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The first “object” that newborn children play with is their own body. This activity allows

them to autonomously form a sensorimotor map of their own body and a repertoire

of actions supporting future cognitive and motor development. Here we propose the

theoretical hypothesis, operationalized as a computational model, that this acquisition of

body knowledge is not guided by random motor-babbling, but rather by autonomously

generated goals formed on the basis of intrinsic motivations. Motor exploration leads

the agent to discover and form representations of the possible sensory events it can

cause with its own actions. When the agent realizes the possibility of improving the

competence to re-activate those representations, it is intrinsically motivated to select and

pursue them as goals. The model is based on four components: (1) a self-organizing

neural network, modulated by competence-based intrinsic motivations, that acquires

abstract representations of experienced sensory (touch) changes; (2) a selector that

selects the goal to pursue, and the motor resources to train to pursue it, on the basis

of competence improvement; (3) an echo-state neural network that controls and learns,

through goal-accomplishment and competence, the agent’s motor skills; (4) a predictor

of the accomplishment of the selected goals generating the competence-based intrinsic

motivation signals. Themodel is tested as the controller of a simulated simple planar robot

composed of a torso and two kinematic 3-DoF 2D arms. The robot explores its body

covered by touch sensors by moving its arms. The results, which might be used to guide

future empirical experiments, show how the system converges to goals and motor skills

allowing it to touch the different parts of own body and how the morphology of the body

affects the formed goals. The convergence is strongly dependent on competence-based

intrinsic motivations affecting not only skill learning and the selection of formed goals, but

also the formation of the goal representations themselves.

Keywords: developmental robotics, developmental psychology, intrinsic motivations, goals, body

1. INTRODUCTION

The first “object” that newborns start to play with is their own body, in particular by engaging
with self-touch activities. Body activity starts in the fetus at 8 weeks of gestation with spontaneous
movements called General movements (Piontelli et al., 2014). These movements continue to be
part of the motor activity of infants during their first months of life but gradually more controlled
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movements become dominant (Thelen, 1995). This controlled
motor activity (Piontelli et al., 2014) continues for many years
after birth (Bremner et al., 2008) and presumably determines
the formation of a “body schema” (Rochat and Striano, 2000), a
sensorimotor map and a repertoire of actions that constitute the
core of future cognitive and motor development.

The importance of self-touch activity for infants is supported
by empirical evidence. Infants after birth react differently to
external touch events compared to self-touch events: for example,
Rochat and Hespos (1997) found that head-turning in response
to a tactile stimulation in the mouth area was three times more
frequent when the stimulation was externally produced than
self-produced, thus showing the unique status of self-touch for
infants. Moreover, it seems plausible to consider self-touching as
a self-sufficient activity: for instance, we do not need to include
vision as part of the sensory input that determines early self-touch
events. This is justified first by the very poor use of vision by
fetuses in the womb, and second by the fact that infants before
10 months of age seem to not use vision to localize external
tactile stimulation on their body (Bremner et al., 2008; Ali et al.,
2015).

In this work we propose the theoretical hypothesis,
operationalized as a computational model, that early body
knowledge in infants is not acquired through random motor-
babbling, but guided by self-generated goals, autonomously set
on the basis of intrinsic motivations (IMs). The concept of IMs
was introduced in animal psychology during the 1950s and then
extended in human psychology (Berlyne, 1950, 1960; White,
1959; Deci and Ryan, 1985; Ryan and Deci, 2000) to describe a
set of motivations that were incompatible with the Hull’s theory
of drives (Hull, 1943) where motivations were strictly connected
to the satisfaction of primary needs. Different experiments
(e.g., Harlow, 1950; Montgomery, 1954; Kish, 1955; Glow and
Wtnefield, 1978) showed how exploration, novel or surprising
neutral stimuli and even the possibility to affect the environment
can modify the behavior of the agents, thereby driving the
acquisition of knowledge and skills in the absence of tasks
directly required for biological fitness. Further neurophysiology
research (e.g., Chiodo et al., 1980; Horvitz, 2000; Redgrave and
Gurney, 2006) showed how IMs can be linked to neuromodulator
activity, and in particular to dopamine. These results highlighted
the role of IMs in enhancing neural plasticity and driving the
learning of new skills (Mirolli et al., 2013; Fiore et al., 2014).

Following biological inspiration, IMs have also been
introduced in machine learning (e.g., Barto et al., 2004;
Schmidhuber, 2010) and developmental robotics (e.g., Oudeyer
et al., 2007; Baldassarre and Mirolli, 2013) to foster the
autonomous development of artificial agents and the open-ended
learning of repertoires of skills. Depending on their functions
and mechanisms, different typologies of IMs have been identified
(Oudeyer and Kaplan, 2007; Barto et al., 2013; Santucci et al.,
2013) and classified broadly into two main groups (Baldassarre
et al., 2014): (1) knowledge-based IMs (KB-IMs), divided into
(1a) novelty based IMs related to novel non-experienced stimuli,
and (1b) prediction-based IMs, related to the violation of the
agent’s predictions; and (2) competence-based IMs (CB-IMs)
related to action, i.e., to the agent’s competence to change the

world and accomplish self-defined goals. While in their first
implementations in computational research KB-IMs and CB-
IMs were indistinctly used to drive autonomous skill acquisition
(e.g., Schmidhuber, 1991; Oudeyer et al., 2007), different authors
underlined how the signal generated by CB-IMs has to be
preferred when developing agents that has to learn to accomplish
new tasks (Oudeyer and Kaplan, 2007; Santucci et al., 2012;
Mirolli et al., 2013). In particular, while KB-IM mechanisms
generate learning signals based on the acquisition of knowledge,
for example based on the improvement of a forward model of
the world, CB-IM mechanisms generate learning signals based
on the acquisition of competence, for example based on the
capacity of achieving a certain desired state (e.g., the capacity of
an inverse model or of a state-action controller to achieve a goal
state).

Based on these insights, authors started to use CB-IMs for
autonomous skill acquisition (Barto et al., 2004; Oudeyer et al.,
2007; Schembri et al., 2007a,b; Hart and Grupen, 2011; Santucci
et al., 2014b; Kompella et al., 2015). Recent research has started
to use CB-IMs for the autonomous generation and/or selection of
goalswhich can then drive the acquisition of skills (Merrick, 2012;
Baldassarre et al., 2013; Baranes and Oudeyer, 2013; Santucci
et al., 2016) and the optimization of learning processes in high-
dimensional action spaces with redundant robot controllers (Rolf
et al., 2010; Baranes and Oudeyer, 2013; Forestier and Oudeyer,
2016). The present research has been developed within the CB-
IM framework, and particular the model presented here uses
competence measures to select goals. In line with empirical
and computational perspectives (Balleine and Dickinson, 1998;
Russell and Norvig, 2003; Thill et al., 2013; Mannella et al.,
2016), and also with most works reviewed above, here goals are
intended as agent’s internal representations of a world/body state
or event (or of a set of them) having these properties: (a) the
agent can internally activate the representation of the goal even
in the absence of the corresponding world state or event; (b)
the activated goal representation has the power of focussing the
behavior of the agent toward the accomplishment of the goal and
to generate a learning signal when the world state matches the
goal (“goal-matching”).

Given the connection between CB-IMs and goals, in this paper
we present a new hypothesis where these two elements play an
important role in the early phases of body knowledge acquisition,
i.e., in the first months after the infant’s birth. In particular,
under our hypothesis the initial infant’s exploration determines
the formation of proto-representations of sensory events. As
soon as the baby discovers the possibility of re-activating those
proto-representations a CB-IM signal for obtaining those specific
sensory events is generated. This signal improves the information
about the current competence (probability of obtaining a sensory
event given an action) and the discovered events become intrinsic
goals that guide both the learning and the selection of the
motor commands to achieve them. Importantly, under the
presented hypothesis this “goal-matching” signal also modulates
the encoding and consolidation of the outcome representations
themselves so that the learning processes defining sensory
encoding and motor control are coupled together into an
integrated sensorimotor learning system.
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Do we really need the notion of goal to account for the
development of body knowledge? An important alternative
hypothesis might rely on the direct use of IMs to drive the
acquisition of stimulus-response behavior, in particular on the
basis of trial-and-error behaviors (Sutton and Barto, 1998;
Mannella and Baldassarre, 2007; Caligiore et al., 2014; Williams
and Corbetta, 2016), which are model-free reinforcement
learning strategies, strengthened by intrinsic rewards. We
shall not here be evaluating such possible alternatives, since
the primary purpose of this paper is to fully articulate and
operationalize the goal-directed hypothesis, which is a model-
based reinforcement learning framework, for future simulation
studies and empirical tests. Nevertheless it should be said that the
goal-directed hypothesis challenges other hypotheses based on
stimulus-response/trial-and-error learning processes for at least
two reasons. First, the learning of multiple actions (e.g., to touch
different body parts) relying on a stimulus-response mechanism
seems to require different stimuli able to trigger those different
actions. In this respect, actions that allow an infant to touch
different parts of own body would start from the same sensory
state (touch, sight, proprioception, etc.). Their acquisition thus
seems to require some internally generated patterns/stimuli to
which to link them: we hypothesize these patterns/stimuli are
represented by different goals (goal-based learning, Baldassarre
et al., 2013). The use of model-free strategies alone cannot
guide behavior in conditions in which the environment does
not give enough information to make a choice while model-
based solutions allow decision making through the use of the
information stored within an internal model. Second, once the
infant has acquired those different actions she should be able to
recall a specific one at will, independently of the current sensory
and body state: again model-free reinforcement learning would
seem to not allow this whereas internally activated goals could
allow it (goal-based action recall). In the discussion (section 4)
we will consider the differences between our model and other
goal-directed approaches.

In this paper we present our hypothesis, implementing a
computational model that allows us to investigate the details
of the proposed theory and provide quantitative measures that
could be useful for future experimental validation. The model
is used as a controller (sections 2.2 and 4) for a simulated
planar robot composed of a torso and two kinematic 3DoF
arms exploring its own body in a 2D environment (section
2.1). Sensory information from self-touch activity is used by
the system to form goals and drive skill learning. Results of
the tests of the model are presented (section 3) together with
their possible implications for ongoing empirical experiments
with human infants (section 3.3). Section 4 presents a detailed
description of the model equations. The final section of the paper
(section 5) discusses relevant related literature and possible future
development of the presented model.

2. THE MODEL

This section describes the functioning and learning mechanisms
pivoting on goals that allow the model to autonomously acquire
knowledge on own body.

2.1. Agent’s Body
The model is tested within a simulated body living in a two-
dimensional space. The body is formed by two arms each formed
by 3 links attached to a “torso” (Figure 1). The resulting 6
degrees of freedom (DoF) of the body receive motor commands
from the model and as a consequence perform movements.
The movements are simulated by only considering kinematics
(changes of the joint angles) and no dynamics (the body does not
have an inertia).

The body is covered by 30 touch sensors that can activate when
touched by a “hand.” Note how the sensors, that are uniformly
distributed over the body, belong to a one-dimensional space.
The activation of sensors is caused by the two “hands” (arm
end-points), in particular the sensor activation is computed on
the basis of the sum of two Gaussian functions each getting as
input the distance of the sensor from respectively the two hands.
Sensors that are nearby the extremity of one “hand,” including the
one on the end-point itself, are only sensitive to the other hand to
avoid their permanent activation.

The simulation is divided into trials. Each trial ends after a
fixed time interval has elapsed or when the agent reaches the
selected goal (“goal-matching” event, see section 2.2).

2.2. Overview and Core Aspects of the
Model Functioning and Learning
Section 4 illustrates the functioning and learning of the model in
mathematical detail. Instead, this section overviews such aspects
at a level of detail sufficient to understand the results presented
below.

The system is composed of four main components (Figure 2):
the Goal Generator, the Goal Selector, the Motor Controller
and the Predictor. The Goal Generator is responsible for the
autonomous generation of the mapping from the domain of
sensory input patterns to the domain of internally encoded
representations. These representations encode possible states of
the world, in particular outcomes of actions, that can be later
internally activated as goals. In particular, the Goal Generator
receives as input the positive change of the activation of the touch
sensors distributed over the body. This change is encoded into

FIGURE 1 | The simulated agent’s body with two 3-DoF kinematic arms and a

torso. 30 touch sensors are equally distributed over the whole body (here

fewer sensors have been represented).
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FIGURE 2 | Architecture of the model. A Sensory map encodes the

touch sensations. The Goal Generator learns to abstract the sensory

information (action outcomes). The Goal Selector selects the goals to pursue.

The Motor Controller generates the movements. Based on the information on

whether the activities of the two layers match, the measures of competence

and competence improvement are computed. These measures modulate the

learning of the Goal Generator, the Goal Selector selection, and the learning of

the Motor Controller.

two-dimensional patterns where the first dimension represents
the spatial location of sensors on body, and the second represents
the sensor activation amplitude (see section 4 for details). The
Goal Generator then performs an unsupervised clustering of
the perceived changes by using a self-organizing neural map
(SOM). Each output unit of the SOM learns to respond to
sensory input patterns that best fit with the prototype stored in
the afferent weights of that unit. The output layer of the SOM
tends to preserve in its topology the similarity present in the
sensory input space: units that are closer to each other in the
SOM output layer acquire prototypes that correspond to patterns
that are closer to each other in the sensory input space. The
unsupervised learning process driving the online clustering in
the Goal Generator, which takes place at each time step of the
simulation, is modulated by a measure of the current competence
based on the prediction for the occurrence of an action-outcome
contingency. This contingency is detected internally as a match
between the sensory encoded representations (the outputs of
the SOM) triggered at any time step of the trial, and the goal
representation, internally activated from the begin of each trial.
The competence measure is computed by the Predictor and is
further described later in this section. The higher the competence
prediction related to a given goal, the lower is the learning rate
of the update of the related outcome prototype. Moreover, the
higher the average competence prediction of all stored goals,
the lower is the learning rate of all prototypes. This two-fold
modulation tends to freeze an outcome prototype when the
related goal is accomplished with more reliability and when the
system becomes able to accomplish all discovered goals.

The Goal Selector is formed by a vector of units,
corresponding one-to-one to the SOM output layer units,
that localistically encode goals. At the beginning of each trial,
the component selects the goal to be pursued by means of a
softmax function. The resulting output is a one-hot vector with
the winning unit switched on. The input to the softmax function
used to decide the winning unit is based on the difference (error)

between the competence prediction for each goal, given by the
Predictor, and the actual goal-outcome match. In particular,
a decaying average of such error is used. Thus, also the goal
selection is modulated by the current agent’s competence.

The Motor Controller is composed of three components:
a dynamic-reservoir recurrent neural network (Jaeger, 2001;
Jaeger et al., 2007; Mannella and Baldassarre, 2015), a random
trajectory generator and an associative memory. The dynamic-
reservoir is a recurrent network whose dynamics is regulated
by the goal received as input from the Goal Selector. The
random trajectory generator outputs a trajectory at each trial
based on a sinusoidal oscillator with a randomly-chosen setting
of its parameters. Both the read-out units of the recurrent
network and the output of the random trajectory oscillator
contribute to control the two arms, with the competence for the
currently chosen goal defining their relative importance weight.
The Motor Controller is trained by means of a novel model-
based reinforcement learnig algorithm exploiting the goal-based
reward. The algorithm relies on two processes: (1) The associative
memory stores and updates the end-point posture for each goal
based on the occurrence of goal-outcome contingencies; (2) The
end-point postures stored in the associative memory are then
used as models to train the readout of the recurrent network. In
particular, the current chosen goal recalls the end-point posture
to which it is related in the associative memory, and the readout
units of the recurrent network are trained to acquire an attractor
dynamics corresponding to that end-point posture. The learning
in the associative memory is also guided by the competence for
the currently chosen goal. When the competence for a goal is
low the learning rate for the update of the relative end-point
posture is high, while the more the competence for that goal
gets higher the more the learning rate for the update of the
relative end-point posture gets lower. Overall, when competence
is low the random generation of motor trajectories prevails.
Meanwhile, goal-outcome contingency events lead the learning
of the end-point postures. As competence gets higher the learning
processes are slowed down and the exploitation of the so far
learned readout of the recurrent network prevails in defining
the motor trajectories. When the agent eventually achieves
the maximum competence for a goal the related motor skill
is frozen.

As we have seen, all the learning processes within the system
depend on the detection of goal-outcomematches corresponding
to external action-outcome contingencies. This detection is based
on the fact that the units of the generated goal and those of the
selected goal have a one-to-one correspondence. In particular,
when a couple of corresponding outcome unit and selected-goal
unit co-activate a goal-outcome matching signal is delivered to
the whole system. The CB-IMs that guide the exploration and
the learning of the system are determined by the activity of the
Predictor. This component is a linear neural network that gets
as input the activation pattern of the Goal Selector encoding the
selected goal, and is trained with a supervised learning algorithm
to predict the matching signal for that goal (0 in the case of failure
and 1 in case of success). The output of the Predictor represents
an esteem of the probability of accomplishing the selected goal.
This esteem is used to compute twomeasures of competence. The
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first measure indicates the system competence for the selected
goal, and corresponds to the actual output of the Predictor.
The second measure indicates the rate of accomplishment of
the selected goal per trial and is given by a decaying average
of the error of the predictor trying to predict the goal-outcome
matching. These two CB-IM measures modulate the system
learning processes.

Summarizing, there are three interacting optimization
processes involving three different functions of the system:
(1) encoding of action outcomes; (2) motor control learning;
(3) competence prediction learning. The optimization of the
outcome encoding (1) and the optimization of the motor control
(2) are guided by the competence of the agent, which is itself
acquired through the optimization of the agent’s goal-outcome
matching prediction (3).

3. RESULTS

This section presents some simulation tests directed to show
that the model manages to explore the one-dimensional space
of the agent’s body and autonomously build knowledge on
it. In particular, the autonomous learning processes involving
the acquisition of goals and of the motor capabilities to
accomplish them under the guidance of contingency detection
and competence-based intrinsic motivations converge to a steady
equilibrium, thus consolidating the agent’s bodily knowledge that
allows it to reach at will all different parts of the body with one of
the two hands.

The tests involve simulations where the grid of goals (both in
the Goal Generator and the Goal Selector layer) is formed by 5
× 5 units (25 possible goals) and the agent’s body is uniformly
covered by 30 touch sensors. We now illustrate the results of the
tests in detail.

3.1. Coverage of the Body Space by the
Acquired Knowledge
We performed 20 different simulations lasting 8,000 trials each.
At the beginning of each trial the units in the Goal Selector
layer were recruited as representations of a different desired goal,
while the units in the Goal Generator layer were triggered by the
online encoding of the sensory inputs. The Goal Generator/Goal
Selector matching pairs became related to touch events centered
in different points in the body space during learning.

We now focus on the analysis of the data referring to one
simulation representative of the average performance of the
system.

Figure 3A shows which sensors are activated when the
different goals are pursued. The figure shows how after learning
different goals produce touch events that cover the whole body
space. This shows that the goals that the agent forms only partially
overlap and also succeed to cover the whole body space.

Figure 3B shows the average activation of sensors over all the
learning trials. The figure shows that different parts of the body
are touched with different frequencies. In particular, the “chest”
area is touched very frequently whereas areas around sensors at
distance 0.28 and 0.72 from the left hand (where 1 is the length

of the whole body) are touched less frequently. This different
frequencies are due to the topology of the agent’s body. Random
exploration favors the touch of the chest, exposed to reaching of
both arms, while disfavors the touch of the “shoulders,” “hidden”
in the angle formed by the chest and one arm, and with a medium
frequency the rest of the arms, fully exposed to the reaching of
the controlateral hand. The touch events activating sensors on
the “hands” always involve both of them and so they tend to have
peak frequencies.

Figure 4A analyses the SOM receptive fields related to the
different outcomes encoded by the Goal Generator after the
completion of the learning process. Recall that each 20 × 20
field represents the activity of a map where the horizontal axis
refers to the different sensors located on the one-dimensional
body space and the vertical axis refers to the intensity of their
activation. Figure 4B shows the posture of the two arms learnt to
reproduce the touch event related to each goal. The figures show
a tendency of the grid of goals to represent multiple aspects of the
touch events. In particular, going from the bottom-left to the top-
right of the grid receptive fields tends to represent touch events
involving the chest and one arm and then both arms. Instead, the
bottom-right dimension of the grid tends to represent touches
involving more the left or the right part of the body.

3.2. Stability of the Acquired Knowledge
The system reaches a steady equilibrium guided by the increase
of competence for the different goals. Figure 6 shows how the
mean of the competence for each goal, self-estimated by the agent
as the prediction to activate the target sensors corresponding
to the selected goal (see section 4.1.1.4.), grows until the agent
reaches the maximum competence for each goal. At that point,
all learning processes regarding body knowledge halt.

The raster plot at the top of the Figure 6 plots illustrates the
positions in time of the matching events (corresponding to the
touch of the sensors related to the selected goal). Each row of the
raster plot refers to one of the 25 goals. At the beginning of the
learning process the system selects different goals and focuses on
them until it has properly learnt how to achieve them (see the
bottom-left plot of Figure 6).

Note how the system tends to focus on single goals with some
persistence after they are discovered (see also Figure 5). This is
due to the fact that the competence signal used to select goals
changes slowly. This feature turns out to be important for the
convergence of the system. Indeed, if one uses a non-smoothed
version of the signal (by setting τξ = 1 in Equation 20) then the
focussing disappears and the system fails to converge. A possible
interpretation of this results might be as follows: the focus on
a specific goal leads the system to acquire a high competence
for that goal; the high competence for the goal stabilizes both
the goal representation and the related motor skill; the acquired
goals/skills furnish an enough stable “structure” that the system
can leverage to build the other goals and skills.

When the learning process converges, the system continues to
test each goal and the prediction is maintained at its maximum
(see the bottom-right plot of Figure 6). At this point all goals
start to be equally and randomly selected as they are no
more interesting for the system but this, in its current state,
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FIGURE 3 | Distribution of touch events. (A) At each row of the plot an histogram shows the mean activation of each sensor over the trials where a given goal is

chosen. (B) Mean activation and standard deviation of each sensor over all the trials after convergence of learning (black curves and gray area). the white curve

indicates the touch frequency with random movements. Data collected over 1,000 trials after the learning process stabilized to maximum competence for all goals.

must still engage in some activity (see the bottom-left plot of
Figure 6). This means the intrinsic motivation and contingency
detection capabilities would be ready for the exploration of
other sources of knowledge if they were available to the
agent.

Figure 7 shows the history of the goal formation during
the learning process. The figure shows that at different
stages of development some goals have been formed but
then they are temporary “deleted” and then replaced in the
following stages. This indicates that the system searchers
an overall goal configuration and motor skill repertoire
that settles only when the acquired knowledge covers the
whole body space, as shown in Figure 3. The graph also
shows that the goals tend to form starting from the outer
ring of the map units and then to involve inner units of
the map. This might reflect the formation of broad goal
categories (and related motor skills) followed by more refined
categories. Further investigations are needed to confirm this
interpretation.

3.3. Features of the Behavior of the Model
Some peculiar features of the model behavior emerge during
its development. These could be possibly compared with the
behaviors of children in future empirical experiments.

3.3.1. The Time to Accomplish the Goals Diminishes

as Learning Progresses
During development, the time taken by the movements to
cause the desired touch sensation set by the different goals
progressively decreases. In this respect, Figure 8 shows how the
mean trial duration to accomplish the goals actually decreases
with the “age” of goals. This reflects the fact that the motor
accuracy of the system improves with time dedicated to learn the
motor skill of each goal. Figure 9 confirms this interpretation.
The figure shows the relation between the time needed to
accomplish a goal and the competence of that goal (systems goal-
matching prediction probability). The figure shows how lower
trial durations are positioned at the bottom-right part of the plot
where the value of competence for the goals is very high. The
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FIGURE 4 | Performance after learning. (A) The receptive fields of each goal. (B) Target postures related to goals.

FIGURE 5 | An example of the initial focussing on goals that are just been

experienced. On the top a raster plot with each row indicating the match

events for a goal. On the bottom a plot indicating the current changes in the

weights of the motor controller (Euclidean distance from weights at the

previous time step). The initial match event produces a great change in the

weights. The following ones refine the motor skill, and the corresponding

outcome sensory abstraction, until the competence for the goal is completely

acquired.

color of the dots, related to the “age” of goals, also indicates that
performance time and competence improve with the amount of
learning dedicated to each goal. In this respect, note how the
competence tends to reach values close to 100% after about 100
successes (matching events). The motor skill, however, continues
to increase as shown by the lower trial duration after 200 trials.
It might be surprising that motor ability for a goal continues to
improve even when the competence-based intrinsic motivation
signal becomes low. This is due to the fact that while this signal
continues to exert its effect on the selection of the goals, when
a goal is selected the related motor skill continues to be trained
as much as possible, as it should, by the mechanism driving
the echo-state network to produce the goal-related desired
posture.

3.3.2. Easy Postures Are Acquired Before Hard Ones
During the development of the sensorimotor behavior of the
agent there is also a change in which postures are explored.
Indeed postures that are easier to be reached due to the physical
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FIGURE 6 | History of goal predictions, indicating the probability of success when pursuing a given goal, during the learning process. Top plot: the black line indicates

the average prediction over all the 25 goals, the dark gray shadow indicates the standard deviation, and the light gray shadow indicates the worst and best skill; the

raster plot in the upper part shows the matching events for each goal, where different rows correspond to different goals. Bottom plots: zoomed visualization of the

initial phase and convergence phase of the learning process, respectively.

FIGURE 7 | The history of goal formation for the different goals located on the 2-D output map of the goal generator. The area of black squares within each sub-plot is

proportional to the system’s self-estimated probability of the goal success.

constraints of the actuators are discovered since the first trials
of the simulations while postures that are more difficult to
achieve are acquired later on. Figure 10 shows this phenomenon.
from bottom to top several plots are presented indicating the
mean activation of the touch sensors during different 10,000-
timestep-long time intervals. It is evident how during the initial
intervals the curve of sensor’s activations follows the white
line, representing the mean of sensor’s activations recorded in
a simulation where the agent’s motor behavior is kept strictly
random. This is an indication that at the beginning of the
experiment, postures that are common during random behavior
(and thus can be considered less difficult to reach) are more likely
to be chosen than others. Instead, going in the top part of the
plot series the curve of sensor’s activation depart from the white

line confirming that the agent is more likely to be focused on
postures that are more rare during random behavior (and thus
can be considered more difficult to reach).

3.3.3. Areas With More Density of Sensors Are

Explored Before Other Ones
The influence of the density of sensors within different regions
of the body during the development of self-touching behaviors
was also explored. To this end, a different simulation was run
in which 10 sensors (one third of the total) were uniformly
distributed within the first two thirds of one dimensional body
space of the agent, while the remaining 20 sensors (two thirds
of the total) were uniformly distributed within the last one third
of the body space. Figure 11 shows the overall effect consisting
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FIGURE 8 | The black line shows the duration of trials, averaged over goals,

vs. the cumulated number of successful trials (“matching” events) for each

goal. The gray area indicates the standard deviation.

FIGURE 9 | Relation between the “age” of goals (matching event number

related to the goal; indicated by the different colors), the mean trial duration

(y-axis), and the goal matching prediction (indicating the competence for the

goal; x-axis). The graph has been built as follows: for each goal age (also

shown in the x-axis of Figure 8), the average trial duration and average

prediction over goals were computed and plotted in the graph as one dot.

in a different distribution of the receptive fields of each sensor
with respect to the standard simulations (Figure 11A—compare
it with Figure 3A) and a different curve of sensor’s activation
means after learning in which activations are shifted to the right
part of the body space (Figure 11B—compare it with Figure 3B).
More importantly Figure 12 shows that during the initial phases
of development (bottom plots) the means of sensor’s activations
is shifted to the left with respect to the standard development
(see Figure 10 for a comparison) and this shifting is reverted only
later on in the development.

4. METHODS

4.1. Model Detailed Implementation
4.1.1. Goal Generator
The Goal Generator performs the unsupervised formation of the
abstract representations of the touch-sensor activation patterns
that the system can select as goals. The activation of the touch

FIGURE 10 | Mean activations of each sensors over several intervals (10,000

timestep) from the beginning (bottom) up to 100,000 timesteps.

Sensors belonging to the more easily reachable areas of the agent’s body

(white line) are the reached more frequently in the initial part of the simulation

while later all other areas are reached as well.

sensors is filtered so that only the positive changes in the
somatosensory activations are considered. The change pattern
is transformed into a two-dimensional map of units where
the horizontal dimension encodes the different sensors and the
vertical dimension spatially encodes the activation intensity of
each sensor change: this is done by determining the height of
a Gaussian function used to activate the column units related
to a certain sensor. Figure 13 shows this process with an
example.

The Goal Generator is implemented as a self-organising
map (SOM, Kohonen, 1998). SOMs are a particular kind of
neural network that is able to categorise all the patterns of
a given dataset in a unsupervised manner (Kohonen, 1982).
Each node of the output layer of a SOM learns to detect the
distance of input patterns from a prototype pattern stored in the
connection weights of the unit. SOMs also acquire information
about the distance between the different cluster prototypes
by storing it in the n-dimensional topology of their output
layer.

More in detail, we refer to the case in which the input to
the SOM is a vector x ∈ R

n, and its output organised in a
two-dimensional map and unrolled into the vector y ∈ R

m.
Generally in SOMs each output unit yj the output layer of the
SOM computes the distance of the input x from each output-unit
weight vector wj ∈ R

n belonging the network connection weight

matrixW = [w1, · · ·wj, · · ·wm]
T :

yj = ||x− wj||
2
2 (1)
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FIGURE 11 | Distribution of touch events in a simulations where the right part of the body has an higher density of sensors. (A) At each row of the plot an histogram

shows the mean activation of each sensor over the trials where a given goal is chosen. (B) Mean activation and standard deviation of each sensor over all the trials

after convergence of learning (black curves and gray area). The white curve indicates the touch frequency with random movements. Data collected over 1,000 trials

after the learning process stabilized to maximum competence for all goals.

where ||.||22 is the square Euclidean norm of a vector. The
weight vector wj is the prototype of the cluster represented
by output unit yj. The best matching (“winning”) unit ywin
is the output unit whose prototype is closest to the current
input:

win = argmin
j

yj (2)

However, here the activation of the map units was computed
in a different and more biologically plausible way as a standard
weighted sum of the input signals, minus a bias depending on the
prototype weights size. To show this, we transform the selection
of the winning unit as follows:

win = argmin
j

||x− wj||
2
2 (3)

= argmin
j

(

(x− wj)
T(x− wj)

)

= argmin
j

(

xTx− 2wT
j x+ wT

j wj

)

and since the term xTx can be ignored because it is constant with
respect to the minimization we have:

= argmin
j

(

−wT
j x+

1

2
wT
j wj

)

= argmax
j

(

wT
j x−

1

2
wT
j wj

)

This leads to compute the activation of each output units as a
standard weighted sum of the input minus a weight-dependent
term:

yj = wT
j x−

1

2
wT
j wj. (4)
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FIGURE 12 | Mean activations of each sensors over several intervals (10,000

timestep) from the beginning (bottom) up to 100,000 timesteps. In the initial

part of the simulation the distribution of touches tends to be greater in the right

region of the body.

FIGURE 13 | Computation of the sensory information received by the Goal

Generator. The positive-change of the activation of the touch sensors on the

one-dimensional body is converted into a two-dimensional neural map.

This formulation of the output layer activation has some
advantages (Martín-del Brío and Blasco-Alberto, 1995), so we use
it here. In particular, it is biologically plausible and allows the
comparison of the units activations with a threshold (see below
in this section).

The sets of connection weights reaching a given output unit j
(unit prototype) are updated at each iteration as follows:

1wj = ηsom2
(

win, j, θn
)

(x− wj) (5)

where ηsom is a learning rate and 2
(

i, j, θn
)

is a function of
the distance of a unit j from a unit i. In the classic SOM
algorithm, a threshold distance θn is used to define the “winning
neighbourhood” that 2 = 1 if the distance of the output unit yj
from ywin within the output neural space is below θn, and 2 = 0
otherwise. Both the distance threshold θn and the learning rate
ηsom are then exponentially decreased on each iteration so that
increasingly fewer units surrounding the winning units undergo
learning.

We deviate from this standard learning algorithm in one
important way so as to cope with the open-ended learning
nature of the architecture, where new goals can be continuously
discovered, by linking the goal-formation to the competence in
accomplishing them. In particular, both the learning rate etasom
and the neighbouring threshold θn are updated on the basis of the
competence-based intrinsic motivation measure as follows:

1wj = (1− ψ̄)(1− ψj)2
(

win, j, (1− ψ̄)
)

(x− wj) (6)

where ψj is the competence-improvement of the SOM output
unit j and ψ̄ is the average of such measure for all units.

In order to compute the matching signal, the output of the
SOM is filtered so that it results in a binary pattern o whose
elements are all set to 0 with the possible exception of the element
corresponding to the winner unit: this is set to 1 in the case its
activation exceeds a threshold θo.

4.1.2. Goal Selector
The Goal Selector is responsible for the autonomous selection
of goals at the beginning of each trial. The selected-goal pattern
is sent to the Motor controller to generate a movement and is
also used to compute the matching signal. The Goal Selector is
implemented as a layer of units g corresponding one-to-one to
the units of the output layer of the Goal Generator. All elements
of g are set to 0 with the exception of one element set to 1.
The element set to 1 is decided on the basis of a probabilistic
sampling based on probabilities computed through a softmax
function getting as input the current competence improvement
ξ of the goals:

p(gj|ξ ) =
e
ξj
γ

∑

i e
ξi
γ

(7)

where γ is the “temperature” parameter of the softmax regulating
how much the generated probabilities tend to favour goals with a
higher competence improvement.

4.1.3. Motor Controller
The g pattern is used as input to the Motor controller sending
commands to the joints of the arms. The Motor controller is
formed by three components: (1) an echo-sate neural network
(“dynamic reservoir network”) whose 6 output (“readout”) units
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encode the desired angles of the joints of the arms; (2) a
structured noise that produces a random trajectory averaged
with the echo-state network commands to support exploration;
(3) an associative memory that learns to pair to each goal gj a
desired final posture causing the matching event related to the
goal, and acquired by reinforcement learning: when the selected
goal is matched, this posture is learned in a supervised fashion
as a desired attractor-posture by the echo-state network. These
components are now illustrated in detail.

The motor controller
Dynamic reservoirs are sparse recurrent networks that respond
to inputs with dynamics that are close to chaotic behaviour,
meaning that their activation is very rich but still non-chaotic
(the “reservoir property,” Jaeger, 2001). Similar inputs produce
similar dynamics. Moreover, when the network is fed with a
constant input its activity goes through a transient dynamic
activation and then settles to a stable attractor. This attractor
is formed by zero values when the input is a vector with zero
elements, and is formed by a certain pattern when the input
is formed by a vector with some non-zero elements (different
input patterns cause different attractors). The transient activation
feature allows dynamic reservoir networks to learn to produce
temporal sequences in output. Their convergence to attractors
with constant input patterns allows them to produce movements
that converge to specific postures Mannella and Baldassarre
(2015). Moreover, reservoir networks have a great capacity of
storing different responses to patterns because they can produce
an expansion of the dimensionality of the input patterns when the
number of the internal units is high with respect to the number
of the input-layer units.

The units of the reservoir network used here—a leaky echo-
state network—have a leaky activation potential r and an
activation a as follows:

τdr ṙ = −r+Wg→rg+Wr→ra (8)

a =
[

tanh (r)
]+

(9)

where τdr is a temporal factor, Wg→r is the matrix of weights
connecting the selected-goal units g to the reservoir, and Wr→r

is the matrix of internal connections. The initial values of Wr→r

is generated with a Gaussian noise.
After being generated, the matrix has been normalised to

satisfy the reservoir property (Jaeger, 2001):

1− ǫ < ρ

(

δt

τdr
Wr→r +

(

1−
δt

τdr

)

I

)

< 1 (10)

where ρ (M) = maxj
(

|λj|
)

is the spectral radius of a matrix M

with eigenvalues λj, and I is the identity matrix.
The reservoir internal units are connected to a layer of readout

units z setting the values of the joint angles of the arm:

z =
[

tanh (Wa→za)
]+

(11)

The reservoir learning involves the weightsWa→z and is directed
to produce a mapping from the selected-goal g received in input

and the desired postures D produced in output and stored in the
motor associative memory (see below). Indeed, D represents the
posture experienced at the moment of the matching involving the
selected goal received as input by the reservoir. To this purpose,
the weights are modified at each step of the trial as follows:

1Wa→z = α((ds − zt)⊙ z′t)at
T (12)

where α is a learning rate, ds is the desired posture stored in
the associative memoryD and corresponding to the selected goal
gs sent as input to the reservoir, zt is the output pattern of the
reservoir at time step t of the trial and z′t its element-wise first
derivative,⊙ is the element-wise product, and at is the activation
of the reservoir internal units. If dj has not yet been generated, as
the selected goal has never been matched, learning does not take
place.

The random trajectory generator
During learning, the output of the reservoir merged with
the output of a random trajectory generator to foster motor
exploration. To this purpose, at each trial the random trajectory
generator produces a sinusoidal trajectory, having a frequency
randomly drawn from a certain random range, for each joint j:

nj = cos

(

2π f
t

β
+ π

)

(13)

where f is a random frequency in the interval [0, 1] and β is a
scale factor.

The finalmotor command issued to the joints,m, is a weighted
sum of the reservoir output and the random trajectory generator,
using as weight the competence ψj of the selected goal:

m = π
(

ψjz+ (1− ψj)n
)

(14)

The associative memory
Every time there is a matching of selected goal gj, the target
posture associated to it, dj, is updated as a decaying average of
the experienced postures p:

τdḋj = −dj + p (15)

where τd is a decay factor. This factor is modulated by the
competence of the selected goal:

τd =
1

1− ψj
(16)

This implies that with low competence the target posture
corresponding to the selected goal is strongly updated towards
the experienced posture causing the accomplishment of the
generated goal (corresponding to the selected goal), whereas with
a high competence it freezes on its current values.

4.1.4. Competence Measures
This section shows how the model computes the competence
for goals through the online optimization of the outcome-goal
contingency prediction.
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During each trial a goal matching happens (and considered
equal to 1) if the Goal Generator activated unit at a given timestep
corresponds to the goal selected by the Goal Selector at the
beginning of the trial (otherwise thematching is considered equal
to 0 at the end of the trial):

match = oTg (17)

A linear neural network getting as input the selected-goal pattern
predicts the goal matching (0 in the case of failure, 1 in the case
of success):

pred = ψTg (18)

Initially, the values ψ are set to zero so the prediction is equal to
0. The predictions are learned to predict based on the difference
between the currentmatch and pred values:

1ψ = ηpred
(

match− pred
)

⊙ g (19)

Given that the range of bothmatch and pred is [0, 1], the possible
values of the elements of ψ tend to be in the same range. Each
element ψj is then a measure of the competence for the goal gj as,
given the 0/1 values of this, it tends to represent the probability
of achieving such goal when it is selected.

The model also uses the (match − pred) error to compute a
second measure of competence that changes more slowly with
respect to the first one by applying to it an exponentially decaying
average:

τξ ξ̇ = −ξ +
[

match− pred
]+

(20)

The choice of using only the positive part of the prediction
error ([.]+) (cf. Santucci et al., 2013) is due to the fact that
the intrinsic motivation signal is related to competence, thus
when the system fails to accomplish a goal the leaky value (and
motivation) converges towards zero rather than towards negative
values. The exponential decaying average causes a slow change
of the signal: as we shall see, this is important for the focussing
of the system for some trials on the discovered goals and this in
turn affects the convergence of the model. The parameters of the
model are shown in Tables 1, 2.

4.2. Source Code
The model was developed using the Python programming
language. Simulations to find the best parameters were run
through the computers of the Grid’5000 system, allowing free
access and use of high performance computing resources.
Analyses and plots were made by using the R programming
language. The source code of the simulations is available
at: https://github.com/GOAL-Robots/CNRUPD_010618_
sensorimotorcontingencies.

5. DISCUSSION

In this work we investigated the hypothesis that self-generated
goals and Intrinsic Motivations (IMs) may play an important
role even in the early development of knowledge on own body

and basic motor skills. This hypothesis, supported by empirical
data (section 1), has been incorporated in a 2D simulated robot
composed of two arms and endowed with touch sensors. The
results confirm the computational soundness of the hypothesis
(section 3), showing how the model is able to autonomously
form a map of self-generated goals, encoded in terms of touch-
sensations, and to learn the motor skills to reach the different
areas of such map. The learning processes allowing the model
to acquire this knowledge are completely autonomous and rely
on two key processes, the autonomous generation of goals
and the use of intrinsic motivations based on competence to
select them.

The model autonomously generates goals based on the
capacity of its movements to change own sensation, specifically,
when the model discovers a contingency between a motor
behavior (the achievement of a specific end-posture of the two
arms) and the detection of a perceptual change (the activation
of the touch sensors). Once generated, goals can play important
functions both during learning and during functioning. During
learning they can guide the refinement of the motor behavior
leading to them, in this case the movements to produce the
perceptual change (as in GRAIL architecture, cf. Santucci et al.,
2016). In particular, the activation of the internal representation
of a goal allows the model to learn the motor skill to accomplish
it independently of the fact that the contextual input from
the environment, here the possible states of own body, is
always the same. This would not be possible within a stimulus-
response reactive framework, e.g., with standard reinforcement
learning models (Sutton and Barto, 1998), as the constant
context (“stimulus”) would not allow the system to perform
different motor behaviors. Instead, the model can learn different
motor behaviors as it can associate them to different internally-
activated goals. Moreover, goals support a second function
during learning, namely the generation of a “matching signal,”
produced when the experienced sensation (here the touch

TABLE 1 | Parameters used in the model for all simulations.

ηsom 0.25

λ 0.01

τdr 100.0

β 50.0

τd 1.2

ηpred 0.35

τξ 5.0

TABLE 2 | Sizes of all the components’s layers in the model.

Sensors 30

SOM inputs 20 x 20

(pre-encoding)

SOM output units 5 x 5

Goal selector units 5 x 5

Motor control RNN 150

Motor control readouts 6
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sensation) matches the internally-activated goal representation:
such signal produces a reward that guides the trial-and-error
learning process supporting the refinement of the motor skill
directed to pursue the currently-active goal.

During functioning, goals can serve the role of “pointers” to
recall the acquired skills. Indeed, the activation of a goal can
trigger the performance of the motor skill that accomplishes it
even if the context has no change. Again, reactive models cannot
do this as they cannot recall different skills unless information
from the outside is provided (e.g., in the form of a pointer
somehow associated to each skill). Here the activation of goals
to test this functionality of the model is done by hand but in
the future the enhancement of the model within a developmental
framework might endow it with the capacity to autonomously
employ goals to recall the related motor skills to accomplish
similar desired goals or to facilitate their learning (Seepanomwan
et al., 2017), or to compose more than one goal/skill to formmore
complex policies accomplishing goals at a coarser granularity
(Vigorito and Barto, 2010; Hart and Grupen, 2011).

The second important process guiding the body knowledge
acquisition in the model is related to competence-based intrinsic
motivations linked to the acquisition of the motor skills leading
to the desired goals. This motivation is computed on the basis of
a mechanism measuring the probability that a skill accomplishes
the goal to which it is linked. As it typically happens in intrinsic
motivations, these mechanisms are related to the acquisition
of information (in this case the capacity to reach own body)
and has a transient nature (Baldassarre, 2011), i.e., it leads to
decrease the agent’s interest in an activity when the competence in
that activity has been acquired. In the model, competence-based
intrinsic motivations plays several different functions. First, a
low competence favors the update of the representations of goals
whereas a high competence leads to stabilize them. Second,
the opportunity to gain competence guides the selection of the
goals on which the agent focuses its exploration and learning
resources. Third, high levels of competence for a goal reduce
motor noise used to search the motor behavior to accomplish it.
Fourth, a low competence for a certain goal leads to a substantial
update of the related movement target (and hence of the related
movement) whereas a high competence leads to its stabilization.
Overall, when integrated these mechanisms lead the agent to
converge to stable action-outcome contingencies, namely to both
effective movements to accomplishing goals and to stable goal
representations.

The dependence of the autonomously formed goal
representations on competence is particularly innovative.
The introduction of the dependence of goal representations
on the competence to accomplish them was a critical step that
allowed the model to be able to form stable goals and skills,
with goals covering the whole body space in a homogeneously
distributed fashion. To our knowledge, this is the first work that
uses competence-based intrinsic motivations to modulate the
formation of the perceptual representations related to goals, and
to show its importance for the overall stability of the discovered
action-outcome (“skill-goal”) contingencies.

In the computational literature, other works proved the power
of self-generated goals and IMs to boost the autonomous learning

of knowledge and competences. While the majority of these
works focused on the acquisition of some sort of control on
the environment (e.g., Vigorito and Barto, 2010; Santucci et al.,
2014a; Kulkarni et al., 2016; Forestier et al., 2017; Seepanomwan
et al., 2017), here we wanted to test how similar principles could
be used to drive the learning of low-level motor skills based on
the interaction with own body. In the goal-babbling literature,
some works (e.g., Rolf et al., 2011; Baranes and Oudeyer,
2013; Rolf and Steil, 2014) use the autonomous generation of
intrinsic goals to learn a mapping between different end-points
in the goal space and the corresponding configuration of the
redundant effectors of the robots. Differently from these systems,
our model is able to jointly map two different dimensions
of the agent: the proprioception of its arms (the postures)
and the activation of the touch sensors, thus providing a
more sophisticated learning of the contingencies related to the
agent’s body.

Another relevant computational framework regards
knowledge gradients (Frazier et al., 2008; Scott et al., 2011;
Wu et al., 2017). This is a Bayesian method to optimize
the exploration of some alternative options, each carrying a
stochastic reward, based on the information-gain gradient
related to them and with the objective of a later choice of
the best option. Our model has some similarities with the
idea of knowledge gradients since it uses a value function
over the space of the internal representations of goals to bias
their selection. The major difference is that in our model
the knowledge gain giving rise to competence-based IM
concerns the competence of the motor controller. Instead, in
knowledge gradients the knowledge gain regards the increase
of the confidence of the estimate of the rewards of options.
Moreover, in our model the value function for goal exploration
is built upon a “utility function” that is non-stationary, namely
the competence of goal which varies with motor learning,
whereas knowledge gradients are built upon a value function
related to the information gain concerning the esteem of the
rewards of alternative options which are fixed. Given these
similarities, an interesting line of research would be to cast
our hypothesis within a probabilistic framework such as that
of knowledge gradients, where the exploration is guided by
a measure of competence gain computed through Bayesian
optimization.

The hypothesis that goals might be used also to learn
low-level fine-grained motor skills is in agreement with
evidence from neuroscience. This shows that, alongside
high-level goals encoded in the prefrontal cortex (Miller
and Cohen, 2001; Mannella et al., 2013), premotor and
motor cortical areas might encode movements in terms of
goals related to desired end-movement postures (Graziano
et al., 2002) or body-object relations (Umilta et al.,
2001).

Empirical evidence from developmental psychology relevant
to the present model of the acquisition of self-touch behavior
is not plentiful. However some evidence can be summoned at
a more general level from experiments showing the role played
by sensorimotor contingencies in development. In particular, it
has been shown that contingencies related to producing relevant
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changes in the environment, in particular the movement of a
mobile toy attached with a ribbon to one arm of a baby but not to
the other arm, can lead to an increase movement of the relevant
arm (Rovee-Collier et al., 1980).

More recently it has been shown how learning progress
related to reaching a toy can be enhanced by the fact that
the object produces a sound contingently to its touching
(Williams and Corbetta, 2016). Overall this evidence indicates
the importance of contingencies for the development of motor
skills, and in particular of the fact that actions lead to a change
in the world. This is also a key assumption of the model,
although it remains to be ascertained by the use of appropriately
designed empirical experiments if those contingencies drive
the learning of motor skills through the mediation of goal-
formation, as proposed here, or directly within a stimulus-
response framework.

Another source of relevant research concerns the development
of reaching toward the own body and toward objects.
This research shows that infants develop progressively from
spontaneous to goal-directed arm and hand movements. Wallace
and Whishaw (2003) examined hand movements in infants aged
1–5 months and describe a development from closed fists to
open hand movements that progress in complexity toward self-
directed grasping. Such “hand babbling” may correspond to the
goal-directed babbling of the models behavior. Also, about a
month before infants execute their first successful reaches, they
increase the number of arm movements in the presence of a
toy and raise their shoulders and arms in approximation of a
reach (Bhat and Galloway, 2006; Lee et al., 2008), which again
suggests that spontaneous arm movements or “arm babbling”
prepares the emergence of purposeful reaching. Thomas et al.
(2015) documented self-touching behavior in developing human
infants over the first 6 months of life. In the initial weeks, they
mainly observedmovements around the shoulders with the digits
in a closed fist configuration, resulting in incidental contacts with
the body. From about 12 weeks, movements included palmar
contacts, giving a goal-directed, exploratory quality to self-touch.

We shall now review how more specific predictions of
the model may be linked to existing data in developmental
psychology as well as the perspectives that these predictions open
for future research. One first prediction from the model is that
movement duration should decrease with learning progress, in
particular for specific goals, as the competence to accomplish
them increases. Certainly it is true that infants’ reaches become
smoother and straighter over development. First reaches have
irregular, inefficient, curved paths, with several changes in
direction and multiple bursts of speed, making the path up to
four times longer than a straight line to the object (von Hofsten,
1991). Evidence from infants reaching in the dark shows that
this initial inefficiency is not due to continuous visual tracking
of the hand relative to the target in a series of corrections. In
fact, infants produce similar hand paths and reach characteristics
when reaching for glowing objects in the dark (Clifton et al.,
1991). It is therefore possible that the inefficient movement phase
reflects motor babbling. Similarly, between 6 and 15 months of

age, infants’ arm movements while banging a block or wielding
a hammer become increasingly straight and efficient (Kahrs
et al., 2013). We are currently investigating how reaching toward
vibrotactile targets on the infant’s own body develops between 4
and 6 months of age. Based on the model we expect that reaches
toward locations on the body will gradually become faster and
more efficient.

A second, obvious, prediction of the model is that skill
acquisition should progress from easy to hard skills. In our
series of observations of self-touch, we expect to observe a
developmental sequence of reaching for parts of the body that are
easier to attain, such as the mouth or the hips, toward reaching
for targets that are more difficult to find, such as the forehead
or the earlobes. Our current investigations with infants between
the ages of 2 and 6 month along with the results reported by
Chinn et al. (2017) with older infants appear to confirm this
developmental trend.

Finally, a third prediction from the model regarding human
development holds that uneven density of tactile receptors
throughout the body should contribute to determining which
areas of the body are contacted earlier. This prediction is partially
confirmed by existing empirical data that shows that infants’ and
fetuses’ first self-touch behaviors involve areas with high tactile
receptor density such as the mouth or the thumb (De Vries
et al., 1982). These regions also produce approach motions of
the hands which have faster dynamics as compared to other
regions (Zoia et al., 2007). It should be noted however that
alternative models, such as that designed to account for fetus
behavior by Mori and Kuniyoshi (2010) may make similar
predictions.
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