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Self-organized robots may develop attracting states within the sensorimotor loop, that

is within the phase space of neural activity, body and environmental variables. Fixpoints,

limit cycles and chaotic attractors correspond in this setting to a non-moving robot, to

directed, and to irregular locomotion respectively. Short higher-order control commands

may hence be used to kick the system from one self-organized attractor robustly

into the basin of attraction of a different attractor, a concept termed here as kick

control. The individual sensorimotor states serve in this context as highly compliant

motor primitives. We study different implementations of kick control for the case of

simulated and real-world wheeled robots, for which the dynamics of the distinct wheels

is generated independently by local feedback loops. The feedback loops are mediated

by rate-encoding neurons disposing exclusively of propriosensoric inputs in terms of

projections of the actual rotational angle of the wheel. The changes of the neural activity

are then transmitted into a rotational motion by a simulated transmission rod akin to the

transmission rods used for steam locomotives. We find that the self-organized attractor

landscape may be morphed both by higher-level control signals, in the spirit of kick

control, and by interacting with the environment. Bumping against a wall destroys the

limit cycle corresponding to forward motion, with the consequence that the dynamical

variables are then attracted in phase space by the limit cycle corresponding to backward

moving. The robot, which does not dispose of any distance or contact sensors, hence

reverses direction autonomously.

Keywords: closed-loop robots, limit cycles, sensorimotor loop, self-organized locomotion, compliant robot,

robophysics

1. INTRODUCTION

The sensorimotor system is in general a product of evolution, development, learning, and
adaptation (Todorov, 2004). One may examine alternatively whether self-organizing principles
(Prokopenko et al., 2009) are capable to generate locomotion, in particular for the case of
embodied (Ghazi-Zahedi et al., 2017) and/or biologically inspired robots (Pfeifer et al., 2007). Self-
organization may serve in this context to generate a palette of behavioral primitives (Tani and Ito,
2003), or, on a higher level, to generate complex and playful behavior (Martius et al., 2013).
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Attracting states in the sensorimotor loops corresponding
to regular and exploratory motion, that is respectively to limit
cycles and chaotic attractors, can be generated following two
complementary routes. Within the first approach, which is
especially suited for settings involving a large number of degrees
of freedom (Kubisch et al., 2011), the optimal mapping between
sensors and actuators is learned. Learning is on the other side
absent when generative principles are implemented and studied
(Gros, 2014). Short-term synaptic plasticity, a transient form of
mostly presynaptic neural plasticity (Hennig, 2013), has been
shown in this context to generate limit cycles (Toutounji and
Pasemann, 2014) and chaotic attractors (Martin et al., 2016).
Other examples are the homeostatic principles regulating the
average neural activity (Linkerhand and Gros, 2013), which have
been shown to induce surprisingly complex locomotive patters
(Sándor et al., 2015).

The control of wheeled robots, e.g., with skid steering
(Kozłowski and Pazderski, 2004), is well established, with explicit
mathematical models (Das et al., 2006) being often the basis for
the regulation of either the angular velocity of the individual
wheels (Jimenez-Fernandez et al., 2012), or of the respective
torque (Mandow et al., 2007). One may obtain the sensorimotor
mapping relevant for the neuromorphic robot at hand also by
training large neural networks (Conradt et al., 2015). As an
alternative, we consider here exceedingly simple neural control
schemes that are based on physical principles and not on adaptive
learning. Typically, we need just one or two neurons per actuator.

Our starting point is the observation that neural activity, such
as the spiking rate y, has a defined but limited range, say y ∈

[0, 1]. The activity of an output motor neuron could therefore
be mapped, in principle, directly to the target angular velocity
ω of the wheel, e.g., via ω ∼ (2y − 1). Forward and backward
motions would correspond in this setting to distinct neural
activity patterns. We examine here in contrast a neural controller
for which the time reversal symmetry between forward- and
backward motion is broken spontaneously under the influence
of initial conditions.

Our robots are equipped with two active wheels and a third
passive support wheel. A maximum of two neurons per wheel
generate self-organized locomotion, which is both compliant and
variable. A simulated transmission rod is used to map the forth-
and-back motion of the neural activity level y ∈ [0, 1] to the
motor command in a manner that mirrors the transmission
mechanism used by traditional steam locomotives to transmit the
force generated by the pressurized steam piston to the rotating
wheel.

Both computer simulations and experiments with real robots
are performed in order to assess the feasibility of the proposed
control mechanism. We find that locomotion is generated
robustly both for individual robots and for trains of passively
coupled two-wheeled cars. The only sensory information driving
the neural activity is propriosensoric, namely the current angle
of the wheel the neuron controls. Cross-wheel information
exchange is absent. Highly complex behavioral patterns (such as
forward and backward locomotion, exploratory chaotic motion)
emerge nevertheless upon interaction with the environment,
which modifies the attractor landscapes of the individual wheels.

Experimenting with additional top-down control signals we
find that it is possible to kick individual wheels from one attractor
into the basin of attraction of another attracting state. The self-
organized limit cycles and chaotic attractors forming in the
sensorimotor loop may hence be used also as motor primitives.

The rest of the paper is structured as follows. In section 2,
the concept of kick control is introduced and defined
mathematically, followed by the description of the proposed
controller and of the experimental setup. In section 3, three
possible implementations of kick control and their reliability tests
are presented as a proof of concept. The experimental findings
are then investigated via a simple analytic model as well. Finally,
a summary is given in section 5.

2. MATERIALS AND METHODS

From a general perspective we are interested in attracting states
that form in the sensorimotor loop. Defining with xR and xE the
dynamical variables of the robot (R) and of the environment (E)
we have

ẋR = fR(xR, xE;PR), ẋE = fE(xR, xE;PE) (1)

for the combined dynamics, where PR and PE parametrize
respectively the time evolution of the robot and of the
environment. Parameters distinguish themselves in our notation
from variables in the respect that they change either only very
slowly, as the result of a separation of time scales, or via actions
that can be considered external. Control signals will modify
the evolution equations (1), which describe as such locomotion
generated autonomously within the sensorimotor loop.

2.1. Kick Control
Locomotion is characterized typically by timescales of seconds.
One speaks of “kick control,” when a robot is subjected to control
sequences that are shorter than the time needed to complete
a movement, e.g., of the order of 50–200ms. Kick control is
functionally dependent on the existence of multiple attracting
states in the sensorimotor loop that correspond to distinct
locomotive patterns. The control signal then serves “to kick” the
dynamical system (1) into the basin of attraction of the desired
attracting state. There are two mutually not excluding venues.

– “Frozen” kick control is present when the control pulse 1xR
acts via

xR → xR + 1xR (2)

exclusively onto the variables xR of the robot. The parameters
PR are not changed, they remain frozen. The state of the system
is kicked here from its present state xR to a new state, viz to
x′R = xR + 1xR. A sudden change of parameters as in (2)
corresponds to an additional strong temporary force within
the right-hand-side of the corresponding Newton equation of
motion (i.e., to a kick).

– “Quenched” kick control is realized when the control
pulse 1PR(t), which may be something like a
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rectangular pulse or a broadened δ-function, leads
via

PR → PR + 1PR(t) (3)

to a sudden but transient change of the parameters PR of the
robot. The near instantaneous change of parameters catapults
the system into a quenched configuration for which the
attracting states of evolution equations (1) are morphed.

Quenched kick control will need in general a somewhat longer
control signal. The reason is that the time evolution under the
influence of the morphed attractors, that are present over the
duration of the control pulse for the case of quenched kick
control, needs to progress to a point in which the system finds
itself within the basin of attraction of a different attractor once
the control pulse ceases.

We have defined control signals as changes of either the
variables or of the parameters of the robot. We may consider
alternative events that lead to changes of the state of the
environment, notably of the parameters PE. This happens in
particular when the robot interacts with other objects, e.g., when
it bounces against a wall. The resulting transition to a different
attracting state may hence also be described at times within the
terminology of kick control.

2.2. Simulated Steam-Locomotive Actuator
We consider robots for which the active wheels are controlled
independently by simple proprioceptual rate-encoding neurons.
A finite angular velocity is attained when the internally generated
torque interacts with the external response resulting from friction
forces, gravity and inertia.

Neural activity covers a finite range, which can be normalized
to the interval [0, 1]. A straightforward route for translating the

neural activity yi to a rotational mode would be to take yi to be
directly proportional, in the spirit of direct control, to a target
angular velocity. Here we consider an alternative mechanism
which allows for the generation of self-stabilizing attractors in
the sensorimotor loop. For this purpose we use two steam-
locomotive-like actuators that allow to translate the finite range
of neural activity into a rotational model.

The two simulated actuators used for each wheel have a
perpendicular alignment that allows for a continuous tracking.
The respective transmission rods are fixed at one point of the
perimeter of the wheel, as illustrated in Figure 1, being moved at
the other end by ideal springs with constant k. The spring forces

Fi = k
(

x
(t)
i − x

(a)
i

)

, i = 1, 2 , (4)

are proportional to the distance x
(t)
i −x

(a)
i between the normalized

target position x
(t)
i and the actual position x

(a)
i of the wheel.

The actual positions x
(a)
i ∈ [−1, 1] are determined in turn by

the projections of the rotational angle ϕ of the wheel, measured
respectively relative the horizontal and the vertical direction:

x
(a)
1 = cosϕ , x

(a)
2 = sinϕ . (5)

The target positions x
(t)
i ∈ (−1, 1) are provided on the other side

by the output of two independent rate-encoding neurons,

x
(t)
i = 2y(xi)− 1 , y(x) =

1

1+ e−ax
, (6)

which are characterized by a sigmoidal transfer function y(x) ∈

[0, 1] with slope a/4. The dynamics of the membrane potential xi

is driven in turn by the proprioceptual input x
(a)
i ,

τ ẋi = x
(a)
i − xi , i = 1, 2 , (7)

FIGURE 1 | Left: The two-wheeled real robot constructed with the LEGO Mindstorms package. The active wheels are controlled by independent motors. A third

passive wheel (the spherical shaped metallic wheel below the robots) keeps the body horizontal. Right: A sketch of a wheel with two perpendicular actuators (click for

movie). A spring with spring constant k pulls the rod (in gray) toward the target position x
(t)
i

(green). The target position x
(t)
i

is determined by the output of a controlling

neuron, as described by Equation (6), which receives in turn the actual position x
(a)
i

(orange) of the wheel as an input. Compare Equation (5). The final torque acting

on the wheel is given by the sum of the tangential components of the spring forces F1 and F2, see Equation (8).
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where the internal time scale τ is of the order of a few hundred
milliseconds. The total tangential force acting on the wheel is
then the vectorial sum of the projections of individual spring
forces (see Figure 1):

Ftan = Ftan1 + Ftan2 = F1 sinϕ − F2 cosϕ . (8)

The proposed controller translates hence the forth and back
dynamics of the normalized neural activity y ∈ [0, 1] to a
rotational motion for the wheel. For an animated illustration of
the steam-locomotive controller see the Supplementary Material.

Note that a single actuator, e.g., a single horizontal
transmission rod, would lead to a sinusoidal force ∝ Ftan1
vanishing at ϕ = 0 and ϕ = π . The combined force (8) is on the
other hand always finite when two actuators with a perpendicular
alignment are employed. See Figure 1 and the illustrating movie
presented in the Supplementary Material.

2.3. LEGO Mindstorms Robot
To test the presented actuators we constructed robots with two
active wheels using the LEGO Mindstorms Education Core Set
(see the left picture of Figure 1). For more details about the
experimental setup see the Supplementary Material. A third
passive wheel keeps the body of the robot in a horizontal position.
The active wheels are driven by motors that provide sensory
feedback regarding the angle ϕ of the individual wheels. The
working regime of the LEGOmotors is finite, that is they respond
to inputs M̃ ∈ [−M̃max, M̃max]. In order to comply with this
constraint wemapped the simulated tangential force Ftan, defined
by Equation (8), via

M̃ = M̃max tanh
(

Ftan
)

(9)

to the motor signal M̃. For an elastic response we used typical
relative motor commands of the order of M = M̃/M̃max ∈

[−0.7, 0.7]. Absolute time was measured at the start of every
control loop and compared with the last time the control loop
was called. The such determined time difference 1t between two
successive instances of the control loop was used for solving (7)
via a straightforward Euler integration. On the average we had
1t ≈ 40ms.

The motor stalls for low motor powers, viz when |M̃| ≤

0.1M̃max, as a consequence of the internal friction of the
gearing. A minimal torque is hence required for the robot to
start moving. The overarching dynamical system, describing the
body, the internal controller and the interactions between body
and environment, allows for the generation of self-organized
attractors (Sándor et al., 2015) that correspond to different
motion patterns, the motor primitives (Ijspeert et al., 2002).

3. RESULTS

3.1. Self-Organized Attractors as Motor
Primitives
In the normal mode the robot disposes, as shown in Figure 2,
of three possible states: stopped, forward and backward moving.
For the forward and backward limit cycle locomotion the torque

acting on the wheels is quasi-stationary, an observation that is
consistent with the analytic treatment detailed out in section 4.
Additionally, the robot may also rotate around its own axis,
which happens when the two active wheels turn in opposite
directions or when only one of the two wheels turns.

The measured speed of the robot in the forward and backward
moving modes is v = 0.35m/s for k = 8, a = 4, and τ = 250ms,
a setting that makes use of about 80–90% of the maximal power
of the motor. In addition to the basic limit cycle attractors one
finds for a = 4, k = 15, and τ = 1, 000ms a chaotic attractor,
for which the motors switch irregularly between the destabilized
fundamental modes of the individual wheels, as illustrated in
Figure 3. For a video of the chaotic dynamics of the robot see
the Supplementary Material. We did not attempt, for the case of
the LEGO robot, to fully map the set of parameters for which a
stable chaotic attractor exists, e.g., by evaluating the Lyapunov
exponents in the context of navigation (Harter and Kozma, 2005).
We note that chaotic attractors have been shown to be useful in
the design and construction of spatial navigation models (Voicu
et al., 2004).

3.2. Kick Control for Embodied Robots
The presence of coexisting attractors, viz of multistability
(Pisarchik and Feudel, 2014), allows to switch between the basic
modes without the need to modify the internal parameters of the
system for the entire locomotion. The transitions between the
individual attractors may be induced by external physical stimuli,
such as collisions with other robots or with the environment
(Martin et al., 2016).

A robot initialized in the forward moving mode is
able to reverse direction when bouncing off a wall placed
perpendicularly to the direction of locomotion, as illustrated
in Figure 4. The reversal of direction is performed in this case
autonomously, that is in absence of any additional control
signals. It occurs because the forward mode gets destabilized
for the duration of the collision, whereas the basin of attraction
of the backward mode expands correspondingly. The flow in
phase space is then drawn toward the backward attractor, where
it stays after the forward attractor reemerges upon pulling away
from the wall. Autonomous switching between forward and
backward modes when colliding with obstacles occurs robustly,
as we demonstrated by a series of experiments on rough surfaces
(see Supplementary Video 3).

An alternative possibility to generate switches between
coexisting attractors is to kick the phase point of the dynamical
system to the basin of attraction of another attractor, termed here
as kick control. This may be realized by applying short duration
input stimuli.We present here three intuitive mechanisms, which
may be classified, as discussed in section 2.1, as “frozen” and
“quenched” kick control.

3.2.1. Frozen Kick Control

A reliable direction reversal may be induced by inverting
membrane potentials via

x1 → −x1, x2 → −x2 , (10)
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FIGURE 2 | Motion primitives corresponding to non-moving and to forward and backward limit-cycle locomotion. Note that the motor stalls for |M| < Mthr ≈ 0.1 (gray

area), viz when the torque M is unable to overcome the internal friction. Left: The measured output torque M for a = 4 and τ = 250ms as a function of the spring

constant k. The measurements are performed after the robot settles in the forward (blue) or in the backward (green) attractor. For small k the robot stops moving and

the tangential force vanishes. Right: An enlargement of the region k ∈ [0, 2] showing the measurements (blue/green dots) and the corresponding stable limit cycle

(blue/green lines). A saddle-node bifurcation of limit-cycles (SNC) is likely to occur when the torque is counteracted by the internal friction. The resulting unstable limit

cycles (dashed blue/green lines) are shown.

FIGURE 3 | Time series of the motor torques (9) in the chaotic mode, in relative units, for a = 4, τ = 1, 000ms and k = 15. Left: For the LEGO robot (click for movie).

The light gray shaded area indicates the |M| < Mthr ≈ 0.1 region where the motor stalls. Right: For the analytic model (13), with F tan given by the torque on

right-hand side of Iω̇. Here we took f = 0.5 for the friction and I = 0.05 for the moment of inertia.

FIGURE 4 | Collision induced switch of attractors. Middle: The time series of the relative torque M acting on the wheels for τ = 250ms, k = 2 and a = 4. The gray

shaded region indicates the minimal torque needed to start the motor, Mthr = 0.1. The superimposed sketches illustrate a double-well potential with the minima

corresponding to two coexisting attractors. The phase point (red ball) stays around the minima even in the presence of noise or small oscillations. The system is

located in the backward attractor (B) when the robot collides with a wall and the forward attractor (F) is destabilized. The total torque M changes consequently its sign.

Right, Left: The Lego robot before and after colliding with the wall (click for movie).
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at given time. Equation (10) induces an instantaneous change
of the internal variables that does not affect the parameters of
the one-neuron controller. It corresponds therefore, as defined
in section 2.1, to frozen kick control. The respective time-series
of the membrane potentials are shown in Figure 5. The reversal

of the direction occurs fast, depending however on the state the

actuator was in when the membrane potentials were inverted.

It is furthermore noticeable, in particular following the second

kick signal, that it may take half a second or more to fully settle

into the reversed attractor. A relative phase slip may be induced

in addition in between the two wheels, which are mechanically

not precisely identical. The here considered variant (2) of frozen

kick control is furthermore 100% reliable in direction reversal

tests (for a demonstration see Supplementary Video 4). This is
due to the fact that the sign flip of internal variables x1,2 leads
instantaneously to a motor torque of opposite direction, compare
Equations (4, 8).

3.2.2. Quenched Kick Control

We considered two variants of quenched kick control. For the

first variant one substitutes the actual wheel positions x
(a)
1,2 by

x
(a)
1 → (1− 2β) cos(ϕ)

x
(a)
2 → (1− 2β) sin(ϕ)

, β =

{

0 (control off)
1 (control on)

. (11)

The new parameter β = β(t) is turned on for a finite control
period 1t, as illustrated in Figure 5. This control procedure
mimics (10) in the sense that the reversal of the membrane
potentials is not achieved by a direct kick in the phase space
of internal variables, but by a change of parameters. Compare
Equation (7).

Real-world robots come with a control cycle that discretizes
time. We consequently measure the time 1t during which β(t) is
active in terms of control cycles (ticks). In Figure 6, we present
the results of an experiment testing the reliability of (11), that is

FIGURE 5 | Kick controlling the LEGO Mindstorms robot. Shown are the time series of the membrane potentials (brown/orange and blue/cyan lines for x1/x2 of the

left/right wheel), together with the normalized motor control M = M̃/M̃max (black/gray lines for left/right wheel). The parameters τ = 250ms, k = 8 and a = 4 lead to

an angular frequency of ω/(2π ) ≈ 2Hz. Top: Inverting all membrane potentials xi , compare (10), with the times indicated by the vertical red lines (click for movie).

Middle: Inverting all actual positions x
(a)
i
, see (11), for three ticks of the updating cycle (roughly 90ms, as indicated by the red vertical bars). Bottom: Adding a phase

shift of 1ϕ = ±3π/4 to the measured angle of the wheels, see (12). The length of the control signal is here 4 ticks, corresponding to 120ms. Note that the time to

settle in the reverse limit cycle exceeds the duration of the kick signal. The relative phase of the left and the right wheel increases considerably after the second reversal.
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FIGURE 6 | Reliability of quenched kick control procedures for the LEGO

Mindstorms robot in terms of the relative success rate when testing direction

reversal. The parameters are τ = 250ms, k = 8 and a = 4, with each data

point corresponding to the average of 50 trials. The duration 1t of the control

signal is given in terms of ticks, with a tick corresponding to the period of the

control cycle of the Lego robot (about 30ms). Maximal reliability is achieved for

3–5 ticks (90–120ms), both for reversing the actual position x(a) [compare (11),

green circles] and when adding a phase-shift of 1ϕ = ±3π/4 to the angle of

the wheel [as defined by (12), orange triangles]. A positive 1ϕ induces here a

transition from forward to backward locomotion (reversely for negative 1ϕ).

for the probability that the robot reverses direction for a given
1t. For the time-series shown in Figure 5 the robot received a
kick signal for three ticks, viz for about 90ms.

For an alternative type of quenched kick control we consider
with

x
(a)
1 → cos(ϕ + γ1ϕ)

x
(a)
2 → sin(ϕ + γ1ϕ)

, γ =

{

0 (control off)
1 (control on)

(12)

a shift in the sensory value of the angle of the robot.
The corresponding reliability statistics are also shown in
Figure 6. Both types of quenched kick control, as defined by
Equations (11, 12), need to be applied for 3–5 control ticks,
corresponding to 90–150ms, for the robot to turn direction.
For the experiment presented in Figure 5 we used 4 ticks when
kicking the robot via (12).

3.3. Self-Organized Train of Cars
We used the LPZRobots simulations environment (Der and
Martius, 2012) to simulate robots with two actuated wheels, as
illustrated in Figure 7. The individual robots have a body mass
of 0.1 kg, wheel mass of 0.05 kg, wheel radius of 3 cm, body
radius of 10 cm and body height of 5 cm. The dimensionless
friction coefficient is 0.1. The cars are controlled as described in
section 2.2, but this time only a single simulated transmission rod
is employed. This is possible, as the motor of the simulated robots
transits to an idle state in the absence of an input signal.

The single two-wheel car follows intricate non-holonomic
trajectories when put in an environment containing confining
slopes. We also constructed trains composed of two-wheel cars
coupled passively via torsion springs. All 10 wheels, for the case
of the five-car train shown in Figure 7, are independent. One
observes that the ten wheels coordinate their rotations speed and
direction, reacting in a coordinated manner upon encountering

objects in structured environment. The resulting locomotion of
the train is a prime example of a self-organizing process (see
Supplementary Videos 5, 6).

4. ANALYTIC MODELING

The fundamental attractor of the individual wheels may
be studied analytically when lumping the feedback of the
environment into a single equation of motion that contains
friction in terms of a friction force∝ fω. The resulting dynamical
system is then

τ ẋ1 = cosϕ − x1

τ ẋ2 = sinϕ − x2

ϕ̇ = ω

Iω̇ = k
(

2y(x1)− 1
)

sinϕ − k
(

2y(x2)− 1
)

cosϕ − fω ,

(13)

where ω denotes the angular velocity and ϕ the angle of the
wheel. The membrane potential of the horizontal and vertical
controllers are, as illustrated in Figure 1, x1 and x2. The moment
of inertia of the wheel is proportional to I, the spring constant by
k, the friction coefficient by f , the time constant of the membrane
potentials by τ and the transfer function y(x) of the controlling
neurons by the sigmoidal y(x) = 1/(1+ exp(−ax)).

Note that x1 and x2 are internal variables of the robot, whereas
ϕ (and consequently also ω) corresponds to the physical angle
of the wheel and therefore to an environmental variable. This is
because the body of the robot, including the wheels, are, from
the perspective of the neural circuitry, part of the environment.
We also point out that the motor power needs to exceed a certain
threshold for the LEGO Mindstorms actuators to become active,
as explained in section 2.3. This feature goes however beyond
Equation (13).

4.1. Stationary Wheel
The system of four coupled differential equations (13), possesses
eight trivial fixpoints, characterized by

ω∗
n = 0, ϕ∗

n = nπ/4, n ∈ {0, . . . , 7} , (14)

of which the odd multiples of π/4 are always unstable. The even
multiplies of π/4 are on the other side stable/unstable for small
and large ratios of akτ/(2f ), respectively, as we will show further
below. The two-wheeled robot can hence be in 4 × 4 = 16 non-
moving states corresponding to the 16 combinations of stable
fixpoints of Equation (14) of the left and right wheel.

4.2. Homoclinic Route to Locomotion
In order to understand the transition from the fixpoint solutions
(14) to locomotion we use

cosϕ(t′) ≈ cosϕ(t)− sinϕ(t)ϕ̇(t)(t′ − t)

= cosϕ(t)+ sinϕ(t)ω(t)(t − t′) , (15)
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FIGURE 7 | Snapshots from the LPZRobots simulations environment (Der and Martius, 2012) of two-wheeled car-like and train-like robots. Left: The two active

wheels (black) are controlled as described in section 2.2. The passive support wheel (white) below the body (yellow) prevents the car from tipping over (click for

movie). Right: A train robot created by connecting cars via passive torsion springs (click for movie).

which is valid for ωτ ≪ 1 and t − t′ ≪ τ , to expand the formal
integral

x1(t) =
1

τ

∫ t

−∞

dt′ cosϕ(t′) e−(t−t′)/τ ≈ cosϕ(t)+ω(t)τ sinϕ(t)

(16)
of x1(t). An equivalent expansion may be derived for x2(t). One
next expands the neural transfer functions occurring on the
right-hand side of ω̇,

y(x1) ≈ y(cosϕ)+ ay(cosϕ)(1− y(cosϕ))ωτ sinϕ

y(x2) ≈ y(sinϕ)− ay(sinϕ)(1− y(sinϕ))ωτ cosϕ
(17)

for small ωτ . The equations of motion (13) then take the form

ϕ̇ = ω, Iω̇ = F(ϕ)+ γ (ϕ)ω , (18)

where F(ϕ) is a mechanical force and γ (ϕ) the coefficient of an
adaptive friction. The respective expressions are

F = 2k
[

y(cosϕ) sinϕ − y(sinϕ) cosϕ
]

+ k
[

cosϕ − sinϕ
]

(19)

and

γ = 2kaτ
[

y(cosϕ)(1− y(cosϕ)) sin2 ϕ

+y(sinϕ)(1− y(sinϕ)) cos2 ϕ
]

− f . (20)

Within this approximation, one finds that γ (ϕ) is negative for all
ϕ ∈ [0, 2π] when

k < kc, kc =
2f

aτ
. (21)

The system is purely dissipative when γ < 0, which implies that
the fixpoints ϕ∗

2n = nπ/2 are stable for k < kc. Locomotion is
next achieved via a two-step process, as illustrated in Figure 8,
when increasing the spring constant k beyond kc.

– The fixpoints ϕ∗
2n = nπ/2 undergo a supercritical Hopf

bifurcation at akτ = 2f , viz when γ (ϕ∗
2n) becomes positive.

The angle ϕ of the wheel then oscillates around the previously
stable fixpoint ϕ∗

2n, with a trajectory that corresponds to a
periodic forth-and-back motion of the robot.

– The amplitude of the limit cycle in ϕ will reach eventually,
when k is further increased, the saddles at ϕ∗

2n = nπ/2+ π/4.
The limit cycle will then merge with the respective stable
and unstable manifold of the saddle and undergo a Taken-
Bogdanov-type (Gros, 2015) homoclinic bifurcation. Above
this transition the four symmetry-related limit cycles around
ϕ∗
2n = nπ/2 merge into a large cycle. The wheel then performs

complete rotations.

We note that an equivalent merging of symmetry related limit
cycles across a global bifurcation has been observed in a study of
prototype dynamical systems (Sándor and Gros, 2015).

4.3. Constant Velocity Approximation
The angular moment ω becomes nearly constant for k far
above the infinite-period transition. The solution of Eqution (7)
obtained in the limit t → ∞ is given for the case of a constant
angular velocity as

x1(t) =
cos(ωt)+ ωτ sin(ωt)

1+ ω2τ 2
, x2(t) =

sin(ωt)− ωτ cos(ωt)

1+ ω2τ 2
,

(22)
where we have used ϕ(t) = ωt. Assuming small amplitude
oscillations for the membrane potential, axi≪1, we can linearize
the transfer function y(x) around y(0) = 1/2. The total tangential
force Ftan defined by Equation (8) then becomes constant,

Ftan =
akωτ/2

1+ ω2τ 2
,

akωτ/2

1+ ω2τ 2
= fω, ω∗

± = ±

√

akτ − 2f

2f τ 2
,

(23)
where the second equation corresponds to the balance between
Ftan and the friction force fω in Equation (13). Locomotion
vanishes in the constant-ω approximation for k < kc = 2f /(aτ ),
viz at the critical spring constant kc defined in (21).

The two symmetrical branches corresponding to the stable
attractors of forward and backward motion can be seen in
the experimentally constructed bifurcation diagram shown in
the right panel of Figure 2. The internal friction forces of the
motor induces in addition two symmetry-related saddle-node
bifurcations of limit cycles, when reducing k, such that the torque
M drops discontinuously to zero as k → kc. The internal
threshold of real-world motors impacts the route to chaos hence
qualitatively. Compare section 4.2.
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FIGURE 8 | Illustration of the homoclinic route to locomotion discussed in section 4.2. The phase-space plots (ϕ, ν = ω/(2π )) are for the analytic model (13), with

a = 4, τ = 0.25, I = 0.05, and f = 0.5. The spring constant is k = 1.85/1.65/1.4 (top/middle/bottom). The fixpoints located at odd multiples of π/4 are saddles.

Shown are stable (yellow/orange) and unstable (blue/green) manifolds, limit cycles (red), stable and unstable foci (filled/open circles) and some selected generic

trajectories (black). Top: Limit-cycle locomotion, with the stable orbit winding around ϕ ∈ [−π ,π ]. Middle: Forth-and-back rolling with the angle ϕ of the wheel being

limited to a finite range around multiples of π/2. Bottom: Stationary states with ϕ → nπ/2.

4.4. Numerical and Analytic Phase Diagram
In Figure 9, we present the phase diagram, as obtained by
integrating (13) numerically. Four phases are found, a stationary
fixpoint phase (S) at low values of kτ , a phase corresponding to
forth-and-back (FB) motion, the limit-cycle locomotion phase
(LLM) and, for large values of kτ , a region characterized by
chaotic (C) locomotion. These phases may be characterized by

the standard deviation std(ω) =
√

〈ω2〉 − 〈ω〉2 of the angular
frequency, which is elevated in the chaotic and in the FB phase,
and small for LLM. The average angular frequency |〈ω〉| is in
contrast highest for limit-cycle locomotion.

Also shown in Figure 9 is a comparison with the approximate
estimate (21) of the transition between the stationary and the
locomotive state, which is accurate when the transfer function
y(x) can be linearized, viz in the limit of a vanishing FB phase.
A typical time series of the motor torque within the chaotic phase
is shown in the right panel of Figure 3.

5. DISCUSSION

Robotic locomotion may be generated either via top-down
control mechanisms or alternatively via self-organizing
dynamical processes (Aguilar et al., 2016). In the first, more
traditional approach, the “brain” of the agent is responsible
for computing the control signals that drive the actuators, with
error correction occurring through a high level evaluation of
sensory measurements. The complexity of the control problem

can however be reduced when robotic behavior is generated
via self-organizing processes and local instabilities of the neural
dynamics (Der and Martius, 2012).

Our work aims to reduce the theoretical and the
computational constraints needed to design autonomous
agents. Based on previous works on barrel- and sphere shaped
robots (Sándor et al., 2015; Martin et al., 2016), we propose
and study a novel actuator for wheeled robots. The actuator
simulates the physics of the transmission rod used by classical
steam engines, being controlled at the same time by only one
or two rate-encoding neurons. Together with the wheel and
with the proprioceptual environmental feedback, the controlling
neurons form an overarching dynamical system that generates
motion primitives in terms of stable attractors. The such
produced self-organized fixpoints, limit cycles, and chaotic
attractors, correspond to non-moving robots, to robots moving
with constant speed and, respectively, to robots engaging in
exploratory behaviors. All results are robust to noise present
either in the environment or in the proprioceptual input stream
(Martin et al., 2016).

A particular feature of the controller proposed here is that the
direction of the movement, forward or backward, is selected by
breaking time reversal symmetry. Studying two-wheeled robots
we demonstrate that attractors corresponding to forward and
backward motions coexist in the sensorimotor loop, allowing
the robot to change direction autonomously when colliding
with a wall. Switching between stable attractors can be achieved
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FIGURE 9 | Left: The numerical phase diagram, as obtained by simulating (13) for a = 4, I = 0.05 and f = 0.5. Shown is the standard deviation

std(ω) =
√

〈ω2〉 − 〈ω〉2 of the angular frequency ω of the wheel (color coded), as averaged over time. Low values of std(ω) correspond to vanishing or near constant

ω(t), as for the fixpoint solution (S) and for the limit-cycle locomotion (LLM). The transition to chaos (C) takes place through a crisis, with the route to locomotion

occurring, as discussed in section 4.2, via an intermediate phase of forth-and-back rolling (FB). The inset enlarges the region k ∈ [0, 5] and τ ∈ [0, 0.5]. Right: The

average angular frequency |〈ω〉| (color coded). The dashed lines correspond to the instability lines of the fixpoint solution, as obtained numerically (white) and

analytically (gray), where the theoretical result is kcτc = 2f/a. See Equation (21).

furthermore via a higher-order top-down control. Implementing
frozen and quenched control signals, we are able to kick the robot
reliably between distinct attractors, that is to kick the robot from
one motor primitive into another motion primitive.

Examining in addition the bifurcation diagram leading from
stationary states characterized by fixpoints in the phase space of
the sensorimotor loop to limit-cycle locomotion, we find that
two routes to locomotion exist: a single step process via a saddle
node bifurcation of limit cycles, and a two-step scenario via a
supercritical Hopf bifurcation followed by limit-cycle merging
through distinct homoclinic bifurcations.

The here presented kick-control schemes demonstrate that
simple impulse-like control signals are sufficient for creating
complex behaviors whenever the motor primitives are given in
terms of stable sensorimotor attractors. Hence one may speculate
that kick control could also be used effectively in case of more
complex robotic architectures, possibly in a combination with
other types of control schemes (e.g., with the KA models; Harter
and Kozma, 2005).

The concept of kick control also allows for a more general
framework which is not necessarily neuro related. However,
when it comes to the scalability of the proposed control scheme
to robots with several dozens or even hundreds of degrees of
freedoms and sensory channels, the most convenient underlying
dynamical systems for the internal controller are adaptive
neural networks with learning. The attractors there are then
generalizations of the simple limit-cycle and chaotic attractors
presented here, but the main idea of kicking the phase point
from the basin of attraction of one attractor to another attraction
domain remains the same.

Finally, we believe that the proposed model for generating
attractors for locomoting robots and controlling their motion
by kicking the phase point to their respective basins of
attraction may also be used for teaching dynamical systems in
advanced high school physics courses. The Lego robots allow for
interactive demonstrations, e.g., in lab activities, of how attractors
may be used in real-world applications, hence providing an
intuitive understanding of the terminology and underlying
phenomena.
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