Nakamura et al., 2011b) .

First, we proposed an action selection method based on the
IG criterion and showed that IG is an optimal criterion for
active perception from the viewpoint of reducing the expected

FIGURE 14 | Time series of the posterior probability of the category for object

51 during sequential action selection based on (Top) the greedy algorithm,

(Middle) the lazy greedy algorithm, and (Bottom) the random selection

procedure.
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KL divergence between the final and current recognition states.
Second, we proved that the IG has a submodular property
and reduced the sequential active perception problem to a
submodular maximization problem. Third, we derived a Monte
Carlo approximation method for evaluating IG efficiently
and made the action selection method executable. Given the
theoretical results, we proposed to use the greedy and lazy greedy
algorithms for selecting a set of actions for active perception. It
is important to note that all of the three theoretical contributions
mentioned above were naturally derived from the characteristics
of the MHDP. These contributions are clearly a result of the
theoretical soundness of the MHDP. In this sense, our theorems
reveal a new advantage of the MHDP that other several heuristic
multimodal object categorization methods do not have.

To evaluate the proposed methods empirically, we conducted
experiments using an upper-torso humanoid robot and a
synthetic dataset. Our results showed that the method enables
the robot to actively select actions and recognize target objects
quickly and accurately.

One of the most interesting points of this paper is that not
only object categories but also an action selection for object
recognition can be formed in an unsupervised manner. From
the viewpoint of cognitive developmental robotics, providing
an unsupervised learning model for bridging the development
between perceptual and action systems is meaningful for
shedding a new light on the computational understanding
of cognitive development (Asada et al., 2009; Cangelosi
and Schlesinger, 2015). It is believed that the coupling of
action and perception is important for an embodied cognitive
system (Pfeifer and Scheier, 2001).

The advantage of this paper compared with the related works
in robotics is that our action selection method for multimodal
category recognition has a clear theoretical basis and is tightly
connected to the computational model for multimodal object
categorization, i.e., MHDP. The theoretical basis gives the
method preferable characteristics, i.e., theoretical guarantee.

However, note that the theoretical guarantee is satisfied only
when IG is correctly estimated. We assumed that outcome of
each action is deterministic and fully observable when we apply
the theory of submodular optimization to active perception
in multimodal categorization. However, observations Xm and
IG are measured somehow probabilistically because of real-
world uncertainty andMonte Carlo approximation. For example,
IG is approximately estimated at each step of the greedy and
lazy greedy algorithms. Theoretically, given this approximation
in evaluating the objective being maximized, the (1 − 1/e)
bound no longer holds. Streeter et al. proposed to introduce an
additional penalty based on a function approximation (Streeter
and Golovin, 2009). Golovin et al. extended submodularity to
adaptive submodularity to consider stochastic property (Golovin
and Krause, 2011). Though we discussed the proposed method
from the viewpoint of submodular optimization, this algorithm
can be regarded as a version of the sequential information
maximization, more specifically (Chen et al., 2015). Extending
our idea by referring the adaptive submodularity and/or the
sequential information maximization, and update our method is
our future challenge.

We assumed that each action requires same cost, and tried
to reduce the number of actions in active perception, i.e.,
to maximize the performance of perception with the fixed
number of actions. However, practically, each action, e.g.,
shake, hit and look at, requires different duration and different
energy. Therefore, practical cost is not always the number of
actions, but total cost of actions. Zhang et al. (2017) tried to
deal with this problem in the context of multimodal object
identification. This problem leads us a knapsack problem-like
formulation. This type of submodular optimization has been
studied by many researchers (Streeter and Golovin, 2009; Zhou
et al., 2013). Our method will be able to be extended in the similar
way.

In addition to active perception, active “learning/exploration”
for multimodal categorization is also an important research
topic. It takes a longer time for a robot to gather multimodal
information to formmultimodal object categories from amassive
number of daily objects than it does to recognize a new object.
If a robot can notice that “the object is obviously a sample
of learned category,” the robot need not obtain knowledge
about object categories from such an object. In contrast, if
a target object appears to be completely new to the robot,
the robot should carefully interact with the object to obtain
multimodal information from the object. Such a scenario will be
achieved by developing an active “learning/exploration” method
for multimodal categorization. It is likely that such a method
will be able to be obtained by extending our proposed active
perception method.

Considering more complex categorization scenario is our
future challenge. For example, Schenck et al. (2014) is dealing
with the more complex categorization scenario, i.e., 36 plastic
containers with identical shape and 3 colors, 4 types of contents,
and 3 different amounts of those contents. In this paper, we used
MHDP which assumes an object is classified into a single object
category and infers the posterior distribution over categories.
When we consider human cognition, we can find that object
categories have more complex characteristics. For example,
object categories have a hierarchical structure, an object is
categorized into several classes, and they have different modality-
dependency based on the types of categories. Unsupervised
machine learning methods for such complex categorization
problem have proposed by several researchers based on
hierarchical Bayesian models (Griffiths and Ghahramani, 2006;
Ando et al., 2013; Nakamura et al., 2015). Theoretically, the
main assumption we used was that the MHDP is a hierarchical
Bayesian model and action selection is corresponding to
obtaining an observation which is a probabilistic variable on the
leaf node of its graphical model. Therefore, by applying the same
idea to the more complex categorization methods, we will be able
to extend our theory to more complex categorization problems.
This is on of our future works.

Another challenge lies in feature representation for
multimodal categorization. The MHDP assumed that
observations are given as bag-of-features representations.
However, there are many kinds of feature representations
for visual, auditory and haptic information. In particular,
the feature extraction capability of deep neural networks is
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gathering attention, recently. Theoretically, our main theorems
do not depend on the type of emission distributions, i.e.,
bag-of-features representations. It is likely that the same
approach can be used even when a multimodal categorization
method uses different feature representations, e.g., the
features in the last hidden layer of a pre-trained deep
neural network. This extension is also a part of our future
challenges.

In addition, the MHDP model treated in this paper assumed
that an action for perception is related to only one modality,
e.g., grasping only corresponds to mh. However, in reality,
when we interact with an object with a specific action, e.g.,
grasping, shaking, or hitting, we obtain rich information related
to various modalities. For example, when we shake a box to
obtain auditory information, we also unwittingly obtain haptic
information and information about its weight. The tight linkage
between the modality information and an action is a type
of approximation taken in this research. An extension of our
model and the MHDP to a model that can treat actions that
are related to various modalities is also a task for our future
work.

AUTHOR CONTRIBUTIONS

The main theory was developed by TaT. The experiments were
conceived by RY. The data were analyzed by RY and ToT with
help of TaT. The manuscript was written by TaT.

FUNDING

This research was partially supported by Tateishi Science
and Technology Foundation, and JST, CREST. This was also
partially supported by a Grant-in-Aid for Scientific Research
on Innovative Areas (16H06569) and a Grant-in-Aid for Young
Scientists (B) (24700233) funded by the Ministry of Education,
Culture, Sports, Science, and Technology.

ACKNOWLEDGMENTS

The authors would like to thank undergraduate student Takuya
Takeshita and graduate student Hajime Fukuda of Ritsumeikan
University, who helped us develop the experimental instruments
for obtaining our preliminary results.

REFERENCES

Ando, Y., Nakamura, T., Araki, T., and Nagai, T. (2013). “Formation of

hierarchical object concept using hierarchical latent dirichlet allocation,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems (Tokyo),

2272–2279.

Araki, T., Nakamura, T., Nagai, T., Nagasaka, S., Taniguchi, T., and Iwahashi,

N. (2012). “Online learning of concepts and words using multimodal LDA

and hierarchical Pitman-Yor Language Model,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (Algarve), 1623–1630.

Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y.,

et al. (2009). Cognitive Developmental Robotics: A Survey. IEEE Trans. Auton.

Mental Develop. 1, 12–34. doi: 10.1109/TAMD.2009.2021702

Barsalou, L. W. (1999). Perceptual symbol systems. Behav. Brain Sci. 22, 1–16.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach.

Learn. Res. 3, 993–1022.

Borotschnig, H., Paletta, L., Prantl, M., and Pinz, A. (2000). Appearance-

based active object recognition. Image Vision Comput. 18, 715–727.

doi: 10.1016/S0262-8856(99)00075-X

Burgard, W., Fox, D., and Thrun, S. (1997). “Active obile robot localization,”

in Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence (IJCAI) (Nagoya), 1346–1352.

Cangelosi, A., and Schlesinger, M. (2015). Developmental Robotics. Cambridge,

MA: The MIT press.

Celikkanat, H., Orhan, G., Pugeault, N., Guerin, F., Erol, S., and Kalkan, S.

(2014). “Learning and Using Context on a Humanoid Robot Using Latent

Dirichlet Allocation,” in Joint IEEE International Conferences on Development

and Learning and Epigenetic Robotics (ICDL-Epirob) (Genoa), 201–207.

Chen, Y., Hassani, S. H., Karbasi, A., and Krause, A. (2015). “Sequential

information maximization: When is greedy near-optimal?” in Conference on

Learning Theory (Paris), 338–363.

Cohn, D. A., Ghahramani, Z., and Jordan, M. I. (1996). Active learning with

statistical models. J. Artif. Intell. Res. 4, 129–145.

Correa, J., and Soto, A. (2009). Active Visual Perception for Mobile Robot

Localization. J. Intell. Robot. Sys. 58, 339–354. doi: 10.1007/s10846-009-

9348-4

Denzler, J., and Brown, C. M. (2002). Information Theoretic Sensor Data Selection

for Active Object Recognition and State Estimation. IEEE Trans. Patt. Anal.

Mach. Intell. 24, 1–13. doi: 10.1109/34.982896

Dutta Roy, S., Chaudhury, S., and Banerjee, S. (2004). Active recognition

through next view planning: a survey. Patt. Recogn. 37, 429–446.

doi: 10.1016/j.patcog.2003.01.002

Eidenberger, R., and Scharinger, J. (2010). “Active perception and scene modeling

by planning with probabilistic 6D object poses,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (Taipei), 1036–1043.

Ferreira, J., Lobo, J., Bessiere, P., Castelo-Branco, M., and Dias, J. (2013). A

Bayesian framework for active artificial perception. IEEE Trans. Cyber. 43,

699–711. doi: 10.1109/TSMCB.2012.2214477

Fishel, J. A. and Loeb, G. E. (2012). Bayesian exploration for

intelligent identification of textures. Front. Neurorobot. 6, 1–20.

doi: 10.3389/fnbot.2012.00004

Golovin, D., and Krause, A. (2011). Adaptive submodularity: theory and

applications in active learning and stochastic optimization. J. Artif. Intell. Res.

42, 427–486. doi: 10.1613/jair.3278

Gouko, M., Kobayashi, Y., and Kim, C. H. (2013). “Online exploratory behavior

acquisition of mobile robot based on reinforcement learning,” in 26th

International Conference on Industrial Engineering and Other Applications of

Applied Intelligence Systems, IEA/AIE 2013 (Amsterdam), 272–281.

Griffith, S., Sinapov, J., Sukhoy, V., and Stoytchev, A. (2012). A behavior-

grounded approach to forming object categories: Separating containers

from noncontainers. IEEE Trans. Auton. Mental Develop. 4, 54–69.

doi: 10.1109/TAMD.2011.2157504

Griffiths, T. L., and Ghahramani, Z. (2006). “Infinite latent feature models and the

indian buffet process,” in Advances in Neural Information Processing Systems

2006 (Vancouver, BC), 475–482.

Harnad, S. (1990). The symbol grounding problem. Phys. D 42, 335–346.

Hogman, V., Bjorkman,M., and Kragic, D. (2013). “Interactive object classification

using sensorimotor contingencies,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) (Tokyo), 2799–2805.

Ivaldi, S., Nguyen, S. M., Lyubova, N., Droniou, A., Padois, V., Filliat, D., et al.

(2014). Object learning through active exploration. IEEE Trans. Auton. Mental

Develop. 6, 56–72. doi: 10.1109/TAMD.2013.2280614

Iwahashi, N., Sugiura, K., Taguchi, R., Nagai, T., and Taniguchi, T. (2010). “Robots

that learn to communicate: a developmental approach to personally and

physically situated human-robot conversations,” in Dialog with Robots Papers

from the AAAI Fall Symposium (Palo Alto, CA), 38–43.

Ji, S., and Carin, L. (2006). Cost-Sensitive Feature Acquisition and Classification.

Patt. Recogn. 40, 1474–1485. doi: 10.1016/j.patcog.2006.11.008

Frontiers in Neurorobotics | www.frontiersin.org 17 May 2018 | Volume 12 | Article 22

https://doi.org/10.1109/TAMD.2009.2021702
https://doi.org/10.1016/S0262-8856(99)00075-X
https://doi.org/10.1007/s10846-009-9348-4
https://doi.org/10.1109/34.982896
https://doi.org/10.1016/j.patcog.2003.01.002
https://doi.org/10.1109/TSMCB.2012.2214477
https://doi.org/10.3389/fnbot.2012.00004
https://doi.org/10.1613/jair.3278
https://doi.org/10.1109/TAMD.2011.2157504
https://doi.org/10.1109/TAMD.2013.2280614
https://doi.org/10.1016/j.patcog.2006.11.008
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Taniguchi et al. MHDP-Based Active Perception

Kemp, C., Chang, K. M., and Lombardi, L. (2010). Category and feature

identification. Acta Psychol. 133, 216–233. doi: 10.1016/j.actpsy.2009.11.012

Krainin, M., Curless, B., and Fox, D. (2011). “Autonomous generation of

complete 3D object models using next best view manipulation planning,”

in IEEE International Conference on Robotics and Automation (Shanghai),

5031–5037.

Krause, A., and Guestrin, C. E. (2005). “Near-optimal nonmyopic alue of

information in graphical models,” in Proceedings of the Twenty-First Conference

on Uncertainty in Artificial Intelligence (Edinburgh).

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int.

J. Comput. Vis. 60, 91–110. doi: 10.1023/B:VISI.0000029664.99615.94

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms.

Cambridge, UK: Cambridge University Press.

Minoux, M. (1978). “Accelerated greedy algorithms for maximizing submodular

set functions,” in Optimization Techniques, ed J. Stoer (Berlin: Springer),

234–243.

Muslea, I., Minton, S., and Knoblock, C. A. (2006). Active learning with multiple

views. J. Art. Intell. Res. 27, 203–233. doi: 10.1613/jair.2005

Nakamura, T., Ando, Y., Nagai, T., and Kaneko, M. (2015). “Concept formation

by robots using an infinite mixture of models,” in 2015 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) (Hamburg), 4593–4599.

Nakamura, T., Nagai, T., Funakoshi, K., Nagasaka, S., Taniguchi, T., and Iwahashi,

N. (2014). “Mutual learning of an object oncept and language model based

on MLDA and NPYLM,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS’14) (Chicago, IL), 600–607.

Nakamura, T., Nagai, T., and Iwahashi, N. (2007). “Multimodal object

categorization by a robot,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (San Diego, CA), 2415–2420.

Nakamura, T., Nagai, T., and Iwahashi, N. (2009). “Grounding of word meanings

in multimodal concepts using LDA,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (St. Louis, MO), 3943–3948.

Nakamura, T., Nagai, T., and Iwahashi, N. (2011a). “Bag of multimodal LDA

models for concept formation,” in IEEE International Conference on Robotics

and Automation (Shanghai), 6233–6238.

Nakamura, T., Nagai, T., and Iwahashi, N. (2011b). “Multimodal categorization

by hierarchical dirichlet process,” in IEEE/RSJ International Conference on

Intelligent Robots and Systems (San Francisco, CA), 1520–1525.

Natale, L., Metta, G., and Sandini, G. (2004). “Learning haptic representation of

objects,” in International Conference of Intelligent Manipulation and Grasping

(Genoa).

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. (1978). An analysis of

approximations for maximizing submodular set functions-I. Math. Program.

14, 265–294.

Pape, L., Oddo, C.M., Controzzi, M., Cipriani, C., Förster, A., Carrozza,M. C., et al.

(2012). Learning tactile skills through curious exploration. Front. Neurorobot.

6:6. doi: 10.3389/fnbot.2012.00006

Pfeifer, R., and Scheier, C. (2001). Understanding Intelligence. A Bradford Book.

Cambridge, MA: MIT Press.

Rebguns, A., Ford, D., and Fasel, I. (2011). “InfoMax control for acoustic

exploration of objects by a mobile robot,” in AAAI11 Workshop on Lifelong

Learning (San Francisco, CA), 22–28.

Roy, D. K., and Pentland, A. P. (2002). Learning words from sights

and sounds: a computational model. Cogn. Sci. 26, 113–146.

doi: 10.1207/s15516709cog2601_4

Roy, N., and Thrun, S. (1999). “Coastal navigation withmobile robots,” inAdvances

in Neural Processing Systems 12. Cambridge, MA: The MIT Press.

Russo, D., and Van Roy, B. (2016). An information-theoretic analysis of thompson

sampling. J. Mach. Learn. Res. 17, 2442–2471. Available online at: http://jmlr.

org/papers/v17/14-087.html

Saegusa, R., Natale, L., Metta, G., and Sandini, G. (2011). “Cognitive Robotics -

Active Perception of the Self and Others,” in The 4th International Conference

on Human System Interactions (HSI) (Yokohama), 419–426.

Schenck, C., Sinapov, J., Johnston, D., and Stoytchev, A. (2014). Which object fits

best? solving matrix completion tasks with a humanoid robot. IEEE Trans.

Auton. Mental Develop. 6, 226–240. doi: 10.1109/TAMD.2014.2325822

Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., and Burgard,

W. (2009). “Object identification with tactile sensors using bag-of-features,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems (St. Louis,

MO), 243–248.

Settles, B. (2012). Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–114.

doi: 10.2200/S00429ED1V01Y201207AIM018

Sinapov, J., Schenck, C., Staley, K., Sukhoy, V., and Stoytchev, A. (2014).

Grounding semantic categories in behavioral interactions: experiments with

100 objects. Robot. Auton. Sys. 62, 632–645. doi: 10.1016/j.robot.2012.10.007

Sinapov, J., and Stoytchev, A. (2011). “Object category recognition by a humanoid

robot using behavior-Grounded Relational Learning,” in IEEE International

Conference on Robotics and Automation (ICRA) (Shanghai), 184–190.

Stachniss, C., Grisetti, G., and Burgard, W. (2005). Information gain-based

exploration using rao-blackwellized particle filters. in Robotics Science and

Systems (RSS) (Cambridge, MA).

Streeter, M., and Golovin, D. (2009). “An online algorithm for maximizing

submodular functions,” in Advances in Neural Information Processing Systems

(Vancouver, BC), 1577–1584.

Sushkov, O. O., and Sammut, C. (2012). “Active robot learning of object

properties,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) (Algarve: IEEE), 2621–2628.

Taniguchi, T., Nagai, T., Nakamura, T., Iwahashi, N., Ogata, T., and Asoh, H.

(2016). Symbol emergence in robotics: a survey. Adv. Robot. 30, 706–728.

doi: 10.1080/01691864.2016.1164622

Teh, Y., Jordan, M., Beal, M., and Blei, D. (2006). Hierarchical Dirichlet processes.

J. Am. Stat. Assoc. 101, 1566–1581. doi: 10.1198/016214506000000302

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2005). “Sharing clusters

among related groups: Hierarchical dirichlet processes,” in Advances in Neural

Information Processing Systems (Vancouver, BC), 1385–1392.

Tuci, E., Massera, G., and Nolfi, S. (2010). Active categorical perception of object

shapes in a simulated anthropomorphic robotic arm. IEEE Trans. Evol. Comput.

14, 885–899. doi: 10.1109/TEVC.2010.2046174

van Hoof, H., Kroemer, O., Ben Amor, H., and Peters, J. (2012). “Maximally

informative interaction learning for scene exploration,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (Algarve),

5152–5158.

Velez, J., Hemann, G., Huang, A. S., Posner, I., and Roy, N. (2012). Modelling

observation correlations for active exploration and robust object detection. J.

Artif. Intell. Res. 44, 423–453. doi: 10.1613/jair.3516

Zhang, S., Sinapov, J., Wei, S., and Stone, P. (2017). “Robot behavioral exploration

and multimodal perception using pomdps,” in AAAI 2017 Spring Symposium

on Interactive Multisensory Object Perception for Embodied Agents (Palo Alto,

CA).

Zhou, J., Ross, S., Yue, Y., Dey, D., and Bagnell, J. A. (2013). “Knapsack constrained

contextual submodular list prediction with application to multi-document

summarization,” ICML 2013 Workshop on Inferning: Interactions between

Inference and Learning (Atlanta).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Taniguchi, Yoshino and Takano. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 18 May 2018 | Volume 12 | Article 22

https://doi.org/10.1016/j.actpsy.2009.11.012
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1613/jair.2005
https://doi.org/10.3389/fnbot.2012.00006
https://doi.org/10.1207/s15516709cog2601_4
http://jmlr.org/papers/v17/14-087.html
http://jmlr.org/papers/v17/14-087.html
https://doi.org/10.1109/TAMD.2014.2325822
https://doi.org/10.2200/S00429ED1V01Y201207AIM018
https://doi.org/10.1016/j.robot.2012.10.007
https://doi.org/10.1080/01691864.2016.1164622
https://doi.org/10.1198/016214506000000302
https://doi.org/10.1109/TEVC.2010.2046174
https://doi.org/10.1613/jair.3516
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Taniguchi et al. MHDP-Based Active Perception

APPENDIX A: PROOF OF THE OPTIMALITY
OF THE PROPOSED ACTIVE PERCEPTION
STRATEGY

In this appendix, we show that the proposed active perception
strategy, which maximizes the expected KL divergence between
the current state and the posterior distribution of zj after a
selected set of actions, minimizes the expected KL divergence
between the next and final states.

A∗j = argmin

A∈F
mo j
L

E
X
M\mo j
j |X

mo j
j

[
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(A1)

The numerator inside of the log function does not depend on A.
Therefore, the term related to the numerator can be deleted. In
addition, by negating the remaining term, we obtain
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By marginalizing X
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j from (A2), we obtain
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