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As part of the extended evolutionary synthesis, there has recently been a new emphasis

on the effects of biological development on genetic inheritance and variation. The exciting

new directions taken by those in the community have by a pre-history filled with related

ideas that were never given a rigorous foundation or combined coherently. Part of the

historical background of the extended synthesis is the work of James Mark Baldwin

on his so-called “Baldwin Effect.” Many variant re-interpretations of his work obscure

the original meaning of the Baldwin Effect. This paper emphasizes a new approach to

the Baldwin Effect, focusing on his work in developmental psychology and how that

would impact evolution. We propose a novel population genetics model of the Baldwin

Effect. First, the impact of a kind of learning process motivated by motor babbling, in

the developmental psychology literature, on evolution; second, that Information-theoretic

phenotype reshaping speeds up evolution compared to populations without this kind of

learning. The basic idea behind the model is to allow the organism to apply abstraction

to his initial phenotype to situate it within one of a few different classes of phenotypes

in the local neighborhood of a fitness maximum. The reshaping of the phenotype space

thereby allows the organism to reach a nearby fitness maximum. By so doing, valleys

in the fitness landscape are leveled out, making a rugged fitness landscape into a set

of mesas and plateaus with increasing height. Using this model we can show the first

sizeable speed-up for the Baldwin Effect compared to ordinary population genetics. We

also introduce an information-theoretic foundation for the Baldwin Effect, which may be

of independent interest.

Keywords: evolutionary biology, developmental psychology, phenotypic plasticity, population genetics,

information theory

1. INTRODUCTION

Phenotypic plasticity (DeWitt and Scheiner, 2004), under its different aspects (learning, social
and cultural innovation) has come into sharp focus recently as a possible source for genotypic
change, with some going so far as calling this set of new ideas an extended evolutionary synthesis
(Laland et al., 2015). Ordinarily in the classical evolutionary synthesis, genetic change arises from
mutation, drift, or selection. The extended evolutionary synthesis seeksmeans by which phenotypic
plasticity or phenotypic changemore broadly speaking can affect genetic change, through processes
like epigenetic inheritance and niche construction. Antecedents of the extended synthesis were
pondered by James Mark Baldwin in his work on the Baldwin Effect. Baldwin showed that there
could be a way that ordinary genetic change could occur in a direction controlled or “ratified”
by phenotypic plasticity, but of a very specific form: abstraction of inputs, leading to a different
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Chastain Development and the Baldwin Effect

kind of space in which phenotypes can be generated. Abstraction
is the formation of more general concepts from specific
examples, in contrast with learning. Learning is the process of
associating stimuli with rewards, or the process of making good
predictions (of new examples). Abstraction is the formation of
novel representations that can broadly generalize more abstract
features of stimuli in order to “understand” or simplify dealing
with them in the future. In other words, abstraction is more like
compression or unsupervised learning than ordinary learning
(which is normally called supervised learning) (Bishop, 2006).
Through the various forms of abstraction and developmental
stages of organisms (as further elucidated by Piaget et al., 2013)
the phenotype could change, often radically, leading to new
representations and means for phenotypic variation. Finally, the
very form of plasticity itself could evolve, and was heritable,
according to Baldwin. But in a quirk of history, much of
his original work, which was in developmental psychology,
went unread. Instead, a new “Baldwin Effect” was broadcasted
to Evolution researchers by Simpson (1953): a process by
which non-heritable plastic traits would be replaced by specific
fixed genetic factors (Scheiner, 2014). Others have followed
up primarily along the same lines as Simpson, including
Waddington’s work on canalization (Waddington, 1953), and
those who consider the effect of learning on genetic change
(Hinton and Nowlan, 1987).

In this paper, the Baldwin Effect, as understood by Baldwin
himself is analyzed with a close reading of his work in
developmental psychology.We conclude that his intention was to
show how new kinds of behaviors could develop via abstraction
that would allow for very advanced information-processing
by an organism with the rudiments of phenotypic plasticity.
Secondarily, Baldwin showed how abstraction could impact the
direction of genetic change. A crucial assumption he introduced
is that organisms with phenotypic plasticity can try out motor
actions and obtain reward signals in their juvenile state which
are a good approximation to the fitness of the behavior (If the
behavior is considered as a genetically-determined reflex).

Besides the problems of Baldwin Effect interpretation, there
are questions about whether it even makes sense in ordinary
population genetics. The usual interpretation of the Baldwin
Effect, as elaborated by Hinton and Nowlan, is that by using
learning algorithms one can reach higher fitness during one’s
lifetime, thus smoothing the fitness landscape for animals born
with bad reflexes (and thus paving the way for those better
reflexes to emerge quickly in the population). Recent work has
exposed that the examples used by Hinton and Nowlan are
easily and quickly solved by ordinary evolutionary dynamics
(Santos et al., 2015). Therefore, the idea that the learning-based
Baldwin Effect (as in Hinton’s work) could somehow be more
efficacious than ordinary genetic change via mutation, drift,
and selection has yet to be shown. The impact of phenotypic
plasticity on evolution, and its connection to the Baldwin effect,
has been shown by Scheiner et al. (2017), Waddington (1953),
and others. In this paper we focus specifically on two more
novel influences of phenotypic plasticity on evolution: first,
the impact of a kind of learning process motivated by motor
babbling (Information-theoretic phenotype reshaping), in the

developmental psychology literature, on evolution; second, that
Information-theoretic phenotype reshaping speeds up evolution
compared to populations without this kind of learning, all using
ordinary population genetics. As shown by Szathmary, it was
a known flaw in the older model of the influence by learning
processes on speed of evolution that their speed-ups were not
much faster than those associated with ordinary genetic drift.

A fitness landscape is the landscape which has its height
defined by the fitness of the phenotype (as it varies over
the space of all possible phenotypes). An example of an easy
fitness landscape is a single hill, which can be climbed by
natural selection. A medium-difficulty fitness landscape is a
flat landscape with a peak (which requires some randomness
but does not work against natural selection). A hard fitness
landscape is a rugged landscape with many peaks (which requires
randomness to work against natural selection). In this paper,
the Baldwin Effect introduced is formally modeled and shown
to significantly speed-up evolution in a rugged fitness landscape
using ordinary evolutionary dynamics. Specifically, without the
Baldwin Effect, the time for the most fit mutant to fix in the
population slows down exponentially as fitness valleys get deeper.
With the Baldwin Effect, there is no dependence of the time
to fixation on the depth of the fitness valleys. The core insight
is to show that the ability for organisms to undergo reward-
based sensorimotor abstraction during their youth allows them
to effectively flatten the hills in a rugged landscape. In human
neonates, this process of play (as motor babbling Meltzoff and
Moore, 1997) combined with intrinsic and extrinsic reward,
allows them to reach novel representations for goals. The means
by which abstraction can do this is by allowing the organism to
“cluster” all possible phenotypes into those that are close to the
same fitness maximum, and then “decode” or “assign” the initial
phenotype to its cluster. Under the Baldwin Effect the reshaped
rugged fitness landscape is a set of neighboring plateaus and
mesas that are of increasing height. Effectively then a transitional
mutant on the path to one with maximal fitness can arise as
a neutral intermediate mutation rather than as a deleterious
intermediate mutation. Of possible independent interest is a link
established between the Baldwin Effect and a certain kind of
information-processing that is nearly optimal for the Gaussian
channel (in an Information-theoretic sense).

2. MATHEMATICAL BACKGROUND

The mathematical background necessary for the formal model
is the models and tools of Information theory. To understand
information theory, consider the following communication
game. Alice is communicating to Bob with a continuous-valued
signal. At each point in time, the signal is corrupted by Gaussian
noise (with a mean of zero). Bob receives the noisy signal and
must decipher with high accuracy Alice’s message. In information
theory this is called communication over a Gaussian channel.
It seems difficult for Alice to communicate in such a way that
Bob can reconstruct her message. But, intuitively, Alice could
exploit redundancy, sending many different similar codewords
for every single message sent. By exploiting redundancy Alice
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can thus hope that Bob, knowing this coding scheme, can find
the codewords that correspond to the same message. The process
Bob uses to find the corresponding codewords is called decoding.

In particular, Alice could send a numerical codeword of length
n such that the average sum of squares (power) for each character
of the codeword is bounded by ω. An example of a codebook
along these lines is the random codebook, that is, one chosen
at random. A Gaussian random codebook chooses for each
message a random sequence of n values sampled from a zero-
mean Gaussian distribution with variance ω − ǫ, with ǫ being
positive and small (Cover and Thomas, 2012).

For decoding, Bob can take the corrupted codeword z and find
the nearest codeword, that is the codeword x in the codebook that
minimizes the Euclidean distance D(x, z) =

∑n
i=1(xi − zi)

2. For
the Gaussian random codebook, Bob must also declare an error
if the power of the nearest codeword is not less than ω. Smith
and Morowitz (2016) The coding and decoding algorithm just
described is optimal for communication between Alice and Bob
for the Gaussian channel, communicating messages accurately at
the maximal rate possible.

3. BACKGROUND

In this section is described a novel approach to interpret the
Baldwin Effect within the framework of “Evolution of learning”
using developmental psychology.

3.1. Interpretations of the Baldwin Effect
In this part of the paper we describe Baldwin’s work and how
it relates to the literature on the “Baldwin Effect.” Specifically,
we define and interpret the terminology Baldwin used to
describe the Baldwin Effect. We also connect Baldwin’s work
on developmental psychology and how the life history of the
organism contributes to the Baldwin effect and evolution of
the species. A connection is made between the learning-based
Baldwin Effect literature and an approach inspired more by
the kinds of learning processes highlighted by Baldwin in his
developmental psychology work.

3.1.1. Baldwin Effect qua Baldwin or Impact of

Learning in a General Sense Acting Genetically
Any ideas of Baldwin were conditioned by his time and place:
our models should be based on modern ideas about genetics and
development. As such we should be cautious to use his theories
as-is. Rather we should try to use modern ideas about genetics
and development to formulate our models, giving credit to
Baldwin for having a germ of some of these ideas in a pre-genetic
context.

Baldwin gives a very explicit example of howOrganic selection
in its general sense can influence the direction of natural selection
and variation, respectively. Baldwin’s example concerns the
origin of grasping and how functional selection can influence it:

“We may imagine creatures, whose hands were used for
holding on with the thumb and fingers on the same side of the
object held, to have first discovered, under stress of circumstances
and with variations which permitted the further adaptation, how
to make intelligent use of the thumb for grasping opposite to the

fingers, as we do now. Then let us suppose that this proved of such
utility that all the young that did not do it were killed off; the next
generation following would be intelligent or imitative enough to
do it also. They would use the same coordinations intelligently or
imitatively, prevent natural selection getting into operation, and
so instinctive “thumb-grasping” might be waited for indefinitely
by the species and then arise by accumulated variation” Baldwin
(1902).

Inspired by the preceding, and adapted for modern genetics,
what Baldwin describes is thus a two-stage process of

1. Generating novel behavioral phenotypes by combining or
associating existing instincts based on abstraction.

2. If those instincts can be acted upon by functional selection
to form novel phenotypes of high viability, then those
organisms who can use functional selection (selection of
high viability behaviors) starting with those instincts will be
retained.

The first stage is thus a kind of phenotypic plasticity associating
instincts, and the second is a learning process.

Then after mutation acts on this high-viability population
one gets a new population which also is retained, starting from
variants of the same instincts which lead to good phenotypes
with functional selection. The new population could have new
instincts that do better than the old instincts, and are closer
to the phenotype that is produced by functional selection. If
such a mutant arises in the population, it would have higher

fitness and thus create a new population, after which the two-
stage process continues. Baldwin points out that this process
terminates with a population that has instincts that match what
functional selection produced at step (1) of the first chain of two-
stage processes that were kicked off by functional selection. We
call this the Baldwin effect qua Baldwin, noting that it is not the

same as what Baldwin described due to its being framed in the
context of modern genetics. We wished to call this model the
Baldwin effect qua Baldwin in order to honor that his writing on
learning in developmental psychology was amajor inspiration for

its formulation.
If we compare this mechanism with the variety of Baldwin

effects identified in the literature, we can say the following:

1. Niche construction (Griffiths, 2003)
Niche construction takes a fitness landscape of genetic
variations that exist in the population and reshapes it. A
special case of this is “Social Heredity” in which cultural
selection allows one to reshape the fitness landscape. In fact

the process Baldwin describes, because it involves real novelty
of the phenotypes, will reshape the whole space of phenotypes,
and then reshape the fitness landscape. The emphasis in the

mechanism above is focused more on learning and its effects
on the fitness landscape.

2. Smoothing the fitness landscape with learning (Hinton and
Nowlan, 1987)
Closely related to the Niche Construction view, but with a

stronger connection to the Baldwin Effect qua Baldwin is
the work of Hinton & Nowlan. They showed that when one
evolves in the space of bitstrings (strings of one’s and zero’s
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such as 11010), if one starts out with a bitstring with medium
hamming distance from the optimal (medium error), then
one will retain those because backpropagation learning can
set the other positions accurately and thus increase viability.
This then increases the fitness of the medium error types,
leading to a smoothing of the fitness landscape. The Baldwin
effect qua Baldwin differs in two respects from Hinton &
Nowlan: the learning mechanism (as outlined in the previous
section) and that in Baldwin’s case the phenotype space itself
is reshaped in such a way as to both generate the optimal
phenotype and reshape the fitness landscape in this space to be
much easier (either by being smoother or reducing mutational
distance to the optimal type). To place the Baldwin effect qua
Baldwin in the same setting, imagine one can come up with
a different representation for bitstrings, one which is useful
for the environment. Then the Baldwin Effect qua Baldwin
will reshape the phenotype space from the original bitstring
representation to the new representation, and in the new
representation the fitness landscape is smooth or the number
of mutations until one gets an optimal bitstring is smaller. We
will describe a more advanced example of how the phenotype-
reshaping version of the Baldwin Effect can speed up evolution
in the Results section (section 4.1.1).

The mechanism described above (Baldwin qua Baldwin)
is a kind of model for the impact of learning on evolution,
like Hinton and Nowlan’s work, but it is focused on
learning processes found in developmental psychology that
are different than the backpropagation neural networks
considered by them. Moreover, the genetics framework
considered is modern genetics rather than genetic algorithms.
We will discuss in the sequel the relation between Baldwin’s
developmental psychology work in motor learning as
formalized here and more recent work by Meltzoff on motor
babbling.

3. Genetic assimilation (Simpson, 1953; Waddington, 1953)
In Genetic Assimilation (according to Livnat et al., 2014),
there is some structure to the phenotype (modeled by say
a boolean function f ) that when one combines the various
expression levels of some proteins with variables related to
the environment one gets novel phenotypes. One tries to
generate phenotypes that are varying levels of expressions
for proteins which when presented with novel environmental
inputs can generate novel responses (e.g., assignments to some
inputs of the boolean function). Then the assignments to
the inputs of f which lead to high viability generally are
retained in the population. Here the mechanism of variation
was to change the assignments to f that are genetically-
controlled. But the mechanisms of change in phenotype is due
to phenotypic plasticity, an environmentally-induced change
which can be far from random. In the Baldwin Effect qua
Baldwin, the variation itself is based on learning mechanisms,
and actually reshapes the phenotype space, whereas in Genetic
Assimilation, it is of a different kind of phenotypic plasticity.
That is, the phenotype space in Genetic Assimilation doesn’t
get changed, say, from the space of bitstrings to the space of
even or odd bitstrings. Whereas it does for the Baldwin Effect
qua Baldwin.

3.1.2. The Impact of the Baldwin Effect qua Baldwin

in a General Sense on Variation and Generation of

Novel Phenotypes
Now for the origin of variations or novel phenotypes, Baldwin
gives the example of a child learning how to write:

“Every child has to learn how to write. If he depended upon
chance movements of his hands, he would never learn how to
write. But on the other hand, he cannot write simply by willing to
do so. . . . What he actually does is to use his hand in a great many
possible ways as near as he can to the way required; and from
these excessively produced movements, and after excessively
varied and numerous trials, he gradually selects and fixes the
slight successes made in the direction of correct writing” Baldwin
(1902).

Note that in the above case, we have a decidedly non-
random set of behavioral variations to choose from. In fact the
child tries to approximate the best way to write and of these
approximations, she chooses the best one. Then according to the
mechanics of the previous section, one would imagine that the
child would vary her movements more if she is closer to writing
well. The picture given here by Baldwin accords with our model
of the previous section.

In the next section we will present a formal approach
to modeling the Baldwin Effect, both organic selection and
functional selection. Then we will discuss how the Baldwin Effect
can have impact on population genetics.

4. RESULTS

This section describes a formal model based on the new
interpretation of the Baldwin Effect described in the Background
section.

4.1. Formal Model of the Baldwin Effect
Consider that for organisms with phenotypic plasticity, the initial
phenotype can change in response to environmental and other
factors. In the context of Baldwin’s observations, we introduce a
two-stage model of phenotypic change which incorporates a life-
history of rewards and a changed phenotype. Baldwin describes
a process of phenotypic change which starts with the initial
phenotype P0 containing the instincts alone. The organism then
changes to phenotype PT in response to rewards RT received
over the life history (of length T). The iterative dynamics of
how P0 changes throughout each epoch in the life history is
related to PT as a difference equation is related to its solution. For
simplicity, we omit a thorough treatment of iterative dynamics
and instead focus on the final state PT (though see Sandefur’s
book if interested Sandefur, 1993). In accord with the connection
between reward and fitness assumed by Baldwin, the reward
history RT is at each epoch an approximation to the fitness of
the corresponding phenotype. For instance, the last reward in
RT approximates the fitness of phenotype PT−1. Then the basic
model of Baldwin’s Organic selection is given by the equation

PT = 8(P0,RT) (1)
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The approximation of the fitness by the rewards gives us the
following relationship between the final phenotype and the
history FT of fitnesses:

PT ≈ 8(P0, FT) (2)

With the introduction of fitness histories into the approximate
dynamics, the penultimate phenotype PT−1 could have a fitness
different than that of P0. If a number of initial phenotypes
P = (P0, P

′

0, . . . ) converge to the same PT under 8 for some
T, then they form a natural class of 8-equivalent phenotypes.
If indeed a good number of phenotypes are 8-equivalent, then
the fitness landscape across all phenotypes ends up being over
a new space of phenotypes. Since the phenotypes change under
8 at a rate rapid enough to affect the fitness of the organism
(Note that rapid phenotypic change does not necessarily rule out
significant later-life plasticity). The effective change in the space
of phenotypes occasioned by the process inspired by Baldwin
and formalized by Equation (2) could fundamentally change the
way that populations evolve in the long-run. Reshaping of the
phenotype space due to the Baldwin effect could therefore have a
significant effect on the way that populations evolve. The impact
on population genetics will be explored later. We would like to
present a specific reshaping function 8 based on information
theory.

4.1.1. Information Theory and Phenotype Reshaping
Now we turn to the reshaping function for Equation 2 that we
wish to characterize. Let’s call it the Info-theoretic reshaping
function 8i. For the communication game and all other
background details about the information theory, refer to the
Mathematical Background section. Assume that the P0 for the
organism is defined by motor parameters for the initial instincts.
The choice of motor parameters each correspond to ways of
encoding an abstract class c ∈ C of functions that the animal may
perform in its niche (withC being the set of all such classes). Posit
that the organism is trying to communicate to its environment
by its instincts what class c of function it would like to perform
in the environment. Now consider that the environment during
the organism’s life history is trying to decode the class c of
functions corresponding to the motor parameters, and that the
appropriateness of the functions for the current environment
determines fitness. Then assume that the motor parameters
are subjected to some kind of additional Gaussian noise in
their execution (for instance, noise due to wear and tear, heat
noise). For the model that gives rise to the reshaping function
8i, we merely assume there is close-to-optimal communication
between the organism and the environment: with the organism
communicating the class c of ecologically-relevant functions
it wishes to perform near-optimally to the environment for
the purpose of natural selection. With the organism achieving
communication near-optimal both in communication rate and
also accuracy. Then what kind of strategy should the organism
use? The communication game over the Gaussian channel will
give us the answer.

Recall that the proposed encoding function for the Gaussian
channel was based on a randomGaussian codebook. Then for the

near-optimal code, the n motor parameters θ encoding the class
c are chosen at random, according to the Gaussian distribution
(with zero-mean and variance ω − ǫ as in the communication
game). Each of the randomly-chosen set of motor parameters θ

would give a way of executing instinctually each function class
c. Such a code is similar in spirit to models found in neural
coding theory (Pouget et al., 2000), but we viewmotor parameters
(and the neural populations that code for them) in this case
as encoding more abstract functions than saccades in response
to motion direction (as in Shadlen and Newsome, 2001). More
abstract neural codes can be found for instance in the literature
for value coding in LIP (Platt and Glimcher, 1999). The optimal
decoding mechanism, according to information theory, is given
by the nearest codeword Gaussian channel decoder used by Bob
in the communication game (if we rule out decoded codewords
that give rise to decoding errors by having power greater than ω).
How can we model the decoding mechanism if the environment
is trying to decode which function class a noisy set of executable
motor parameters belongs to and its appropriateness for the sake
of natural selection?

The decoding mechanism requires a suitable fitness function.
Such a fitness function is defined according to the initial random
choice of motor parameters θ c encoding each class c. For a near-
optimal decoder, the fitness of a set of motor parameters θ can be
set inverse to the Euclidean distance between θ and θ c, D(θ , θ c),
where θ c is the nearest codeword. In words, the closer one is
to the nearest codeword θ c, the higher one’s fitness will be. We
should also note that for every motor parameter setting, there
will also be a corresponding abstract class c of function for the
organism (and it will be closest in terms of Euclidean distance in
the space of motor parameters θ c). A suitable fitness function for
instincts is thus:

f (θ) = argmin
c

exp(−D(θ , θ c)) (3)

which is a special kind of Gaussian fitness function, as introduced
by Fisher (Fisher, 1999; Martin and Lenormand, 2006, 2015).

Given the fitness model, we can now define 8i. Let 8i be
a function which when given a sequence RT of reward values
that is increasing, provides an output phenotype which gives
at least the same reward as the last value of RT . Any kind
of dynamics that increases RT with respect to the phenotype
could do this (for example, multiplicative weight updates Arora
et al., 2012, gradient ascent Boyd and Vandenberghe, 2004, etc.).
Then by Equation 2 such a 8i when combined with a fitness
function 3 will output a PT such that f (PT) > f (PT−1), where
PT−1 = 8i(P0,RT−1) and RT−1 is the reward history found in RT
excluding its last element. Therefore, since the output phenotype
ends up increasing the fitness each iteration, for some T, PT will
be a local maximum of the fitness. But this would mean for some
T, PT = θ c corresponding to the original class of the P0 = θ , by
the definition of the fitness (Equation 3).

For the kinds of dynamics that increase reward RT over time,
all of the phenotypes that lead to the same local maximum
of the fitness are 8-equivalent. Therefore the 8i-equivalent
phenotypes are those which are closest to the same θ c, according
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to the definition of the fitness function (Equation 3). So the 8i-
equivalent phenotypes are all parametrized by θ c, and thus we
denote them with Pθ c .

Before proposing our model specifically, we would like to
present some background information about play and its role in
child development. The primary phenomenon we will introduce
is body babbling. Body babbling was introduced by Meltzoff and
Moore (1997) to account for the process by which babies do
movements in a free and non-directed way in order to develop
deliberate reaching at the age of 8 months. As defined byMeltzoff
and Moore (1997),

“ In body babbling, infants move their limbs and facial organs
in repetitive body play analogous to vocal babbling. In the
more familiar notion of vocal babbling the muscle movements
are mapped to the resulting auditory consequence; infants are
learning this articulatory–auditory relation. Our notion of body
babbling works in the same way, a principal difference being
that the process can begin in utero. What is acquired through
body babbling is a mapping between movements and the organ-
relation end states that are attained.”

In particular, we propose the following model inspired by
Baldwin’s account of motor babbling (Meltzoff and Moore, 1997)
(which he calls body babbling) during play.

We propose a 8-approximate reshaping function based on
the Multiplicative Weight Updates Algorithm (MWUA) (Arora
et al., 2012). MWUA selects one of k different experts, choosing
experts with higher probability when their advice leads to higher

reward. The reward for an expert i at time t is its reward r
(t)
i .

Note that the loss r
(t)
i is a function that varies for different

applications of MWUA, and in the case of the application in our
paper is specified by Equation (5). The probability distribution

over experts p
(t)
i at time t + 1 for MWUA is given by:

p
(t+1)
i = p

(t)
i

1+ ηr
(t)
i

∑

j p
(t)
j (1+ ηr

(t)
j )

(4)

with η > 0 being the learning rate. When η is small, experts are
chosen more based on long-term increases in reward, and when
it is large they are chosen based on immediate reward.

The particular model for a 8i-approximate reshaping

function proposed takes the reward functions r
(t)
i for MWUA to

be the reward expected from exploratory play during somemotor
or navigation task. Each “expert” is a motor behavior. Now the
reward function is assumed to be as follows:

r
(t)
i = − argmin

c
exp(i− c)2 (5)

where c is a particular target motor behavior that is the “goal” for
the exploratory play, as defined by the nearest local maximum
to the instinctual initial motor behavior strategy (at time t =

0, the motor behavior with highest probability p
(t+1)
i ) on the

corresponding fitness function Equation (3). It is a property of
the MWUA that it converges in linear time T to the expert i

that maximizes the cumulative reward
∑T

t=1 r
(t)
i . Arora et al.

(2012) So therefore our model of motor play is a 8-approximate

reshaping function, since the motor behavior PT∗ that the
MWUA model converges to is the same as the local maximum,
and thus satisfies the criteria for an approximate 8i information-
theoretic reshaping function.

There have been many useful models of body babbling that
have been proposed as of late in the robotics literature Lee (2011),
making new advances in solving the inverse problems involved
in motor planning (Rolf et al., 2010) and representation issues
in sensorimotor representations (Law et al., 2013). We view our
model as a simplified form of model for body babbling that allows
us to ask what kind of impact it has on evolution of animals that
engage in it and robots that use genetic algorithms combined with
body babbling.

Motor and object play (Smith, 2010) are relevant to us, since
they are a set of open-ended, non-goal-directed actions, like
what would be found in the MWUA model with medium or
low values of the temperature (for motor behaviors having to do
with arm movement or object manipulation). Also, the MWUA
model assumes there are internal reward signals associated with
different motor behaviors, and that the ones which are closer
to goal-directed are internally rewarded this way. So too does
Lee (2011) emphasize the importance of internal rewards and
intrinsic motivation as a way to model play, with the latter
originally introduced by Furth (1969).

Sensorimotor development happens in stages, in order to set
progressively harder learning problems to solve. Past algorithmic
approaches have used these stage-wise sensorimotor constraints
to model infant development during play, and in fact learned
using appropriate constraints (Law et al., 2013). We too have
considered the same with only one stage of constraints (modeled
by the nearest goal-directed action) modeled by one round of
phenotype-reshaping, but for multiple stages, there could be
multiple rounds of phenotype-reshaping for complex goals.

Now we turn to the impact of phenotype-reshaping using 8i

on the rate of evolution.

4.1.2. Impact on Population Genetics
As reviewed in the Introduction, there is currently no
mathematical proof that something like the learning-based
Baldwin Effect (as in Hinton’s work) can speed up evolution
in non-trivial ways. In this section we show that under the
phenotype-reshaping account of the Baldwin Effect we can prove
that there is a significant speed-up in the evolution of a complex
trait. Phenotype reshaping can speed up evolution by effectively
removing the stochastic element of crossing fitness valleys in a
rugged fitness landscape. The mechanism for this is to reshape
the fitness valley so that it increases in fitness to that of the
local maximum, effectively just leaving a series of plateaus of
ever-increasing fitness (see Figure 1).

Normally, in the evolution of complex traits, there are three
regimes: the fast near-deterministic regime of evolving a trait
with greater fitness after a single mutation, the intermediate
regime of evolving a trait after a few steps of neutral or near-
neutral evolution, and the slow stochastic regime of evolving
a beneficial trait that requires a large decrease in fitness as an
intermediate step to achieving the larger fitness (Weissman et al.,
2009). For small population sizes, the first is called a beneficial
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FIGURE 1 | A toy illustration for the effect of phenotype reshaping on fitness landscapes. (A) Fitness landscape without phenotype reshaping according to the model.

The x-axis is the continuous-valued phenotype, and the y-axis is the fitness. (B) Fitness landscape with phenotype reshaping. The x-axis is the continuous-valued

phenotype, and the y-axis is the fitness. Note that phenotype reshaping flattens the hills in the rugged landscape.

mutant, the second is called sequential neutral fixation and the
latter (for a k-allele gene) is called a beneficial k-mutant that
results from sequential deleterious fixation. Sequential fixation
regimes are so named because they involve small populations that
have to sequentially fix intermediate mutations along the way to
the final, beneficial, mutation.

If the difference in fitness between the original phenotype and
the beneficial mutation is s, then the beneficial mutant arises in
γ /s time (on average), where γ = 0.577 . . . is Euler’s constant
(Desai and Fisher, 2007). Assume for k = 2 that the population
size N is small, a single mutation will reduce the fitness by
a large amount δ, and the double mutant will increase the
fitness by a factor of s (which is called the deleterious sequential
fixation regime). Then for a beneficial double-mutant with all
mutation rates equal to µ to arise it takes approximately 1

Nµρ1

time (on average), (where ρ1 =
eδ−1
eNδ−1

). One can also look at a

situation in which there are almost-neutral (δ < 1/N) or neutral
intermediate phenotypes with a beneficial complex trait resulting
from their combination, which is called a sequential neutral
fixation process. For this setting with k = 2 necessary mutations
the time for a beneficial mutant to arise is approximately 1

µ

on average. Such a regime is called neutral sequential fixation
(Weissman et al., 2009). According to the work of Weissman,
the deleterious sequential fixation regime takes more time to
produce a beneficial double-mutant than the neutral sequential
fixation regime, due to negative selection on the intermediate
mutant.

Phenotype reshaping puts all steps of complex trait evolution
into the beneficial mutant or the sequential neutral fixation
regimes, with each step for the evolution of a trait reducing
to a single mutation or a set of neutral steps to a beneficial
mutant (traveling from the neighborhood of the local
maximum to another adjacent neighborhood in one step).
Effectively the evolution within a neighborhood of the
local maximum is neutral, and so one individual on the
boundary can arise and then cross over without any delay.
In contrast, more time is required for the evolution of a
k-beneficial mutant in the sequential deleterious regime.
(Due to negative selection of the intermediates as they
arise sequentially.) The next section describes a worked-
out analysis of the speed-up for a simple example fitness
landscape.

4.1.3. Phenotype Reshaping’s Impact on the Speed

of Evolution for a Simple Example
The model of the last section, information-theoretic phenotype
reshaping (using 8i), is applied in this section as a means by
which one can speed up evolution on a specific example fitness
landscape. We show that if information-theoretic phenotype

reshaping, as introduced in the last section, is used during the
lifetime of those in the population, they can effectively flatten
bumps on fitness landscapes and thus avoid fitness valleys (which
slow down evolution). Thereby using info-theoretic phenotype

reshaping functions 8i one can show on a simple example that
evolution speeds up when one has this kind of information-
theoretic phenotype reshaping.

The following example is not meant to model the genetic
basis of behavioral traits or learning in general. It is a simple
model which serves as a proof of concept that for behavioral

traits that involve rugged fitness landscapes and Information-
theoretic phenotype reshaping one can find a simple genetic
mechanism based on population genetics that speeds up
evolution considerably.

Consider a fitness landscape in which each phenotype is a bit-
string of length k. For example, for k = 5 a phenotype would
be 01101. All but one phenotype x will be either an optimal

type, with fitness
∑

i(xi), or a phenotype which is suboptimal,

with fitness
(1−c)(1+

∑

i(xi))
e where c is a positive constant. This

is a special case of the fitness function proposed in the last
section (Equation 3) with a Hamming distance function rather
than a Euclidean distance. Despite the use of Hamming distance,
the fitness function would behave similarly without loss of
generality to a fitness function using Euclidean distance. The
optimal phenotypes will be the bit-strings that correspond to
even numbers, and the suboptimal ones will correspond to odd
numbers (formally, if the number of 1’s is even, then the bit-string
is even, and likewise for an odd number of 1’s and odd numbers).

For the analysis, rather than using the fitness as-is, the relative
fitness is used. (Which re-normalizes the fitness of the optimal
phenotypes to 1 and thus divides the suboptimal phenotype
fitness by the original fitness of the optimal phenotype.) Then
after phenotype reshaping as described above with 8i, it will take
at least k/µ time (on average), as evolution will happen in the
sequential neutral fixation regime for double-mutants, and only
k of those steps would be necessary. The reason the beneficial
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FIGURE 2 | The waiting time for a double-mutant to arise (in the sequential

deleterious fixation regime) for the simple example fitness landscape described

in the main text. The x-axis is a parameter c that increases the depth of the

fitness-valley, and the y-axis is the average expected waiting time.

mutants are 2-away is due to the hamming distance between any
even and odd bitstring being exactly one, so the distance between
two optimal phenotypes is two. (A bit flip away from the optimal
phenotype and a bit flip from the suboptimal phenotype to the
next optimal one.) Along the same lines as the above argument,
one can see that for the deleterious sequential fixation regime the

double-mutant will take at least k
Nµρ1

time (on average) to arise,

where N is the population size and ρ1 is as above (with δ = 1 −
1−c
e ). The final expression for the waiting timewithout phenotype

reshaping simplifies to 1
2µ (1 + exp [ 1e (c+ e− 1)]). Now the

waiting time is exponentially increasing in c. Comparing the two,
the phenotype reshaping has as its rate of evolution something
independent from the depth δ of the fitness valley, whereas
the ordinary evolutionary rate slows down exponentially as a
function of δ, see Figure 2. Analytically, the difference between

the two regimes’ waiting times is k
2µ

(

1+ exp [ 1e (c+ e− 1)]
)

,

and thus grows exponentially in c. So the phenotype reshaping
has a large impact on increasing the speed of evolution for this
simple example, and for these biologically realistic parameter
settings the effect grows linearly in the dimensionality k of the
phenotype space.

5. DISCUSSION

The Baldwin Effect is probably one of the most multifarious
topics in Evolution. In this paper the many divergent
interpretations were reviewed and a novel one was proposed.
It seems that much of the literature has under-estimated the
Baldwin Effect, due to the over-emphasis on genetics and the
under-emphasis on developmental psychology. The role of
abstraction over phenotypes in particular has been left out of
most accounts of Baldwin’s work on genetics.

Moreover, a phenotypic plasticity and abstraction-based
account of the Baldwin Effect has other benefits. Notably, using
some insights from Baldwin for the impact of play on evolution
we were able to show the first Baldwin Effect-induced dramatic
speedup of evolution on a fitness landscape using ordinary
population genetics. The result is a notable improvement over
prior work, which was based on neural networks theory and
genetic algorithms and did not show dramatic improvement over
ordinary evolution.

The most salient aspect of the Baldwin Effect we did not
touch on in great detail was its emphasis on consciousness
and its impact on genetics. We attempted to interpret what
Baldwin meant by these effects by emphasizing the role of
abstraction. There is nonetheless a gap between abstraction
and what Baldwin seems to mean by consciousness, since he
says that reason “ratifies” the moves proposed by genetics,
and attention also has a role. But most of all Baldwin
emphasizes the role of conscious experience in first-person
control of innovation and behavior, and we have not explored
those in any detail. It would be fascinating to explore the
role of conscious experience in the Baldwin Effect in more
detail.

Abstraction-based accounts of reason though are very old
indeed, and go back all the way to Aristotle (2015) and Aquinas
(1947). In addition, there is a rich tradition of abstraction-
based structures informing the origin of biological innovations
in the medieval literature on the scala naturae (Lovejoy,
2011). The scala naturae posits a set of major transitions
based on new abstractions introduced at ever-higher “rungs”
of the ladder. (With each rung being a kind of organism,
for instance animals with sentience or plants with the ability
to grow and self-repair.) Along these lines, recent work has
tried to find rapprochement between Piaget’s stages of child
development and new formulations of the Baldwin Effect
(Burman, 2013).

James Mark Baldwin was a pioneer in Evolution, but his
primary advance was to explore the effect of developmental
psychology on biological theory and function. Perhaps the most
important work yet to be done is to bring more recent theory
from developmental psychology (such as Gopnik’s work on
Bayesian theory; Gopnik et al., 2004; Gopnik and Tenenbaum,
2007) to bear on genetics. Such an update of the Baldwin Effect
would be an interesting and natural direction left open by this
work.

AUTHOR CONTRIBUTIONS

EC ran experiments, did analysis, and wrote the manuscript.

ACKNOWLEDGMENTS

Thanks to Lee Altenberg for early discussions on this paper,
Austin Choate for feedback on the early stages of this work, and
for Nina Fefferman for guidance in the process of writing the
manuscript.

Frontiers in Neurorobotics | www.frontiersin.org 8 September 2018 | Volume 12 | Article 52

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Chastain Development and the Baldwin Effect

REFERENCES

Aquinas, T. (1947). Summa Theologica: Translated by Fathers of the English

Dominican Province. New York, NY: Benziger Brothers.

Aristotle (2015). De Anima: Translated by Robert D. Hicks. Cambridge, UK:

Cambridge University Press.

Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update

method: a meta-algorithm and applications. Theory Comput. 8, 121–164.

doi: 10.4086/toc.2012.v008a006

Baldwin, J. M. (1902). Development and Evolution. New York, NY: Macmillan.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, NY:

Springer.

Boyd, S., and Vandenberghe, L. (2004). Convex Optimization. Cambridge, UK:

Cambridge University Press.

Burman, J. T. (2013). Updating the baldwin effect: the biological

levels behind piaget’s new theory. New Ideas Psychol. 31, 363–373.

doi: 10.1016/j.newideapsych.2012.07.003

Cover, T. M., and Thomas, J. A. (2012). Elements of Information Theory. New York,

NY: John Wiley & Sons.

Desai, M. M., and Fisher, D. S. (2007). Beneficial mutation–selection balance

and the effect of linkage on positive selection. Genetics 176, 1759–1798.

doi: 10.1534/genetics.106.067678

DeWitt, T. J., and Scheiner, S. M. (2004). Phenotypic Plasticity: Functional and

Conceptual Approaches. New York, NY: Oxford University Press.

Fisher, R. A. (1999). The Genetical Theory of Natural Selection: A Complete

Variorum Edition. Oxford, UK: Oxford University Press.

Furth, H. G. (1969). Piaget and Knowledge: Theoretical Foundations. Englewood

Cliffs, NJ: Prentice Hall.

Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., and

Danks, D. (2004). A theory of causal learning in children: causal

maps and bayes nets. Psychol. Rev. 111:3. doi: 10.1037/0033-295X.

111.1.3

Gopnik, A., and Tenenbaum, J. B. (2007). Bayesian networks, bayesian

learning and cognitive development. Dev. Sci. 10, 281–287.

doi: 10.1111/j.1467-7687.2007.00584.x

Griffiths, P. E. (2003). “Beyond the baldwin effect: James mark baldwin’s “social

heredity,” epigenetic inheritance, and niche construction,” in Evolution and

learning: The Baldwin effect reconsidered, eds B. Weber and D. Depew

(Cambridge, MA: MIT Press), 193–215.

Hinton, G. E., and Nowlan, S. J. (1987). How learning can guide evolution.

Complex Syst. 1, 495–502.

Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., Müller, G. B.,

Moczek, A., et al. (2015). The extended evolutionary synthesis: its structure,

assumptions and predictions. Proc. R. Soc. B 282:20151019. doi: 10.1098/rspb.

2015.1019

Law, J., Shaw, P., and Lee, M. (2013). A biologically constrained architecture for

developmental learning of eye–head gaze control on a humanoid robot. Auton.

Robots 35, 77–92. doi: 10.1007/s10514-013-9335-2

Lee, M. H. (2011). “Intrinsic activity: frommotor babbling to play,” inDevelopment

and Learning (ICDL), 2011 IEEE International Conference on, Vol. 2 (Frankfurt:

IEEE), 1–6.

Livnat, A., Papadimitriou, C., Rubinstein, A., Valiant, G., and Wan, A. (2014).

“Satisfiability and evolution,” in Foundations of Computer Science (FOCS), 2014

IEEE 55th Annual Symposium on (Philadelphia, PA: IEEE), 524–530.

Lovejoy, A. O. (2011). The Great Chain of Being: A Study of the History of an Idea.

New Brunswick, NJ: Transaction Publishers.

Martin, G., and Lenormand, T. (2006). A general multivariate extension of

fisher’s geometrical model and the distribution of mutation fitness effects

across species. Evolution 60, 893–907. doi: 10.1111/j.0014-3820.2006.tb0

1169.x

Martin, G., and Lenormand, T. (2015). The fitness effect of mutations across

environments: Fisher’s geometrical model with multiple optima. Evolution 69,

1433–1447. doi: 10.1111/evo.12671

Meltzoff, A. N., and Moore, M. K. (1997). Explaining facial imitation: a theoretical

model. Early Dev. Parent. 6:179. doi: 10.1002/(SICI)1099-0917(199709/12)6:3/

4<179::AID-EDP157>3.0.CO;2-R

Piaget, J., Inhelder, B., and Piaget, J. (2013). The Growth Of Logical Thinking From

Childhood To Adolescence: An Essay on the Construction of Formal Operational

Structures, Vol. 84. Abingdon: Routledge.

Platt, M. L., and Glimcher, P. W. (1999). Neural correlates of decision variables in

parietal cortex. Nature 400, 233–238. doi: 10.1038/22268

Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with

population codes. Nat. Rev. Neurosci. 1, 125–132. doi: 10.1038/35039062

Rolf, M., Steil, J. J., and Gienger, M. (2010). Goal babbling permits direct

learning of inverse kinematics. IEEE Trans. Auton. Ment. Dev. 2, 216–229.

doi: 10.1109/TAMD.2010.2062511

Sandefur, J. T. (1993). Discrete Dynamical Modeling. New York, NY: Oxford

University Press.

Santos, M., Szathmáry, E., and Fontanari, J. F. (2015). Phenotypic plasticity,

the baldwin effect, and the speeding up of evolution: the computational

roots of an illusion. J. Theor. Biol. 371, 127–136. doi: 10.1016/j.jtbi.2015.

02.012

Scheiner, S. M. (2014). The baldwin effect: neglected and misunderstood. Am.

Natur. 184, ii–iii. doi: 10.1086/677944

Scheiner, S. M., Barfield, M., and Holt, R. D. (2017). The genetics of phenotypic

plasticity. xv. Genetic assimilation, the baldwin effect, and evolutionary rescue.

Ecol. Evol. 7, 8788–8803. doi: 10.1002/ece3.3429

Shadlen, M. N., and Newsome, W. T. (2001). Neural basis of a perceptual decision

in the parietal cortex (area lip) of the rhesus monkey. J. Neurophysiol. 86,

1916–1936. doi: 10.1152/jn.2001.86.4.1916

Simpson, G. G. (1953). The baldwin effect. Evolution 7, 110–117.

doi: 10.1111/j.1558-5646.1953.tb00069.x

Smith, E., and Morowitz, H. J. (2016). The Origin and Nature of Life on Earth:

The Emergence of the Fourth Geosphere. Cambridge, UK: Cambridge University

Press.

Smith, P. (2010). Children and Play: Understanding Children’s Worlds. Chichester

Waddington, C. H. (1953). The “baldwin effect,”“genetic assimilation” and

“homeostasis.” Evolution 7, 386–387.

Weissman, D. B., Desai, M. M., Fisher, D. S., and Feldman, M. W. (2009). The

rate at which asexual populations cross fitness valleys. Theor. Popul. Biol. 75,

286–300. doi: 10.1016/j.tpb.2009.02.006

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Chastain. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 9 September 2018 | Volume 12 | Article 52

https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1016/j.newideapsych.2012.07.003
https://doi.org/10.1534/genetics.106.067678
https://doi.org/10.1037/0033-295X.111.1.3
https://doi.org/10.1111/j.1467-7687.2007.00584.x
https://doi.org/10.1098/rspb.2015.1019
https://doi.org/10.1007/s10514-013-9335-2
https://doi.org/10.1111/j.0014-3820.2006.tb01169.x
https://doi.org/10.1111/evo.12671
https://doi.org/10.1002/(SICI)1099-0917(199709/12)6:3/4<179::AID-EDP157>3.0.CO;2-R
https://doi.org/10.1038/22268
https://doi.org/10.1038/35039062
https://doi.org/10.1109/TAMD.2010.2062511
https://doi.org/10.1016/j.jtbi.2015.02.012
https://doi.org/10.1086/677944
https://doi.org/10.1002/ece3.3429
https://doi.org/10.1152/jn.2001.86.4.1916
https://doi.org/10.1111/j.1558-5646.1953.tb00069.x
https://doi.org/10.1016/j.tpb.2009.02.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Information Theory, Developmental Psychology, and the Baldwin Effect
	1. Introduction
	2. Mathematical Background
	3. Background
	3.1. Interpretations of the Baldwin Effect
	3.1.1. Baldwin Effect qua Baldwin or Impact of Learning in a General Sense Acting Genetically
	3.1.2. The Impact of the Baldwin Effect qua Baldwin in a General Sense on Variation and Generation of Novel Phenotypes


	4. Results
	4.1. Formal Model of the Baldwin Effect
	4.1.1. Information Theory and Phenotype Reshaping
	4.1.2. Impact on Population Genetics
	4.1.3. Phenotype Reshaping's Impact on the Speed of Evolution for a Simple Example


	5. Discussion
	Author Contributions
	Acknowledgments
	References


