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A fundamental problem in creating successful shared autonomy systems is enabling

efficient specification of the problem for which an autonomous system can generate

a solution. We present a general paradigm, Interactive Shared Solution Shaping (IS3),

broadly applied to shared autonomous systems where a human can use their domain

knowledge to interactively provide feedback during the autonomous planning process.

We hypothesize that this interaction process can be optimized so that with minimal

interaction, near-optimal solutions can be achieved. We examine this hypothesis in the

space of resource-constrained mobile search and surveillance and show that without

directly instructing a robot or complete communication of a believed target distribution,

the human teammate is able to successfully shape the generation of an autonomous

search route. This ability is demonstrated in three experiments that show (1) the

IS3 approach can improve performance in that routes generated from interactions in

general reduce the variance of the target detection performance, and increase overall

target detection; (2) the entire IS3 autonomous route generation system’s performance,

including cost of interaction along with movement cost, experiences a tradeoff between

performance vs. numbers of interactions that can be optimized; (3) the IS3 autonomous

route generation system is able to perform within constraints by generating tours that

stay under budget when executed by a real robot in a realistic field environment.

Keywords: shared autonomy, artificial intelligence, robotics, human-robot interaction, autonomous surveillance

1. INTRODUCTION

To create a shared autonomy system, a critical challenge is to correctly and succinctly specify
the problem space from which a solution can be autonomously generated. Much of the
problem-specification challenge arises from the central issue of translating a human’s mental model
of the problem into a format that can be reasoned upon by the autonomous robot. We believe that
a general paradigm can be broadly applied to shared autonomous systems where a human can use
his or her domain knowledge to interactively provide feedback during the autonomous planning
process, i.e., providing hints or suggestions about the underlying model of the system. We refer to
this paradigm as Interactive Shared Solution Shaping (IS3).

Importantly, we believe this interaction process can be optimized so that with minimal
interaction, near-optimal solutions can be achieved. We examine this hypothesis in the space of
resource-constrained mobile search. Specifically, we address the problem of construction of path or
tour of the environment so that a robot equipped with a visibility-based sensor will optimally detect
targets that appear in the environment, subject to the challenge of limited-resource constraints (e.g.,
time, energy) imposed by real-world applications.
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This resource-constrained search task is closely related to
the class of informative path planning problems (Kollar and
Roy, 2008; Julian et al., 2013), where path planning for
exploration is achieved via maximization of mutual information
gain. Information-theoretic methods were also used to provide
a mathematical basis for autonomously optimizing target-
detection trajectories (Charrow et al., 2015b). This task is
also deeply connected to the class of problems referred to
as the selective traveling salesperson problem or orienteering
problem (Laporte andMartello, 1990). Recent work proposed the
correlated orienteering problem, where the rewards for visiting
locations are not independent, along with candidate solution
algorithms that are well-suited to robotic information gathering
(Yu et al., 2014; Arora and Scherer, 2016). However, these
methods assume (1) a fully-specified problem definition, and (2)
no human teammates are in the planning loop.

The IS3 paradigm, in which the robot’s decision making is
shaped by the human’s knowledge through minimal interaction,
is a form of shared autonomy in that planning and decision
making are shared by the human and the autonomous agent,
using the strengths of each to arrive at a better solution. For this
work, we ground this idea experimentally in the form of path
planning for mobile search, where the route planning is shared
to achieve better performing search routes. The planned routes
are executed to evaluate the performance after interaction.

The primary contributions of this work are the general
introduction of our IS3 paradigm and the specific application
to the autonomous route planning problem to show that with
minimal interactions, a human teammate’s partial knowledge
can be shared to improve autonomous route planning. This is
demonstrated in three application scenarios:

1. We show in a resource-constrained surveillance tour
generation scenario how the IS3 approach can improve
performance in tours generated from interactions reduce the
variance of the target detection performance, and increase
overall target detection.

2. To examine the cost effectiveness of interaction, we treat each
interaction and corresponding re-planning as part of the cost
of the end-to-end system performance, and examine optimal
performance with numbers of interactions in the context of
informative path generation.

3. We implement an IS3 autonomous route planning system on a
real robot in a realistic field environment, and show the system
is able to perform within constraints by generating tours that
stay under budget when executed.

The remainder of this paper is organized as follows. Section 2
covers related work in shared autonomy for autonomous
planning and information gathering; section 3 details the general
context, problem statement, and approach; section 4 delves into
a specific formulation, approach, and experiments on how IS3
can be used for improving performance in resource-constrained
generation of surveillance tours; section 5 expands the problem
formulation and approach as well as experiments that show the
effect of incorporating interaction cost as part of the end-to-end
system performance; section 6 demonstrates the IS3 approaches

application to performance within constraints by generating
tours that stay under budget when executed by a real robot in
a realistic field environment; section 7 concludes the work.

2. RELATED WORK

At its core, this work is closely related to the general problem of
planning informative paths for mobile robots. Most commonly,
the application of interest is map-exploration, i.e., autonomous
uncovering of environment structure by planning trajectories
that maximize information gain on the underly probabilistic
map representation. Recent methods form this as optimization-
based solutions to problems of active control and planning as
presented by Kollar and Roy (2008), Julian et al. (2013) and
Charrow et al. (2015a). More recently, similar information-
theoretic techniques have been applied to the target-detection
and tracking problems highlighted by Dames et al. (2015) and
Charrow et al. (2015b).

The above techniques are all considered in the paradigm of
receding horizon control. That is, they operate in the context
of a feedback controller, reacting to the most recent model
of the environment or problem at hand. When the goal is
to autonomously plan for the best sequence of actions over a
longer, possibly infinite, time horizon, it is common to turn
to techniques from the Operations Research (OR) community.
This is especially true when one seeks to incorporate budget-
or topologically-based constraints. Further, in these settings, it is
typical to have a discrete rather than continuous representation
of locations of interest in the environment. For example, the
traveling salesperson problem described by Laporte and Martello
(1990) looks to find the shortest path that visits all sites, forming
a tour that returns to the starting location.

When a budget is introduced to this problem it is referred
to as the selective traveling salesperson or Orienteering Problem
(OP). It is well known that this is an NP-hard problem and most
algorithms addressing the OP rely on approximations. Indeed,
the development of practical solution algorithms continues
to be an active area of research (e.g., Blum et al., 2007;
Vansteenwegen et al., 2011). While solutions from the OR
community typically focus on problems with fairly coarse
discretizations of the environment, recent work by Tokekar et al.
(2016) has demonstrated how these techniques can be applied in
the field-robotics domain for hybrid aerial-ground systems.

In addition to the assumption of pre-computed discrete
sites, traditional solutions to the OP problem typically also
assume independent reward at each site. However, in a real-
world information-collecting application, it is clear that rewards
for visiting sites, especially nearby ones, are highly correlated.
Indeed, this observation was noted by Yu et al. (2014) where
the correlated orienteering problem is introduced as an extension
where the reward for visiting each location is correlated with
the set of other locations visited, making the problem more
amenable to planning informative tours in the context of
persistent monitoring. More recently, Arora and Scherer (2016)
demonstrate efficient approximate algorithms that solve this
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problem at speeds making it reasonable to use in an online
robotic setting. We adopt the structure of this algorithm in our
work here.

One of the key observations of this work is that in all of the
above planning and control scenarios, the robot or autonomous
planning system has a precise definition of the objective function.
There has been considerably less attention paid to how a human
operator or teammate can efficiently communicate this objective
function to the autonomous system.

There is, however, some work by Crossman et al. (2012),
Alonso-Mora et al. (2015), and Dawson et al. (2015) that does
looks toward human interaction with autonomous planning
systems. We see two fundamental and contrasting approaches
that are taken. First, work such as that of Yi et al. (2014) models
human input as a sequence of constraints within which the
system plans for an maximally informative path. Second, in the
work by Lin and Goodrich (2010) a strategy is adopted where
the human shapes the objective function that is used to make
autonomous decisions. Since we are interested in a domain of
problems that are already heavily constrained, e.g., with limited
budget and requirements on cyclical paths, we adopt the second
strategy and focus on how the human teammate can provide
iterative updates to the objective function, demonstrated as a
proof-of-concept in our earlier work Reardon and Fink (2017).

Finally, we do note that there is a potential connection
between our work and the work concentrating on the idea
of reward shaping in the reinforcement learning community.
Clearly, there is a fundamental difference in the objective
when interacting with a system during the training of a policy
rather than the execution of an autonomous planning algorithm.
However, we do draw inspiration from the interactive approaches
described by Judah et al. (2014) and Raza et al. (2015).

3. PROBLEM FORMULATION AND
APPROACH

We are interested in planning resource-constrained informative
routes for a mobile robot with a visibility-based sensor, e.g., a
camera or laser range-finder, in complicated environment. For
example, we specifically consider the Clearpath Robotic’s Jackal
platform depicted in Figure 9 in environments such as the one
depicted in Figure 10. We assume that the mobile robot has
simultaneous localization and mapping (SLAM) capabilities that
allow it to autonomously generate and navigate along collision-
free trajectories or motion plans in an unstructured environment.
The goal of this work is to choose a motion plan for the robot that
maximizes the probability of detecting a target, e.g., a victim in
the disaster response scenario or threat in the military domain.
While the robot may have a coarse prior for target locations, the
key idea of this work is that a human teammate can leverage prior
knowledge, experience, and sensory cues to infer a higher-fidelity
distribution for target locations.

Mathematically, we can model the robot’s prior on target
locations as an occupancy grid g consisting of a set of G
independent cells {g1, . . . , gG} such that the probability of there
being a target in cell i is p(gi = 1). Then, if the robot achieves

a viewpoint in the environment, vj ∈ SE(2), i.e., vj =
[

x, y, θ
]

,
the visibility-based sensor will observe a set of cells gi ∈ F(vj)
as depicted in Figure 1. We note that F(vj) can be generally
computed based on properties of the sensor, e.g., field of view and
maximum range, along with a map of the physical environment.
We also assume a common heuristic from information-theoretic
exploration ( Charrow et al., 2015b), that observations are taken
at each viewpoint, and adjust the granularity of our candidate
viewpoints to one that is appropriate to the size of the robot’s
sensor footprint to ensure the heuristic is accurate for path
performance.

Let q
j
i be the measurement made of cell gi from viewpoint vj,

then the target detection model from Charrow et al. (2015b) can
be denoted as:

p(q
j
i = 1|gi = 1) = γ p(q

j
i = 0|gi = 1) = 1− γ

p(q
j
i = 1|gi = 0) = 0 p(q

j
i = 0|gi = 0) = 1.

(1)

Note that this model assumes no false-positive measurements
and a true-positive rate of γ .

FIGURE 1 | The problem of resource-constrained surveillance is to find a set

of viewpoints vj that maximize the expected target-detection rate based on

sensor footprints F (vj ) such that a path can be driven to visit all viewpoints by a

mobile robot within a cost budget B. The contribution focuses on the novel

formulation and approach of solving this problem in a human-robot teaming

scenario, in which a human interacts with the robotic system by adjusting its

prior belief on target locations (e.g., the cloud) to achieve

information-gathering tours that are high-performing.
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Since our goal is to maximize the probability of obtaining
positive observations of targets in the environment, we define the
reward for a viewpoint R(vj) to be the expected number of target
detections,

R(vj) =
∑

gi∈F(vj)

p(gi) · p(q
j
i|gi). (2)

While the probability of a target in each cell is independent, the
probability of target presence for a set of measurements given the
occupancy grid, e.g., p(q|g), is not independent, as observations
overlap. However, for a binary sensor with high true-positive
rate γ , we can closely approximate by only considering the
first observation of each cell gi. This means that for a set of
observations v = {vj}, we can write the reward R(v) as

R(v) =
∑

gi∈Gv

p(gi) · p(q
j
i|gi) (3)

where Gv = {F(v1) ∪ F(v2) · · · ∪ F(vj)}.
Then, the resource-constrained informative path planning

problem can be defined as an optimization problem to find a
sequence of viewpoints v =

[

v1, . . . , vN
]

subject to application-
specific constraints. In particular, we consider a class of problems
that constrain the total duration of the planned path. That is,
given a cost of traversal between two viewpoints asC(vi, vi+1) > 0
and total path cost C(v) =

∑

i∈1,...,N,1 C(vi, vi+1), we introduce a
constraint C(v) ≤ B and write a general optimization problem as

argmax
v⊂V

R(v)

subject to C(v) ≤ B.
(4)

This problem is the basis for the remainder of this work.
It is important to note two characteristics of Equation (4)

that make it challenging to compute. First, from Equation (3),
it is clear that the sum of independent rewards R(vj) is an upper
bound for the actual reward R(v), i.e.,

∑

vj∈v
R(vj) ≥ R(v). This

means the value of a route must be computed in aggregate. We
employ several of the techniques from Charrow et al. (2015b)
to improve runtime, e.g., caching of ray-trace computations.
Second, the selection of viewpoints v is inherently a continuous
search problem over the space of all robot poses and includes
the planning of trajectories between viewpoints to compute the
route cost C(v). We address this by approximating the space of
routes with the construction of a probabilistic road map (PRM)
technique, abstracting the continuous route planning problem to
a lower-dimensional graph search.

Solving Equation (4) is not inherently novel. Indeed, solutions
to similar problems are the core of wide swaths of the robotics
and operations research literature. However, recall the context
in which we are operating: the robot only has a coarse, most
likely inaccurate or naive, model of likely target locations
that directly influence the values of R(v) while a human
teammate can perform higher-order inference to estimate more
accurate target priors. This high-level human inference could
be imagined as resulting in a continuous distribution over a

complex environment, synthesized from an array of information
sources (e.g., history, experience, and observations). Given its
complexity, the complete communication of this prior is likely
intractable.

Our general approach is to use interactions where the human
teammate iteratively provides partial indicators of the ground
truth of the shared decision space to the autonomous system
as depicted in Figure 2. Using these partial indicators, the
system regenerates an autonomous solution to the route planning
problem in Equation (4). In this way, the human teammate is able
to shape the generation of autonomous solutions in the shared
decision space without directly instructing the robot and without
complete communication of the ground truth. We employ this
interactive approach in three illustrative scenarios to examine:

1. How does route shaping affect performance? (Section 4)
2. What is the effect of incorporating interaction and replanning

as part of the overall budget? (Section 5)
3. When deployed on a real-world robot surveillance

application, can the IS3 system plan and execute routes
while remaining under budget? (Section 6).

4. PERFORMANCE IN
RESOURCE-CONSTRAINED TOUR
GENERATION

First, we show that the IS3 approach can improve performance.
We examine the problem of continuous surveillance with the
added constraint that the surveillance route must return to
the starting position within the budget B, i.e., a “survillance
tour.” To address the autonomous surveillance tour problem,
we introduced Human-Autonomous Route Planning (HARP)
in Reardon and Fink (2017), which explores the space of
surveillance solutions to maximize task performance. The
optimal surveillance route generation algorithm HARP uses is a

FIGURE 2 | An overview of the IS3 approach. The human uses knowledge of

the ground truth of the world domain state, e.g., in the form of objectives, prior

experience, observations, etc., to provide partial indicators of that knowledge

to the robot through minimal interaction and arrive at a shared problem space

definition that is specified sufficiently to maximize performance.
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modification of the algorithm for Random Orienteering inspired
by (Arora and Scherer, 2016) shown in Algorithm 2. Our results
show a performance increase for human-robot interaction vs.
a baseline method with no interaction by measuring the target
detection rate over a large sample set for a complex simulated
environment.

4.1. Approach
To forumate the surveillance route as a tour, we modify
Equation 4 to include the constraint that v must end with vs, the
starting point:

argmax
v⊂V

R(v)

subject to C(v) ≤ B.

v =
[

vs, . . . , vs
]

.

(5)

Introducing this constraint casts the problem as a correlated
orienteering problem (Yu et al., 2014).

Our algorithm begins with first, given an uninformed (e.g.,
uniform) target belief prior g0, a set of candidate viewpoints
is selected, and a solution to the correlated orienteering
problem Equation (4) is constructed. This initial solution v0

is presented graphically as an under-budget surveillance tour
of the environment. Then, the human is able to modify the
target belief prior with a single interaction to create g1. This
new g1 represents a better-informed prior, and a solution to
the correlated orienteering problem is generated using this new
information and v0. The human teammate can then view and
provide successive interactions to shape the surveillance route
generated.

As graphically illustrated in Figure 3, a set of candidate
viewpoints V = {vj =

[

x, y, θ
]

} are generated by sampling over
unoccupied space within the environment. Then, each candidate
viewpoint’s reward R(vj) is scored individually based upon the
target belief as defined in Equation (2). Because the actual
detection rates of novel targets are dependent on observations
from other viewpoints, these scores serve as an upper bound on
the reward for visiting each viewpoint vj.

While the correlated information-gain based reward function
is sub-modular and therefore efficient optimization solutions can
be devised, with the addition of a traveling budget constraint, this
problem becomes non-submodular (Arora and Scherer, 2016).
To address this issue, after the Prepare Input step is complete,
we split the correlated orienteering problem into a combination
of Constraint Satisfaction and Traveling Salesperson problems.
Then, we implement a new approach by adapting and modifying
the Random Orienteering (RO) algorithm Arora and Scherer
(2016), as shown in Algorithm 2.

In the new Algorithm 2, we iteratively explore subsets of
candidate viewpoints v ⊂ V , i.e., the Constraint Satisfaction
Problem, and then checking for a tour within the cost budget
B, which is the Traveling Salesperson Problem (TSP). We note
that the construction of the edge weights for a TSP in a realistic
robotics application can be computationally expensive in its own
right and involves motion planning with respect to complicated
environments and differential constraints. Thus, we address this

FIGURE 3 | Route planner overview. Progress flows downward, beginning

with human input and generated solutions will be presented back to the

human teammate.

problem in three ways: (1) evaluating edge costs for only the
subset of viewpoints being considered, (2) caching path queries,
and (3) leveraging algorithms shown successful in the “multi-
query” setting, e.g., the probabilistic roadmap method Kavraki
et al. (1996). In this way, we spend some precomputation effort
to speed up later calculations of the cost to traverse from one
viewpoint to another, C(vi, vj). We assume the costs between
viewpoints to be symmetric such that C(vi, vj) = C(vj, vi).

One challenge of implementing and applying Algorithm 2

is that the rate of convergence to a solution is influenced
by the initial chosen set of viewpoints. We overcome this by
introducing an initialization method, shown in Algorithm 1,
which performs sampling of m candidate viewpoints, weighted
by reward, to initially explore several disparate solutions with
high reward upper bounds and continuing with the one that is
under budget and maximizes reward. We score the actual reward
R(v) for a candidate viewpoint selection based upon Equation (3),
which accounts for coverage overlapping between viewpoints and
provides an accurate representation of the target detection rate.

Algorithm 2 continues by randomly sampling candidate
viewpoints vj ∈ V (line 9), updating the active solution v (lines
10–15), and evaluating with respect to the current-best solution
tour v∗ (line 16). If the viewpoint selected is currently in the tour
v, it is removed (line 11); if it is not in the tour, then it is added
(line 13). If the cost of v is under budget and it improves the
reward over v∗, it is kept as the current best tour (line 17).
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Algorithm 1: Sample weighted random solutions
(Reardon and Fink, 2017)
Input : V , vs,m

Output: A selection of vertices weighted by reward

1 v∗ = {};

2 for i = 1 :m do

3 v = vs ∪WeightedRandomSample(V) ; // select

viewpoints

4 v,C(v) = TSP(v);

5 if C(v) <= B ∧ R(v) > R(v∗) then

6 v∗ = v;

7 end

8 end

9 return v∗;

Algorithm 2: Modified RO based on Arora and Scherer
(2016) for solving decoupled constraint satisfaction and
TSPs from previous work (Reardon and Fink, 2017)

Input : G = [V ,E], vs, vk−1,B,m

Output: The best route found in 3|V| steps

1 if vk−1 == Null; // First iteration

2 then

3 v,C(v) = SampleRandomSolutions(V , vs,m);

4 v∗ = v; // Init weighted random solution

5 else

6 v∗ = vk−1; // Init previous solution

7 end

8 for i = 1 : 3|V| do

9 vnew = Sample(V) ; // Sample a view

10 if IsInRoute(v, vnew) then

11 v = DeleteFromRoute(v, vnew);

12 else

13 v = AddToRoute(v, vnew);

14 end

15 v,C(v) = TSP(v); // TSP returns ordered v and

cost

16 if C(v) <= B ∧ R(v) > R(v∗) then

17 v∗ = v;

18 end

19 end

20 v∗ = GreedyLocalSearch(V , v∗,B);

21 return v∗;

After 3|V| iterations (per the standard probabilistic constraint
satisfaction problem algorithm from Schoning, 1999 modified
in Arora and Scherer, 2016), a modified version of the Greedy
Local Search from Arora and Scherer (2016) is performed
(Algorithm 3, where δ is a distance threshold and c is a reward
threshold) to improve anytime performance by incorporating
nodes in the neighborhood of the chosen route that increase the
reward over a threshold value, c, while remaining under cost.
First, a list of eligible candidates within a distance threshold δ

of existing tour viewpoints is constructed (lines 1–6). Then, if
the addition of any of those candidates increases the tour reward
R(v∗) while being under budget B (lines 7–11), the viewpoint
is added to the tour. Finally, after the greedy local search is
complete, the v∗ tour is returned.

Algorithm 3:Modified greedy local search (Reardon and
Fink, 2017)

Input : V , v∗,B

Output: v∗ with greedily-selected neighbors

1 veligible = {};

2 for i = 0 : |V|, j = 0 : |v∗| do

3 if Distance(vi, vj) < δ ∧ vi 6∈ v∗ then

4 veligible = veligible ∪ vi;

5 end

6 end

7 for e = 0 : |veligible| do

8 if R(v∗ ∪ ve) > R(v∗)+ c ∧ C(v∗ ∪ ve) < B then

9 v∗ = v∗ ∪ ve;

10 end

11 end

12 return v∗;

4.2. Experiments
First, we show that the IS3 approach can improve performance.
We examine the performance increase for human-robot
interaction vs. a baseline method with no interaction by
measuring the target detection rate over a large sample set for
a complex simulated environment.

4.2.1. Setup

A complete end-to-end surveillance route generation system
has been implemented as a suite of software modules leveraging
ROS. To visualize the environment, as well as the current
target belief prior, tour solution, and regions observable
by the robot, we leverage the RViz tool. The user is able
to edit the target belief prior using custom plugins by
“painting” regions of higher target probability with the
mouse pointer. After such interaction, the system uses
an implementation of our approach to regenerate a new
surveillance tour solution using the new prior given in the
interaction.

Rather than conduct a large-scale user study, we
simulate human input: given a hidden underlying
ground-truth target distribution, our human-simulator
generates a set of interactions ordered based on the
greatest size and probability value of each area of elevated
probability in the ground truth, then communicates
each interaction via the same mechanism as the human
interface.

For this experiment we use an orthogonal environment,
as illustrated in Figure 4. For these experiments, budget
values are selected empirically to create a realistic and
challenging scenario, i.e., we constrain the resources available
(i.e., the budget, B) so that full coverage of the map is not
possible.

4.2.2. Results

Here we summarize the results originally presented in Reardon
and Fink (2017). We illustrate the effect of solution shaping on
performance in Figure 4. The case of no interaction in Figure 4A
serves as a baseline; a circular route generated from a uniform
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FIGURE 4 | Example of the effect of interaction on route surveillance generation in a complex environment visualized in RViz. (A) shows the baseline case, where a

route is generated autonomously with a uniform target distribution. (B) shows the impact of a single interaction, where a route after the target distribution prior is

modified to elevate an area of higher target probability, shown as the red circle. (C) shows the autonomous route generated after two interactions.

prior target distribution g0 achieves a reasonable tour of the
environment, subject to the budget B.

In Figure 4B, the tour generated from a single interaction
g1 where a partial indicator of higher probability of target
presence has been specified in the lower righthand room.
A new route is generated using Algorithm 2 and the route
shown in Figure 4A as a starting point. This new route
reprioritizes fully cover the lower right room over upper left,
an outcome that was made without explicit instruction by the
human.

Figure 4C shows an even further shaping effect, as a second
partial indicator shows a higher target probability in the
upper right for g2. This results in a replanning that focuses
entirely on the two areas of higher probability. In this way,
the human is able to use minimal interactions shape the
decision space for autonomous route generation without explicit
instruction.

Figure 5 shows box plots of 210 experiments, 10 per plot. Each
box represents a number of interactions. Figures 5A–C shows
from baseline (no interactions) to n = 2 interactions with budget
values B = 30, 35, 40 and Figures 5D–F shows 0–3 interactions
with budget values B = 35, 40, 45. These results show that
routes generated from interactions in general reduce the variance
of the target detection performance, and increase overall target
detection. Significant differences in performance (p < 0.05)
were found between each interaction. Variance decreased over
baseline for all cases. We also make three observations: (1) In
some cases there is a point of diminishing returns with respect
to interactions, for example in Figure 5A where B = 30, between
interactions 1 and 2, in Figure 5E between interactions 2–3, and
in Figure 5F between 1 and 3. (2) Observing this diminishing
returns effect, in cases where autonomous surveillance routes
will provide sufficient coverage from only a partial belief prior,
it may not be necessary to provide an exhaustive target belief
prior to the robot. (3) the point at which returns diminish is
subject to the task definition and the experimental configuration,
including budget, environment, target likelihood, and sensor
footprint.

5. OPTIMIZING INTERACTION AS PART OF
COST

For the IS3 approach to be practical for use in real-world robotics,
the interaction component cannot be a slow process. In the
context of resource-constrained search, the cost of interaction
cannot overwhelm the budget. Therefore, we extend (Reardon
et al., 2017) by examining the compelling situation where a
human-robot team must locate a number of targets in the
environment prior to a potentially catastrophic event. This
event could be, e.g., before a disaster victim expires, before
environmental events hinder search, or even something as
extreme as locating a timed explosive device before detonation.
We refer to these collectively as “ticking time-bomb” scenarios,
where the resource limitation is imposed not only on the robot
(e.g., the battery life of a ground robot or small UAV) but on
the entire IS3 autonomous route planning system’s start-to-finish
operation. The challenge then is to not only generate an under-
budget path as in Reardon et al. (2017), but also to incorporate
the cost of solution shaping.

This interdependent combination of planning and execution
has not been previously addressed and is highly relevant to real-
world robotics problems. We introduce a novel formulation and
approach to address this combination.

5.1. Approach
To formulate interaction cost as part of total cost, we introduce
a modification of Equation (4) that incorporates the cost of each
interaction ki, where K is the sum of the cost of all interactions,
K =

∑

i∈1,...,n ki, and rewrite Equation (4) as:

argmax
v⊂V

R(v)

subject to C(v)+ K ≤ B

v =
[

vs, . . .
]

.

(6)

Equation (6) allows us to balance the cost of interaction and
subsequent replanning to achieve a more realistic value of
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the reward gained when acquiring new information through
interaction. In our application we iteratively solve Equation (6)
with each interaction using an increasing value for K, which is
the increasing cost of interaction.

We introduce a modification of the approach from section 4.1.
To show the generalizability of the IS3 method, we incorporate
an alternate path planner algorithm. A greedy recursive search-
based path planner with an n-ply lookahead is implemented.
In the “ticking time-bomb scenario,” we assume that maximum
target detection is critical; i.e., this is a search task not a
surveillance task. Therefore, we also relax the assumption of a
tour and generate non-circular path.

Algorithm 4 contains pseudo-code for the greedy planner,
which recursively traverses all nodes in the graph from the
last choice down to a maximum depth D to construct a list
of candidate choices V∗ that are under budget B. Then, the
adjacent node that has the best potential reward considering that
lookahead depth is chosen. This process is repeated until the cost
of the path constructed exhausts the budget.

Algorithm 4: Recursive greedy route planner with
lookahead.

Input : G = [V ,E], vs, vk−1,B,D

Output: The best route found recursively with depth D

1 while C(v) < B do

2 v,C(v) = GreedyNextVertex(G, v,D, d);

3 end

4 return v;

5 Function GreedyNextVertex(G, v, D, d):

6 V∗ = Null; // Initialize set of candidates

7 for e ∈ Edges(v−1) do

8 vnew = Endpoint(v−1, e);

9 if vnew 6∈ v then

10 v∗ = v ∪ vnew;

11 if C(v∗) < B then

12 if d + 1 < D then

13 V∗ = V∗ ∪ GreedyNextVertex(G, v∗,D, d + 1);

// Recurse

14 else

15 V∗ = V∗ ∪ v; // Use previous value

16 end

17 end

18 end

19 end

20 return (Best(V∗)); // Return best reward over V∗

candidates

5.2. Experiments
We conduct experiments to show the performance of our IS3
system in this application subject to the constraints in this new
formulation. We examine the utility of interaction in this context
to show that there is an optimal number of interactions before
performance begins to decline.

5.2.1. Setup

As in section 4, we simulate human input given an underlying
ground-truth target distribution which results in a set of

interactions based on the size and probability magnitude, which
is communicated via the human interface to the planner to
generate a new solution. The same end-to-end setup in ROS is
used.

For this experiment, we implement the greedy planner in
Algorithm 4 to demonstrate that generalizability of our path
shaping approach. We run the experiment using both the
orthogonal environment with nine rooms shown in Figure 6A

and a more complicated real-world environment shown in
Figure 7A. We allow for complex definitions of ground truth by
randomly generating new ground truth priors over unoccupied
space of varying sizes, which results in a variable number of
interactions.

5.2.2. Results

We illustrate the effect of interaction in this scenario in
Figures 6C–E, 7C–E. Figures 6B, 7E both show an example
target probability prior that has been randomly generated as in
the experiments. Similar to Figure 4, the effect of interaction is
depicted; however, we employ a greedy planner and generate
a non-circular path. Figures 6C, 7C represent the baseline case
of no interaction, whereas Figures 6D, 7E of each figure show
one and two interactions, respectively. As can be seen, the
diminishing budget availability due to the cost of interaction
being considered in the end-to-end cost reduces the planner’s
ability to take advantage of new information, leading to an
optimal trade-off point where returns begin to diminish.

To examine the effect of the constraints in the “ticking time-
bomb” scenario empirically, A large-scale experiment with over
1,200 runs was conducted, and results are shown in Figure 8. For
the Figure 6 map, 100 ground-truth priors, 4 elevated areas of
target likelihood were generated per prior, were generated and
used in simulated interaction experiments. Using a budget B =

90, 529 total replanning steps occurred, from 0 to 5 interactions.
For the Figure 7map, 97 ground-truth priors were generated and
used in simulated interaction experiments. Because the map in
Figure 7 is larger, 7 target likelihood locations were generated
per prior. With a budget B = 140, 674 total replanning steps
occurred, from 0 to 6 interactions.

Figure 8A shows box plots of results from the 529 experiments
run after 0–5 interactions. Experiments per interaction were (100,
100, 100, 96, 81, and 52) for (0, 1, 2, 3, 4, and 5) interactions.
Figure 8B shows box plots of results from the 674 experiments
run after 0-6 interactions. Experiments per interaction were (97,
97, 97, 97, 97, 95, and 94) for 0–6 interactions.

Both graphs show that while interaction initially increases
performance as initially demonstrated in section 4, the
incorporation of the cost of interaction and replanning results
in diminishing returns. In Figure 8A, performance peaks in
the one to two interaction range; in Figure 8B, performance
is best for two to three interactions. Clearly, the difference in
budget as well as size and configuration of the environment has
impacts on the number of interactions before the interaction cost
begins to impact performance. By incorporating interaction and
replanning cost to examine the end-to-end system performance
these results show that there is indeed a trade off when leveraging
human interaction. This effect should be considered in the
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FIGURE 5 | Results comparing different numbers of human interactions across budget parameters showing target detection performance. The top and bottom of the

boxes represent the interquartile range (middle 50% of samples), the red line is the mean, and the whiskers represent the overall value range. (A–C) show two areas of

high target likelihood with budget B = (30, 35, 40), with variance values for 0, 1, and 2 interactions in (A):(0.019, 0.005, 0.011), (B):(0.043, 0.011, 0.012), and

(C):(0.022, 0.011, 0.009). (D–F) show three areas of high target likelihood with budget B = (35, 40, 45), with variance values for 0, 1, 2, and 3 interactions in

(D):(0.024, 0.013, 0.011, 0.012), (E):(0.023, 0.010, 0.006, 0.007), and (F):(0.024, 0.009, 0.011, 0.017).

FIGURE 6 | One of the maps used for Optimizing Interaction as Part of Cost experiments (Section 5.2). (A) show the original occupancy map. (B) shows an example

target probability prior superimposed over the occupancy map, with darker red regions indicating higher probability. (C–E) show the effect of zero, one, and two

interactions in the scenario where interaction is considered as part of the end-to-end cost.

creation of any IS3 system for application in a real-world “ticking
time-bomb”-type scenario.

6. CONSTRAINT MAINTENANCE IN FIELD
ROBOTICS APPLICATION

Finally, we demonstrate the IS3 system’s ability to perform on a
real robot, within constraints per our formulation, by generating
tours that stay under budget when executed by a real robot in a
field environment.

To improve the adaptability of our system to new partial
indicators from interactions and ensure performance under

constraints, we wish reserve some unexpended budget
in situations where a lower reward does not justify a higher
cost expenditure, i.e., “it’s not worth the trip.” In real robotics
implementations, this will also help account for the potential
variability in the cost (time or distance) of the execution of a
path relative to the expected cost of the path. To achieve this,
we use the same Modified RO approach in section 4.1, with the
following modifications to the problem formulation.

6.1. Approach
Equation (4) is modified to balance the budget expended
to obtain the reward by simultaneously maximizing reward
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FIGURE 7 | One of the maps used for Optimizing Interaction as Part of Cost experiments (Section 5.2). (A) show the original occupancy map. (B) shows an example

target probability prior superimposed over the occupancy map, with darker red regions indicating higher probability. (C–E) show the effect of zero, one, and two

interactions in the scenario where interaction is considered as part of the end-to-end cost.

FIGURE 8 | Target detection performance for the Optimizing Interaction as Part of Cost experiments shown in the orthogonal map (A) Figure 6 and the complex

indoor environment map (B) Figure 7.

and minimizing cost in the objective function. We rewrite
Equation (4) as:

argmax
v⊂V

R(v)− λC(v)

subject to C(v) ≤ B

v =
[

vs, . . .
]

.

(7)

where λ is a trade-off parameter controling the cost effect.
The formulation in Equation (7) is particularly useful in

iterative, online applications. When searching via Algorithm 2,
the cost C would likely approach budget B, meaning the budget
would likely be expended. In these cases, generation of a new,
different solution vk would rely upon delete events (line 10).
Because delete events’ frequency is proportional to the size of
the current solution |v∗| relative to the entire viewpoint space

|V|, in cases of increasing environment size, such as real-world
field environments, the cost of producing new solutions would
also increase. The trade-off parameter λ allows us to balance
the likelihood that an initial solution v0 will have unexpended
budget with the information-based reward obtainable. This
ensures that future solutions will have increased variability in
execution.

6.2. Experiments
Here we cover the experiments performed to show performance
under constraints in field environments originally presented in
Reardon and Fink (2017).

6.2.1. Setup

The robot used in these experiments is a Clearpath Robotics
Jackal (Figure 9) which is a wheeled platform that is limited
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FIGURE 9 | Clearpath Robotics Jackal robot used in the Constraint

Maintenance in Field Robotics Application experiments in section 6.2.

FIGURE 10 | Marketplace environment for the Constraint Maintenance in Field

Robotics Application experiments in section 6.2.

to a maximum velocity of 1 m/s and is suitable for outdoor
operations. It is equipped with a Velodyne VLP-16 LiDAR, which
generates a 360◦ point cloud of 300,000 points per second at a
range of 100m and an accuracy of up to ±3 cm. an ASUS Xtion
camera for RGB data, a MicroStrain 3DM-GX3-25 IMU and a
Garmin 18x PC GPS.

We employ onboard custom ROS components for SLAM and
optimization-based trajectory control to autonomously navigate
through a complex environment as described by Gregory et al.
(2016). Our SLAM system, which is specifically designed for
operation in GPS denied environments such as building interiors
and caves, is a pose-graph framework that uses 3D laser scanners
and ICP to build maps of these types of environments and
estimate robot trajectory (Rogers et al., 2014). The environment
for these experiments consists of multiple concrete buildings and
a street arranged and staged as a cluttered village marketplace
(Figure 10).

Ten AprilTags (Olson, 2011) were placed throughout the
environment to represent targets and AprilTag detection was run
on the video stream from the robot. Interactions were performed
by a researcher for control; in future work we will explore the
broader interaction space with user studies. 12 tours each for
baseline (0 interactions), 1, and 2 interactions, were conducted
for 36 surveillance tours total. One set was aborted during the n =

1 interactions run when the robot failed leaving 35 completed
tours in our results set.

Tours were confined to within a 20m radius of themarketplace
center. A distance budget B = 150m and λ = 35 was
used. A route was generated after each interaction step (initially
no interaction), and the robot used a kinematically feasible
motion planner to navigate autonomously. Tour generation took
approximately 5–15 s on a computer with an Intel Core i7
2.90GHz Quad Core mobile processor.

6.2.2. Results

An illustrative example of the shaping of the surveillance tour
on a real robot is provided in Figure 11, showing zero, one,
and two interactions. As can be seen, the path in Figure 11A is
shorter than in Figures 11B,C, in which the planner plans tours
of increasing length as the opportunity for reward increases. This
is a result of the λ trade-off parameter on cost-effect.

To determine the ability to perform within constraints,
physical distance traveled and unique target detections were
calculated for each tour; results are shown in Figure 12. As
a result of both the stochastic nature of our route planning
algorithm (Algorithm 2) and kinematic plan execution in a real
world environment, there is a high degree of variability in the
executed path length. Despite this, our trade-off parameter λ

ensured that 94% of the planned paths when executed stayed
within the budget B (Figure 12B), Variability in the orientations
achieved by the kinematic motion planner added noise to
the target detection; however, we still achieved a statistically
significant (p < 0.05) increase in the mean number of target
detections between 1 and 2 interactions (Figure 12A).We believe
both of these real-world issues can be addressed in future work.

7. CONCLUSION

To address the fundamental problem in shared autonomy of
efficient problem specification from a human to an autonomous
system, we have presented a paradigm, Interactive Shared
Solution Shaping (IS3). To examine the general hypothesis
that the interaction process can be optimized so that with
minimal interactions we can achieve near-optimal results, we
have presented results from three different formulations of the
IS3 paradigm to three scenarios within the autonomous route
planning problem domain.

First, we have shown that the IS3 approach applied to
autonomous route planning is able to improve target detection
performance and decrease variance. Second, we then build
upon this fundamental finding by introducing a formulation
to address real-world scenarios where the total end-to-end
cost of the system’s execution, including interaction, must be
accounted for. By incorporating interaction and replanning
time we identify the existence of an optimal number of
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FIGURE 11 | Example illustrative results showing surveillance tour shaping on a real robot in the Constraint Maintenance in Field Robotics Application experiments in

section 6.2. Results are visualized in RViz: occupancy grid background is overlayed with generated paths; top left is a video overlay of live robot camera view. (A)

shows a surveillance tour generated with zero interactions. (B,C) show one and two interactions (illustrated by the red areas). Inset images are live video streams on

which AprilTag target detection is performed.

FIGURE 12 | Results from Constraint Maintenance in Field Robotics Application experiments (Section 6.2) showing (A) target detections out of 10 possible targets

and (B) distance traveled and budget.

interactions vs. performance in an end-to-end system. We
believe future work could seek to both derive and optimize
over this utility function. Finally, we show how our system
applies to a real robotic application. We introduce a trade-
off parameter to balance cost against reward and better
maintain constraints, and implement our approach on a
robot in a real-world setting and show that our approach
not only works but is able to perform within budget
constraints.

Collectively, the work presented here exhibits the concept of
interactive shaping of a solution space between a human and an

autonomous system. We believe the scenarios illustrate specific
instances of a broader concept that could apply to many other
complex application domains where a human has information
that could improve the performance of an autonomous agent but
which cannot be fully specified. We plan to examine this concept
further with large-scale user studies in future work.

AUTHOR CONTRIBUTIONS

All authors contributed to the theoretical approach presented. In
addition, JF and CR contributed to the experimental validation.

REFERENCES

Alonso-Mora, J., Lohaus, S. H., Leemann, P., Siegwart, R., and Beardsley, P. (2015).

“Gesture based human-multi-robot swarm interaction and its application to

an interactive display,” in IEEE International Conference on Robotics and

Automation (Seattle, WA), 5948–5953.

Arora, S., and Scherer, S. (2016). Rapidly exploring random orienteering. Available

online at: http://www.frc.ri.cmu.edu/?sankalp/publications/rro.pdf

Blum, A., Chawla, S., Karger, D. R., Lane, T., Meyerson, A., and Minkoff, M.

(2007). Approximation Algorithms for Orienteering and Discounted-Reward

TSP. SIAM J. Comput. 37, 653–670. doi: 10.1137/050645464

Charrow, B., Liu, S., Kumar, V., and Michael, N. (2015a). “Information-theoretic

mapping using Cauchy-Schwarz quadratic mutual information,” in IEEE

International Conference on Robotics and Automation (Seattle, WA).

Charrow, B., Michael, N., and Kumar, V. (2015b). “Active control strategies for

discovering and localizing devices with range-only sensors,” in Algorithmic

Foundations of Robotics XI, eds H. Levent Akin, N. M. Amato, V. Isler, and A.

Frank van der Stappen (Switzerland: Springer International Publishing), 55–71.

Crossman, J., Marinier, R., and Olson, E. B. (2012). “A hands-off, multi-

robot display for communicating situation awareness to operators,” in IEEE

International Conference on Collaboration Technologies and Systems (Denver,

CO), 109–116.

Frontiers in Neurorobotics | www.frontiersin.org 12 September 2018 | Volume 12 | Article 54

http://www.frc.ri.cmu.edu/?sankalp/publications/rro.pdf
https://doi.org/10.1137/050645464
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Reardon et al. Shaping of Shared Autonomous Solutions

Dames, P., Tokekar, P., and Kumar, V. (2015). “Detecting, localizing, and tracking

an unknown number of moving targets using a team of mobile robots,” in

International Symposium of Robotics Research (Genova).

Dawson, S., Crawford, C., Dillon, E., and Anderson, M. (2015). “Affecting operator

trust in intelligent multirobot surveillance systems,” in IEEE International

Conference on Robotics and Automation (Seattle, WA), 3298–3304.

Gregory, J., Fink, J., Stump, E., Twigg, J., Rogers, J., Baran, D., et al. (2016).

“Application of multi-robot systems to disaster-relief scenarios with limited

communication,” in Field and Service Robotics, eds D. S. Wettergreen and T.

D. Barfoot (Switzerland: Springer), 639–653.

Judah, K., Fern, A. P., Tadepalli, P., and Goetschalckx, R. (2014). “Imitation

learning with demonstrations and shaping rewards,” in AAAI (Quebec).

Julian, B. J., Karaman, S., and Rus, D. (2013). “On mutual information-based

control of range sensing robots formapping applications,” in IEEE International

Conference on Intelligent Robots and Systems (Tokyo).

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars, M. H. (1996).

Probabilistic roadmaps for path planning in high-dimensional configuration

spaces. IEEE Trans. Robot. Autom. 12, 566–580. doi: 10.1109/70.508439

Kollar, T., and Roy, N. (2008). “Efficient optimization of information-

theoretic exploration in SLAM,” in AAAI Conference on Artificial Intelligence

(Chicago, IL).

Laporte, G., and Martello, S. (1990). The selective travelling salesman problem.

Disc. Appl. Math. 26, 193–207. doi: 10.1016/0166-218X(90)90100-Q

Lin, L., and Goodrich, M. A. (2010). A Bayesian approach to modeling lost person

behaviors based on terrain features in wilderness search and rescue. Comput.

Math. Organ. Theory 16, 300–323. doi: 10.1007/s10588-010-9066-2

Olson, E. (2011). “AprilTag: a robust and flexible visual fiducial system,” in

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA) (Seattle, WA: IEEE), 3400–3407.

Raza, S. A., Johnston, B., and Williams, M.-A. (2015). “Reward from

demonstration in interactive reinforcement learning,” in International Florida

Artificial Intelligence Research Society Conference (Seattle, WA).

Reardon, C., and Fink, J. (2017). “Towards joint human-robot solutions to

surveillance problems,” in International Florida Artificial Intelligence Research

Society Conference (Marco Island, FL).

Reardon, C., Han, F., Zhang, H., and Fink, J. (2017). “Optimizing autonomous

surveillance route solutions from minimal human-robot interaction,” in

IEEE International Symposium on Safety, Security, and Rescue Robotics

(Shanghai).

Rogers, J. G., Fink, J. R., and Stump, E. A. (2014). “Mapping with a ground robot

in gps denied and degraded environments,” in American Control Conference

(ACC) (IEEE), 1880–1885.

Schoning, T. (1999). “A probabilistic algorithm for k-sat and constraint satisfaction

problems,” in 40th Annual Symposium on Foundations of Computer Science,

1999 (IEEE), 410–414.

Tokekar, P., Vander Hook, J., Mulla, D., and Isler, V. (2016). Sensor

planning for a symbiotic UAV and UGV system for precision

agriculture. IEEE Trans. Robot. 32, 1498–1511. doi: 10.1109/TRO.2016.26

03528

Vansteenwegen, P., Souffriau, W., and Van Oudheusden, D. (2011).

The orienteering problem: a survey. Eur. J. Operat. Res. 209, 1–10.

doi: 10.1016/j.ejor.2010.03.045

Yi, D., Goodrich, M. A., and Seppi, K. D. (2014). “Informative path planning with a

human path constraint,” in IEEE International Conference on Systems, Man and

Cybernetics (San Diego, CA).

Yu, J., Schwager, M., and Rus, D. (2014). “Correlated orienteering problem and

its application to informative path planning for persistent monitoring tasks,” in

IROS (Chicago, IL).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Reardon, Zhang and Fink. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 13 September 2018 | Volume 12 | Article 54

https://doi.org/10.1109/70.508439
https://doi.org/10.1016/0166-218X(90)90100-Q
https://doi.org/10.1007/s10588-010-9066-2
https://doi.org/10.1109/TRO.2016.2603528
https://doi.org/10.1016/j.ejor.2010.03.045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Shaping of Shared Autonomous Solutions With Minimal Interaction
	1. Introduction
	2. Related Work
	3. Problem Formulation and Approach
	4. Performance in Resource-Constrained Tour Generation
	4.1. Approach
	4.2. Experiments
	4.2.1. Setup
	4.2.2. Results


	5. Optimizing Interaction as Part of Cost
	5.1. Approach
	5.2. Experiments
	5.2.1. Setup
	5.2.2. Results


	6. Constraint Maintenance in Field Robotics Application
	6.1. Approach
	6.2. Experiments
	6.2.1. Setup
	6.2.2. Results


	7. Conclusion
	Author Contributions
	References


