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Decision-making is a crucial cognitive function for various animal species surviving

in nature, and it is also a fundamental ability for intelligent agents. To make a

step forward in the understanding of the computational mechanism of human-like

decision-making, this paper proposes a brain-inspired decision-making spiking neural

network (BDM-SNN) and applies it to decision-making tasks on intelligent agents. This

paper makes the following contributions: (1) A spiking neural network (SNN) is used

to model human decision-making neural circuit from both connectome and functional

perspectives. (2) The proposed model combines dopamine and spike-timing-dependent

plasticity (STDP) mechanisms to modulate the network learning process, which indicates

more biological inspiration. (3) The model considers the effects of interactions among

sub-areas in PFC on accelerating the learning process. (4) The proposed model can

be easily applied to decision-making tasks in intelligent agents, such as an unmanned

aerial vehicle (UAV) flying through a window and a UAV avoiding an obstacle. The

experimental results support the effectiveness of the model. Compared with traditional

reinforcement learning and existing biologically inspired methods, our method contains

more biologically-inspired mechanistic principles, has greater accuracy and is faster.

Keywords: spiking neural network, brain-inspired decision-making, dopamine regulation, multiple brain areas

coordination, reinforcement learning, UAV autonomous learning

1. INTRODUCTION

Brain-inspired neural networks investigate on the nature of intelligence from computational
perspective and provide new opportunities to achieve the goal of human-like intelligence. The
motivation of this paper is to build a brain-inspired cognitive computational model based on brain
connectome and decision-making mechanism and apply it to decision-making tasks for intelligent
agents.

According to recent advancement of Neuroscience research, multiple brain areas are involved
and they coordinate with each other to realize brain decision-making. Every brain area plays a
unique role in decision-making, and each of them complement with each other for accomplishing
a decision-making task. The basal ganglia (BG) plays a central role in action selection and
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reinforcement learning (Mink and Thach, 1993; Mink, 1996;
Redgrave et al., 1999). The BG contains a set of subcortical
nuclei located in the midbrain, around the thalamus. The major
nuclei of BG contains striatum, internal globus pallidus (GPi),
subthalamic nucleus (STN), external globus pallidus (GPe),
substantia nigra pars reticulata (SNr), substantia nigra pars
compacta (SNc) and ventral tegmental area (VTA) (Alexander
and Crutcher, 1990; Lanciego et al., 2012).

A large number of computational models of information
processing in the BG have been developed in recent years.
Kenji Doya et al. investigated detailed biological mechanisms
of reinforcement learning and related computational modeling
(Daw and Doya, 2006; Doya, 2007). Joel et al. showed the
similarity between ventral striatum and critic function, as well
as the similarity between dorsal striatum and actor function
(Joel et al., 2002). To describe the real-world environment, a
continuous time Actor-Critic model has been proposed. This
method simulated the continuous temporal difference (TD)
learning by using spiking neurons (Frémaux et al., 2013).
However, the gradient descent method they used to update
weights in learning process is different from the biological brain
learning mechanism.

Current experimental evidence indicates that the decision-
making mechanism contains direct pathway, indirect pathway
and hyperdirect pathway. The detailed operational mechanism
of BG is currently believed to be as follows. Activity in the direct
pathway sends a “Go” signal to facilitate the response to a specific
action, whereas activity in the indirect pathway sends a “No
Go” signal to suppress a specific action. Striatum contains two
subclasses cells: “Go” cell and “No Go” cell. The “Go” cell directly
inhibits GPi, and has the disinhibition effect on thalamus, thus
facilitating the response to a specific action. The “No Go” cell on
the indirect pathway firstly inhibits GPe, then GPe inhibits GPi.
Thus, “No Go” cell has the opposing effect on GPi, suppressing
the response to the action in thalamus. The hyperdirect pathway
from STN directly excites GPi (Alexander et al., 1986; Alexander
and Crutcher, 1990; Percheron and Filion, 1991).

The dopamine (DA) from SNc/VTA modulates the activity
of direct and indirect pathways by activating different receptors.
The “Go” cell expresses the D1 receptor, and we call it StrD1.
The “No Go” cell expresses the D2 receptor, and we call it
StrD2. The DA regulation plays an important role in decision-
making. When the executed action is correct, the increase
in DA lead to enhancing the activity in direct pathway, and
simultaneously suppressing indirect pathway.When the executed
action is incorrect, depletion of DA has the opposite effect,
enhancing the indirect pathway and suppressing the direct
pathway (Geffen, 2000; Silkis, 2000). Frank et al. modeled the
direct pathway and indirect pathway in brain decision-making
with DA regulation in their model (Frank, 2005). This work only
focused on the interactions among brain areas in BG, while lack
of considerations on other associated important brain areas, such
as STN on the hyperdirect pathway and cortical areas.

Inspirations only from basal ganglia system may not be
enough, since coordinations with wider areas of the cortex
(Alexander et al., 1986) and thalamus are missing (Silkis, 2000;
Utter and Basso, 2008). In addition, with the current efforts,

generation of appropriate action selection may be too slow to
be applied to complex decision making tasks in natural scene
for intelligent systems. Frank et al. considered the bias top-down
control from orbitofrontal cortex (OFC) to BG. OFC represents
both positive and negative reward by two separate sub-areas,
medial OFC (MOFC) and lateral OFC (LOFC) (Elliott et al., 2000;
O’Doherty et al., 2001). OFC also has a bias effect on BG by
maintaining contextual reward in working memory (Tremblay
and Schultz, 1999). Inspired by this mechanism, a relative reward
method has been proposed in Zhao et al. (2017). However, these
works are just the mathematical computational model without
the support of biological realistic spiking neurons and spiking
neural networks (SNN).

Although SNN has been adopted for modeling decision-
making circuit in recent years (Stewart et al., 2010; Gurney et al.,
2015), they are generally considered to get inspirations from the
brain at relatively coarser scales. Stewart et al. (2010) used SNN
to simulate the BG decision-making circuit, while it did not take
Spike-timing-dependent plasticity (STDP) mechanism and the
function of OFC into consideration. Gurney et al. proposed an
SNN model with STDP mechanism to simulate the BG decision-
making circuit (Gurney et al., 2015). However, this work also did
not consider the effect of OFC.

In this paper, we propose a brain-inspired decision-making
spiking neural network (BDM-SNN) model with a focus
on the inspirations of brain decision-making circuits and
mechanisms. This paper makes the following contributions:
(1) We use SNN to model human decision-making neural
circuit and mechanism. (2) We combine DA regulation
with STDP mechanism to modulate the learning process of
the network. (3) We consider the effect of OFC on the
representation of positive and negative feedback. (4) We apply
the proposed model to the unmanned aerial vehicles (UAV)
autonomous decision-making tasks, including the UAV flying
through a window task and the UAV obstacle avoidance
task.

2. MATERIALS AND METHODS

2.1. The Neuroanatomy of Brain
Decision-Making Circuit
The detailed cortico-basal ganglia-thalamo-cortical loop is
depicted in Figure 1. The acronyms and full names of brain
areas on the cortico-basal ganglia-thalamo-cortical loop are
listed in Table 1. Here, prefrontal cortex (PFC) is the input of
BG, and the BG projects to thalamus, then thalamus outputs
action to premotor cortex (PM). This circuit includes direct,
indirect and hyperdirect pathways of the BG. The direct pathway
is: PFC excites StrD1, then StrD1 directly inhibits GPi (PFC-
StrD1-GPi). The indirect pathway is: PFC excites StrD2, then
StrD2 has a disinhibition effect on GPi through the inhibitory
intermediate, GPe. The hyperdirect pathway is: PFC excites STN,
then STN excites GPe and GPi. Direct pathway, indirect pathway
and hyperdirect pathway are converged into GPi to output an
inhibitory effect on thalamus. Thalamus outputs excitatory bias
response to PM after combining the excitatory input from PFC

Frontiers in Neurorobotics | www.frontiersin.org 2 September 2018 | Volume 12 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhao et al. Brain-Inspired Decision-Making Model

FIGURE 1 | The cortico-basal ganglia-thalamo-cortical loop in human brain.

The brain areas on the circuit contain: prefrontal cortex (PFC), OFC, premotor

cortex (PM), thalamus, striatum (StrD1 and StrD2), GPi, STN, GPe, SNr, SNc,

VTA. The orange brain areas represent sub-areas of BG. The blue lines

represent excitatory connections, the red ones represent inhibitory

connections, the orange ones represent modulatory connections.

TABLE 1 | The acronyms and full names of brain areas on the cortico-basal

ganglia-thalamo-cortical loop.

Acronyms Full name

BG basal ganglia

GPi internal globus pallidus

STN subthalamic nucleus

GPe external globus pallidus

SNr substantia nigra pars reticulata

SNc substantia nigra pars compacta

VTA ventral tegmental area

DA dopamine

PFC prefrontal cortex

OFC orbitofrontal cortex

MOFC medial orbitofrontal cortex

LOFC lateral orbitofrontal cortex

DLPFC dorsolateral prefrontal cortex

PM premotor cortex

and the inhibitory input from GPi (Albin et al., 1989; Silkis, 2000;
Lanciego et al., 2012).

DA plays an important role in the learning process of decision-
making. The detailed learning mechanism is as the following: low
and high DA respectively promote long-term depression (LTD)
and long-term potentiation (LTP) on cortico-striatal synapses
(Kerr and Wickens, 2001). Increased levels of DA promote LTP
on StrD1 cells and LTD on StrD2 cells. Decreased levels of DA
promote LTP on StrD2 cells and LTD on StrD1 cells (Shen et al.,
2008). Direct pathway inhibits GPi, and thus has a disinhibition
effect on thalamus, then sends a “Go” signal to PM. Indirect
pathway disinhibits GPi, and thus has an inhibitory effect on
thalamus, then sends a “No Go” signal to PM. Thus, increases

in DA during positive feedback lead to reinforcing the selected
response by facilitating the activity of StrD1 and suppressing
the activity of StrD2. On the contrary, decreases in DA result
in facilitating the activity of StrD2 and suppressing the activity
of StrD1. By this way, the tendency of choosing this action will
be weakened. To sum up, direct pathway sends a “Go” signal
to facilitate a given response. Indirect pathway, with opposite
effect on the thalamus, sends a “No Go” signal to suppress the
response (Shen et al., 2008; Freeze et al., 2013). DA regulation can
effectively enlarge the difference between two competitive direct
pathway and indirect pathway, and is helpful for clear action

selection.
The connections and functions of different brain areas for

decision-making are as follows:

• PFC. PFC is important for quick decision-making. Firstly,
PFC, which represents the environment information, is
the input of BG. PFC also provides excitatory inputs to

thalamus and PM (Rose and Woolsey, 1948). Secondly, PFC
is considered to maintain contextual reward information in
workingmemory, and it has a top-down bias effect on behavior
selection process in BG (Riceberg and Shapiro, 2012). Thirdly,

the sub-area of PFC, OFC, represents reinforcement values.
The OFC represents both positive and negative reward in two
separate sub-areas: MOFC and LOFC. Studies in O’Doherty
et al. (2001) and Kringelbach (2005) showed that the MOFC

tends to respond to positive reward of reinforcement values,
whereas the LOFC is more active when representing negative
rewards. Fourthly, dorsolateral prefrontal cortex (DLPFC) of

PFC is responsible for representing state information (Barbey
et al., 2013).
• Striatum. Striatum receives direct input from cortical areas

such as PFC and PM. DA regulation focuses on the
connections between PFC and striatum. The striatum has

two types of DA receptors, D1 and D2. The StrD1 cells
enhance the response of inputs, while the StrD2 cells have the
contrary effect (Geffen, 2000). StrD1 and StrD2 are related to
direct pathway and indirect pathway, respectively. The StrD1

projects directly to the GPi, and the StrD2 indirectly projects
to GPi through the intermediate, GPe (Alexander et al., 1986;
Alexander and Crutcher, 1990).
• STN. STN is the only area that elicits excitatory glutamatergic

neurotransmitter in BG. STN receives excitatory input from
PFC, and has excitatory connections with GPe and GPi. It
also receives the inhibitory projection from GPe (Plenz and
Kital, 1999). The time difference between direct and indirect
pathway affects the decision-making process. The hyperdirect
pathway from PFC to STN, then to GPe and GPi helps this
process (Simon et al., 2013). STN plays important role in
preventing making decision too fast.
• GPe. GPe receives inhibitory projection from the StrD2, and

excitatory projection from STN. It has inhibitory connections
with STN and GPi (Redgrave et al., 2010). GPe is the
intermediate on the indirect pathway.
• GPi/SNr. GPi/SNr is the output nuclei of BG. It receives

inhibitory input from StrD1, GPe, and excitatory input
from STN. GPi provides inhibitory output to thalamus after
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combining the signals from direct pathway, indirect pathway
and hyperdirect pathway (Redgrave et al., 2010).
• SNc/VTA. SNc/VTA is useful to elicit DA. Experiments show

that DA could perform different functions, such as saliency
sensitivity, reward sensitivity and punishment sensitivity
(Schultz et al., 1993; Ethan et al., 2010). Due to the connections
from SNc/VTA to OFC (Haber and Knutson, 2010), reward-
related DA activates MOFC and punishment-related DA
activates LOFC. DA is also used to modulate the connection
weights between DLPFC and striatum (Nishi et al., 2011).
• Thalamus. Thalamus receives the inhibitory projection from

GPi/SNr and excitatory input from PFC. It projects to PM after
combining the BG signal and PFC signal (Silkis, 2000).
• PM. PM receives excitatory input from PFC and thalamus. It

is useful to execute behaviors and provide feedbacks on the
behavior information to striatum.

2.2. Network Architecture
This subsection introduces the architecture of the brain-inspired
decision-making spiking neural network (BDM-SNN) model.
Inspired by the decision-making circuits in human brain,
our method simulates the connections and functions among
these brain areas. The network architecture is depicted in
Figure 2. The BDM-SNN model contains 11 modules which
are corresponding to the key brain areas on the cortico-basal
ganglia-thalamo-cortical loop. Themodules of BDM-SNNmodel
contain MOFC, LOFC, DLPFC, PM, SNc/VTA, StrD1, StrD2,
STN, GPe, SNr/GPi, and thalamus. The StrD1 and StrD2 are
corresponding to the “Go” and “No Go” cells in striatum. Other
modules are corresponding to the functions of their brain area
on cortico-basal ganglia-thalamo-cortical loop. The excitatory
and inhibitory connections among different modules are inspired
by the connections on the cortico-basal ganglia-thalamo-cortical
loop. The DA regulates the connections between DLPFC and
striatum, as shown as the green DA modulatory connections in
Figure 2.

In this study, the numbers of neurons in different brain areas
are defined according to their functions. For a decision-making
task, we should predefine the possible state and action space.
Suppose the number of state is Ns, and the number of action
is Na. The state information as the input is first transmitted to
DLPFC, thus the number of neurons in DLPFC is Ns. PM is
responsible for executing action, thus it has Na neurons. The
state and action information from DLPFC and PM is transmitted
to striatum (StrD1 and StrD2), thus the numbers of neurons in
StrD1 and StrD2 are equal to Ns ∗ Na. The GPi is the output area
of BG and is responsible for action selection, thus the number
of neurons in GPi is Na. Thalamus receives the projection from
GPi and transmits action to PM, thus the number of neurons in
thalamus is Na. GPe is the intermediate on the indirect pathway,
thus the number of neurons in GPe is Na. MOFC responds to the
positive feedback, and LOFC responds to negative feedback, thus
the numbers of neurons in MOFC and LOFC are 1, respectively.
SNc/VTA is the input of MOFC and LOFC, thus we assign two
neurons for SNc/VTA with one related to positive feedback and
another one related to negative feedback. The STN is the brain
area on hyperdirect pathway, and we assign two neurons for

FIGURE 2 | The network architecture of the BDM-SNN model. The orange

brain areas represent sub-areas of BG. The green brain areas represent

sub-areas of PFC. The blue lines represent excitatory connections, while the

red ones represent inhibitory connections. The green connections represent

DA modulatory connections.

it. The number of neurons in different brain areas are listed in
Table 2.

The ways of connections among different areas are based on
their functions and are listed in Table 3. Here, full connection
means all-to-all connection. Specific connection means the
connection between specific state or action and specific state-
action pair. The state and executed action from DLPFC and PM
are transmitted to StrD1 and StrD2. StrD1, and StrD2 display
all the state-action pairs. As a result, specific connection means
the connection from specific state (DLPFC) and action (PM) to
state-action pair (StrD1 and StrD2). Two neurons in SNc/VTA
are corresponding to positive and negative feedback, respectively.
The positive one (reward-related DA) is connected to MOFC,
and the negative one (punishment-related DA) is connected to
LOFC. Here, the PM selects action on the basis of a competitive
winner-takes-all (WTA) process. This is implemented via lateral
inhibition among PM neurons.

2.3. Network Implementation
This subsection introduces the concrete design and
implementation of the BDM-SNN model. SNN is considered as
the third generation of Artificial Neural Networks (Maass, 1997).
It encodes the information in spike trains instead of spike rates
as in the conventional Artificial Neural Networks (Hopfield,
1995). SNN is highly inspired by the synaptic interactions
between neurons in the brain, and it takes into account the
time factor of spike firing. The biological neuron model and the
synaptic plasticity model are more biologically plausible, and
more computationally powerful than other alternative networks
(Maass, 1999; Bohte, 2004; Paugam-Moisy and Bohte, 2012). In
this paper, we use SNN to model brain decision-making circuit.
In this model, every neuron in DLPFC represents one state.
The visual input is firstly preprocessed and assigned to a state.
Then the corresponding neuron in DLPFC receives a constant
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TABLE 2 | The number of neurons in different brain areas.

Brain areas DLPFC PM Thalamus StrD1 StrD2 Gpi Gpe STN VTA MOFC LOFC

number Ns Na Na Ns ∗ Na Ns ∗ Na Na Na 2 2 1 1

Ns represents the number of state space, and Na represents the number of action space.

TABLE 3 | The type of connections among different areas.

Connection The type of connection

DLPFC-PM full connection

DLPFC-StrD1 specific connection

DLPFC-StrD2 specific connection

PM-StrD1 specific connection

PM-StrD2 specific connection

StrD1-SNr/GPi specific connection

StrD2-Gpe specific connection

Gpe-SNr/Gpi one-to-one connection

DLPFC-STN full connection

STN-Gpe full connection

STN-SNr/Gpi full connection

Gpe-STN full connection

SNc/VTA-MOFC one neuron connects to MOFC

SNc/VTA-LOFC the other one neuron connects to LOFC

MOFC-StrD1 full connection

MOFC-StrD2 full connection

LOFC-StrD1 full connection

LOFC-StrD2 full connection

SNr/Gpi-thalamus one-to-one connection

DLPFC-thalamus full connection

thalamus-PM one-to-one connection

PM-PM lateral inhibition

Here, full connection means all-to-all connection. Specific connection means the

connection between specific state or action and specific state-action pair.

input to excite this neuron. The action generated by this model
is based on the first spiking neuron in PM area. Every action is
corresponding to a neuron in PM. Then the first spiking action
wins the competition and is executed. Delay coding method is
used in this model where a stronger stimulus makes neurons
fire earlier than weaker ones. The neuron model and synaptic
plasticity model are as follows.

1. Neuron Model. To make a balance on the biologically
realistic consideration and computational efficiency, the
Izhikevich neuron model is applied in our model to build
the brain-inspired SNN. It has more ionic dynamics than
leaky integrate-and-fire (LIF) (Abbott, 1999) model, and
computationally effective than the HodgkinHuxley model
(Hodgkin and Huxley, 1952). Izhikevich introduced a neuron
model that is capable of producing many patterns of biological
neurons, which is as biologically plausible as the Hodgkin-
Huxley model, yet as computationally efficient as the integrate
and-fire model (Izhikevich, 2003). The neuron model is shown

in Equations 1–4, where v represents the membrane potential
of the spiking neuron, and u represents a membrane recovery
variable. a, b, c, d are parameters to control the type of spiking
dynamics. I is input. Each neuron receives weighted input from
presynaptic neuron as Equation 3 calculated. wji is the strength
of the connection from the jth neuron to the ith neuron. oj is
the output of the presynaptic neuron: 1 if vj ≥ 30 mV , and 0
otherwise. When the membrane potential v exceeds its peak of
30 mV, an action potential (spike) occurs, and the membrane
potential is reset to its initial value, c, and the recovery variable
is incremented by d. Izhikevich neuron model could be mainly
classified into two categories: (1) Excitatory neurons: Regular
Spiking (RS), Intrinsically Bursting (IB) and Chattering (CH).
(2) Inhibitory neuron: Low-Threshold Spiking (LTS) and Fast
Spiking (FS). The different neuron models correspond to
different values of the parameters a, b, c, d. In this paper, we
use RS neuron because it “fire a few spikes with short interspike
period and then the period increases” (Izhikevich, 2003). The
parameters of RS are: a = 0.02, b = 0.2, c = −65, d = 8.

v′ = 0.04v2 + 5v+ 140− u+ I (1)

u′ = a
(

bv− u
)

(2)

Ii =

N
∑

j=1

wjioj (3)

if v ≥ 30mV , then

{

v← c
u← u+ d

(4)

2. Synaptic Plasticity. Spike Timing Dependent Plasticity
(STDP) is one of the most important learning principle for the
biological brain. STDP postulates that the strength of the synapse
is dependent on the spike timing difference of the pre- and
post-neuron (Gerstner et al., 1996; Bell et al., 1997; Bi and Poo,
1998; Poo, 2008). Here we use STDP to learn synaptic weights
according to the relative time between spikes of presynaptic and
postsynaptic neurons. The modulation principle is that if the
postsynaptic neuron fires a few milliseconds after the presynaptic
neuron, connection between the neurons will be strengthened,
otherwise, the connection will be weakened (Nishiyama et al.,
2000; Wittenberg and Wang, 2006). The update function is
shown in Equation 5, where A+ and A− are learning rates. τ−
and τ+ are time constant, and 1ti is the delay time from the
presynaptic spike to the postsynaptic spike. Here, A+ = 0.925,
A− = 0.9, τ− = τ+ = 20.

1wj =

{

A+e
(1ti/τ+) 1ti < 0

−A−e
(−1ti/τ−) 1ti > 0

(5)
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2.4. Decision Making Mechanisms
2.4.1. Continuous DA Regulation
The reward signal is encoded in the activity of midbrain DA
neurons. With rewards, neurons in SNc/VTA generate bursting
activities (Mirenowicz and Schultz, 1996; Schultz, 2000). In
human brain, DA reward signals are continuously elicited at
every moment. We use continuous reward function for every
discrete state to emulate continuous DA signals at abstract level
(Zhao et al., 2017). By this way, the reward is different at different
moment even if in the same state. The reward function at time
t is calculated by Equation 6. Here, we note that the rt is not
the final result of the actual reward, but an evaluation of current
state at time t. The Eva (st) is a continuous function which is
changed along with time. For every state, Rb (st) represents the
basic reward value of current state. If the current state and the
next state are the same, the Rb (st) will not be changed. Then
Eva (st) is useful to deal with this condition, since it is changed
at every moment.

rt = Rb (st)+ αEva (st) (6)

where Rb (st) represents the basic reward value of current state,
and Eva (st) represents the evaluation reward of current moment,
α is the scale factor.

Since the evaluation standards of different states are highly
relevant to tasks, the reward function needs to be appropriately
predefined for different tasks. For the UAV flying through a
window task, the states are divided into 14 groups, as shown
in Figure 3. The state division is based on the relative position
between the UAV and the window. The aim of classifying states
is to set some distinguishable states in advance, which contain all
the conditions the UAV might observe. The classification results
vary with each individual. Then all the 14 states are classified
into four categories in order to design the continuous reward
functions, respectively. The four categories contain: C1 = {s13},
C2 = {s2, s3, s4, s5, s6, s7, s8, s9}, C3 = {s1, s10, s11, s12}, C4 =

{s0}. Every category has its own basic reward Rb and evaluation
function Evaw (t). Here, we give Rb (C1) = −1, 000,Rb (C2) =

−600,Rb (C3) = −300,Rb (C4) = 1000. The continuous
Evaw (t) is the evaluation of current state at current time. Evaw (t)
keeps increasing when the UAV gets close to the center of the
window. At time t, the Evaw (t) is calculated by Equation 7.

Evaw (t) =



















winw+winh
Iw+Ih

st ∈ C2
−(|Gu−Gd|+|Gl−Gr |)

Iw+Ih
st ∈ C3

0 C1

1, 000 C4

(7)

where Iw is the width of the visual input of UAV, and Ih is the
height of the visual input of UAV. winw is the width of the
window in the image, and winh is the height of the window in
the image. Gu,Gd,Gl,Gr represent four distances (up, down, left,
right) between the borders of the windows and the borders of the
visual inputs, respectively.

FIGURE 3 | The states of the UAV flying through a window task. The visual

input is firstly preprocessed and assigned to state. Then the corresponding

neuron in DLPFC receives a constant input to excite this neuron.

2.4.2. Working Memory
In human brain, the PFC is involved in flexible and fast decision
making through maintaining contextual reward information in
working memory, and then uses this information to control
the behavior selection in the next trial. After executing an
action, reward information is rapidly encoded and maintained in
working memory, and the actual expected reward is calculated
by comparing with contextual reward in working memory
(Tremblay and Schultz, 1999; Riceberg and Shapiro, 2012).
Inspired by the expected reward estimation in PFC, the actual
reward rend is calculated by comparing the current reward rt
(which is maintained in working memory) with the next reward
rt+1. Here, the actual reward rend determines the value of
executed action, and is useful for network learning.

rend = rt+1 − rt (8)

where rt is the reward at time t, and rt+1 is the reward at time
t+1. Here, rt and rt+1 represent the evaluation of visual inputs at
time t and t+1, which are not the actual reward used for learning.

2.4.3. Combining DA Regulation With STDP
Phasic activity of DA neurons signals prediction error, and
is useful to dynamically modulate the behavior choice in BG
(Schultz et al., 1997; Schultz, 1998). It is suggested that positive
and negative feedback have opposing effects on DA release.
Positive feedback leads to phasic bursts of DA, while negative
feedback leads to phasic dips of DA (Schultz et al., 1993;
Schultz, 1998). Increased levels of DA activate the direct pathway
(synapses between DLPFC and StrD1) and suppress the indirect
pathway (synapses between DLPFC and StrD2) (Geffen, 2000).
Decreased levels of DA have the opposite effect, activate the
indirect pathway and suppress the direct pathway. The DA driven
plasticity involves the specific synapses between current state
neuron of DLPFC and current state-executed action pair neuron
in striatum.

In summary, after executing an action, the level of DA
increases when the environment provides a positive reward
feedback, and the level of DA decreases when environment
provides a negative reward feedback. The increased levels of DA
strengthen the weights between DLPFC and StrD1 and weaken
the weights between DLPFC and StrD2. The decreased levels
of DA strengthen the weights between DLPFC and StrD2 and
weaken the weights between DLPFC and StrD1. In this paper,
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the actual reward rend represents the feedback of environment
(prediction error), and rend > 0 represents the positive feedback
while rend ≤ 0 represents the negative feedback. Based on the
DA regulation mechanism, we simplify the DA concentration
by Equations 9, 10. The reason of having this kind of abstract
calculation of DA concentration is that the uniform modulatory
factor for synapses on direct and indirect pathways makes the
network controllable and stable.

DAD1 =

{

2 rend > 0
0.5 rend ≤ 0

(9)

DAD2 =

{

0.5 rend > 0
2 rend ≤ 0

(10)

where DAD1 is the DA concentration on StrD1, and DAD2 is the
DA concentration on StrD2.

Because DA is a type of neurotransmitter, it modulates the
synaptic weights by Equations 11 and 12:

WDLPFC−StrD1 =WDLPFC−StrD1 × DAD1 (11)

WDLPFC−StrD2 =WDLPFC−StrD2 × DAD2 (12)

here,WDLPFC−StrD1 represents synaptic weights between DLPFC
and StrD1, and WDLPFC−StrD2 represents synaptic weights
between DLPFC and StrD2.

By combining DA regulation and STDP, the difference
between two competing pathways (direct pathway and indirect
pathway) will be enlarged. Here we test the comparative effects
of only STDP and combining DA with STDP, as Figure 4

shown. Considering a synaptic connection from one presynaptic
neuron to one postsynaptic neuron, we provide a constant input
to presynaptic neuron. We test three conditions: only with

STDP, increased level of DA for direct pathway (DAD1 regulates
WDLPFC−StrD1), and increased level of DA for indirect pathway
(DAD2 regulates WDLPFC−StrD2). The reward is provided at the
time of blue dotted line in Figure 4B. The spikes of postsynaptic
neuron with DAD1 + STDP are similar to the spikes of StrD1.
The spikes of postsynaptic neuron withDAD2+STDP are similar
to the spikes of StrD2. Figure 4A indicates that the spikes of
postsynaptic neuronwithDAD1+STDP are denser than only with
STDP, and the spikes with DAD2 + STDP are sparser than only
with STDP. Figure 4B shows that the weight of DAD1 + STDP
is larger than only with STDP, and the weight of DAD2 + STDP
is smaller than only with STDP. Thus, the combination of DA
regulation and STDP could enlarge the difference between direct
pathway and indirect pathway.

STDP and DA regulation collectively contribute to the
learning process. The BDM-SNN model shows two effects by
combining STDP and DA regulation:

(1) Increases in DA lead to the activity of StrD1 followed
by the activity of DLPFC. Then, the weights between DLPFC
and StrD1 will be strengthened when the environment provides
positive reward feedback according to STDP mechanism.
Besides, the weights between DLPFC and StrD2 will be
strengthened when the environment provides negative reward
feedback. As a result, the effects of STDP and DA regulation are
coordinated to help quick decision-making.

(2) Although DA only acts on the connections between
DLPFC and striatum, it influences the whole network by
combining with STDP. When the level of DA increases, the
activity of StrD1 is facilitated and the activity of StrD2 is
suppressed. Due to the STDP mechanism, the connection
weights between MOFC and StrD1 will be strengthened, and the
connection weights between MOFC and StrD2 will be weakened.
As for LOFC, the connection weights between LOFC and StrD2
will be strengthened, and the connection weights between LOFC
and StrD1 will be weakened. By this way, when the environment
provides positive reward, the StrD1will be activatedmore quickly

FIGURE 4 | The effects of STDP, DAD1 + STDP and DAD2 + STDP. Considering a synaptic connection from one presynaptic neuron to one postsynaptic neuron, we

provide a constant input to presynaptic neuron. And we analyze the spikes of the neurons with STDP, DAD1 + STDP and DAD2 + STDP regulation. (A): The spikes of

presynaptic neuron and postsynaptic neuron by STDP, DAD1 + STDP and DAD2 + STDP regulation. (B): The change of weights between two neurons with STDP,

DAD1 + STDP and DAD2 + STDP regulation. The blue dotted line represents the time of obtaining reward. Here, DAD1 + STDP represents the effect of StrD1 when

obtaining reward, and DAD2 + STDP represents the effect of StrD2 when obtaining reward.
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due to the input from MOFC. When the environment provides
negative reward, the StrD2 will be activated more quickly due to
the input from LOFC.

2.5. Experimental Procedure
This subsection introduces the application of the BDM-SNN
model on the UAV decision-making tasks. All of the experiments
are conducted on the DJI MATRICE 100 UAV. A 2.4 GHz
wireless digital video camera (1/4 CCD) is used to acquire visual
inputs. Here we test two decision making experiments: the UAV
flying through a window task and the UAV obstacle avoidance
task. The basic procedure of theUAVdecision-making is depicted
in Figure 5. Action selection is based on the output of BDM-
SNN model. After the UAV executes an action, the environment
produce feedback reward and state to the BDM-SNN model.
State recognition module is used to classify states, and reward
acquisition module is used to obtain rewards. This cycle will be
circulated until the UAV reaches goal state and finishes the task.
The visual input is first preprocessed and assigned to state. Then
the corresponding neuron in DLPFC receives a constant input to
excite this neuron. For the UAV flying through a window task,
the state space and the reward function has been introduced in
section Continuous DA Regulation. The action space contains
four directions: ←, ↑, →, ↓, which means the UAV can fly
toward left, up, right and down. For obstacle avoidance task,
there are two states: obstacle situated in the left and the right
part of the UAV’s vision. The actions for the UAV obstacle
avoidance task contain flying toward left and right. The basic
reward Rb = –500. The evaluation function Evad (t) is shown in
Equation 13.

Evad (t) = max
(

width− x, x
)

(13)

where width represents the width of the visual input
of the UAV, and x represents the x-coordinate of
obstacle.

The detailed working procedure of the BDM-SNN model on
the UAV decision-making is shown in Algorithm 1.

FIGURE 5 | The basic procedure of the UAV decision-making. The state and

reward information is transmitted to the BDM-SNN model, and the output of

the model is the action. This figure shows the learning process, which will be

circulated until the UAV reaches goal state.

Algorithm 1The working procedure of the BDM-SNNmodel for
UAV decision-making.

Require: Initial state, initial time t = 1.
1: repeat

2: At state st , calculating reward rt ;
3: At state st , the BDM-SNNmodel outputs action at at time

t;
4: At state st+1, calculating reward rt+1;
5: Calculating actual reward rend;
6: Calculating DA concentration DAD1 and DAD2;
7: Using DA concentration to update the connection

weightsWDLPFC−StrD1 andWDLPFC−StrD2;
8: At state st+1, the BDM-SNN model outputs action at+1

at time t + 1;
9: t← t + 1;
10: until The UAV finishes the task;

3. RESULTS

3.1. The UAV Flying Through a Window
Task
3.1.1. Experimental Results
A key sequence of images during the decision making process
is shown in Figure 6. It is obvious that the UAV modulates its
movement toward the center of the window. When the UAV
encounters a state for the first time, it probably chooses an
incorrect action. Then the UAV optimizes the policy to weaken
the tendency of selecting this action in order to select the correct
action when encountering this state again. In every state, the UAV
can learn the correct policy within three trials. As long as the
UAV chooses the correct action, it will remember this action.
On the contrary, if the UAV chooses the incorrect action, it will
remember to avoid this action too.

3.1.2. Model Analysis
Although the experimental results on the UAV flying through
a window task are similar to the result in Zhao et al. (2017),
the methods they used are totally different. The method in
Zhao et al. (2017) is mathematical optimization of Actor-
Critic method. It is a brain inspired method by introducing
the top-down bias effect of OFC. The method introduced in
this paper uses the SNN to simulate the connections and
functions of brain areas on decision-making circuit. We consider
the collective contribution of three pathways (direct pathway,
indirect pathway and hyperdirect pathway), which is more brain-
like and biologically realistic. Now, we analyze the effectiveness of
the BDM-SNN model.

(1) The effectiveness of the BDM-SNN model. The key
learning process is the combination of DA regulation and STDP.
DA regulation focuses on the connective weights between the
DLPFC and the striatum. During the learning process, the
weights of DLPFC-StrD1, DLPFC-StrD2, DLPFC-PM have been
updated to learn the correct behaviors. After finishing the task,
the weights between every state-action pair have been learned and
optimized. Figure 7A shows the weights distribution between
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FIGURE 6 | The image sequence during the UAV flying through window. The red arrows represent incorrect actions, and the blue arrows represent correct actions.

FIGURE 7 | After the learning process, the weight distribution between DLPFC and StrD1 (A), DLPFC and StrD2 (B), DLPFC, and PM (C). X axis represents the state,

and y axis represents the action. The color in the rectangle of state-action pair represents the value of weight, and the closer the color is to yellow, the larger the

weight is.

DLPFC and StrD1. Figure 7B shows the weights distribution
between DLPFC and StrD2. Figure 7C shows the weights
distribution between DLPFC and PM. The color in the rectangle
of state-action pair represents the value of weight, and the
closer the color is to yellow, the larger the weight is. When
the UAV tries a correct action, the weights between DLPFC
and StrD1 will be strengthened, while the weights between
DLPFC and StrD2 will be weakened. By this way, the weights
between DLPFC and PM will be strengthened to choose this
action. When the UAV tries an incorrect action, the weights
between DLPFC and StrD1 will be weakened, while the weights
between DLPFC and StrD2 will be strengthened. Then the
weights between DLPFC and PM will be weakened. The weights
distributions in Figures 7A,C indicate that the weights between
specific state and correct action are larger than the weights
between specific state and incorrect action on the connections
of DLPFC-StrD1 and DLPFC-PM. Figure 7B indicates that the
weights between specific state and incorrect action are larger
than the weights between specific state and correct action on
the connections of DLPFC-StrD2. This is in line with prediction
because the effect of DLPFC-StrD2 is inhibiting the action
selection.

(2) Comparative evaluation. We compare the BDM-SNN
model with the PFC-BG model with the same initial state
(Zhao et al., 2017). The UAV is first situated in the upper-left,

upper-right, lower-left and lower-right corners of window, and
we conducted 15 experiments in every corner. The required
steps from initial position to goal state (window’s center)
are recorded, and the average and variance are depicted
in Figure 8. The results indicate that the BDM-SNN model
needs fewer steps to finish the task compared to the PFC-
BG model. The slight advantage is usually occurred when
the UAV moves from one state to another state. The reason
may be that the SNN model is dynamic and flexible to adapt
new state while the mathematical optimization is relatively not
that flexible. Because it has been indicated that Q-learning
and Actor-Critic methods could not finish the UAV flying
through a window task based on the discussion in Zhao et al.
(2017), our method is superior to Q-learning and Actor-Critic
methods.

3.2. The UAV Obstacle Avoidance Task
3.2.1. Experimental Results
The key sequence of images during the obstacle avoidance
process is shown in Figure 9. Firstly, the obstacle is situated in
the right of the UAV’s vision. After moving a step, the obstacle
is situated in the center of the UAV’s vision. This is an incorrect
action, and the UAV modifies the strategy and chooses leftwards
action. After moving left, the obstacle is situated in the right of
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the UAV’s vision. Then, the UAV learns this correct action and
continues moving left to avoid the obstacle.

3.2.2. Model Analysis
For the UAV obstacle avoidance task, the changes of firing rate
of some main brain areas including StrD1, StrD2, SNc/VTA,
Gpi, PM are depicted in Figure 10. Here, each firing rate is
subtracted a baseline. The X axis represents the decision-making
time line. At the first time, the UAV is situated in state 1. PM
randomly chooses action 1 in Figure 10F. Then the action is

FIGURE 8 | The required steps from different initial states to goal by the

PFC-BG model and the BDM-SNN model. The X axis represents the four initial

states. The red circles represent the average required steps of the PFC-BG

model. The blue squares represent the average required steps of the

BDM-SNN model. For each method, we conduct 15 experiments in every

initial state.

incorrect and SNc/VTA carries negative reward in Figure 10E.
It updates the connection weights between DLPFC and striatum.
The weights between DLPFC and StrD1 are weakened, and the
weights between DLPFC and StrD2 are strengthened. As a result,
at the next time, the firing rate of StrD1 is lower (Figure 10A),
while the firing rate of StrD2 is higher (Figure 10B). Then the
firing rate of action 1 is higher (Figure 10C), while the firing
rate of action 2 is lower (Figure 10D) in GPi. PM outputs
action 2 (Figure 10F) due to the inhibitory effect of GPi. After
choosing action 2, the level of SNc/VTA increases, and the StrD1
is strengthened while StrD2 is weakened. Thus, at the third time,
the firing rate of StrD1 is higher, while the firing rate of StrD2 is
lower, and PM continuously chooses action 2. When the state is
changed to a new state, state 2 (at the fifth time), PM randomly
chooses action 1. It is the correct action in state 2, thus SNc/VTA
is higher, and the firing rate of StrD1 is higher while the firing
rate of StrD2 is lower. Then PM continuously outputs action 1
to execute. These changes of firing rates in different brain areas
support the effectiveness of the BDM-SNN model.

4. DISCUSSION

This paper proposes a brain-inspired decision-making spiking
neural network (BDM-SNN) model which is inspired by the
decision-making circuit and mechanisms in human brain. It is
more biologically explainable from three perspectives: (1) The
model uses more brain-inspired SNN to simulate the connections
and functions of brain areas. (2) The model combines DA
regulation with STDP synaptic plasticity mechanism. (3) The
model considers the effects of sub-areas in PFC and this model
is relatively more comprehensive. To verify the effectiveness of
the model, we apply it to the UAV autonomous decision-making
tasks including the UAV flying through a window task and the
UAV obstacle avoidance task. Experimental results show that the
model can be easily applied to intelligent agent’s decision-making

FIGURE 9 | The sequence of images during the UAV obstacle avoidance process. The red arrow represents incorrect action, and the blue arrows represent correct

actions.
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FIGURE 10 | The change of firing rate for different brain areas [StrD1 (A), StrD2 (B), action 1 of GPi (C), action 2 of Gpi (D), SNc/VTA (E), PM (F)] during the learning

process. The X axis represents the time line of decision-making.

tasks. We also detect the change of firing rate in different brain
areas and the weights between some main brain areas. They
are consistent with the prediction. These results show that the
proposed BDM-SNN model could have a step forward toward
human-like decision-making. Themain contribution and novelty
of this paper is that we propose a BDM-SNN model with
more biological evidence, and we verify its applicability on the
UAV autonomous decision-making tasks. Now we discuss the
difference and similarity of our model with some brain-inspired
models and reinforcement learning method.

Firstly, we take a brief review about TD learning algorithm
(Sutton and Barto, 1998). TD learning algorithm uses experience
to optimize strategy. At time t, agent is situated in state St , and it
chooses an action At . Then the environment provides the next
state St+1 and reward Rt+1 at time t + 1 as feedbacks. In TD
learning, we estimate the value function of a state V (St). V (St)
is used to estimate how good it is for an agent to be in a given
state. Then the agent tries to optimize this V (St) in order to
achieve more reward. After executing an action, the V (St) will
be updated as Equation 14. Here δt is the TD error.

V (St)← V (St)+ αδt

δt =Rt+1 + γV (St+1)− V (St)
(14)

For the BDM-SNN model, DLPFC represents state and
DA regulates the weights between DLPFC and striatum. So
WDLPFC−StrD1 and WDLPFC−StrD2 are similar to the V (S) in TD
learning algorithm. It has been proved that DA is responsible
for carrying TD error (Hollerman and Schultz, 1998; Bayer and
Glimcher, 2005). In the BDM-SNNmodel, the DA concentration
is related to rend as Equations 9 and 10 shown. Based on the
definition of rend, we prove the similarity between rend and δt as
Equation 15 shown. Here, Rb (St) approximately estimates V (St)
because Rb (St) represents the basic value of state St . The actual
reward rend is calculated by relative reward rt+1 − rt :

rend =rt+1 − rt

= [Rb (St+1)+ αEva (St+1)]− [Rb (St)+ αEva (St)]

=α [Eva (St+1)− Eva (St)]+ Rb (St+1)− Rb (St)

≈Rt+1 + V (St+1)− V (St)

≈δt

(15)

The differences between the BDM-SNN model and TD learning
are as follows:

(1)We simplify the DA concentration as Equations 9 and
10 shown. We optimize the weight updating mechanism in
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TD learning (added by the TD error) by Equations 11 and 12
(multiplied by DA concentration). The reason is that DA is a kind
of neurotransmitter and the concentration is related to the degree
of synaptic transmission.

(2)The BDM-SNNmodel can explain the TD learningmethod
in reinforcement learning, and the model is more biological
inspired. The SNN is not the only way to implement the
decision-making but the more brain-inspired way to explore the
effectiveness of human-like model.

In our previous work (Zhao et al., 2017), the proposed
PFC-BG model mainly focuses on the PFC top-down biasing
effect on BG. It is a mathematical optimization on Actor-
Critic method with the inspiration of working memory and
continuous DA regulation. The BDM-SNN model in this paper
focuses on the simulation of brain decision-making circuit,
which is a dynamic learning process with spiking neurons.
Besides, on the UAV flying through a window task, the BDM-
SNN model needs fewer steps than the PFC-BG model, as
Figure 8 shown. In BDM-SNN model, the effects of MOFC
and LOFC are taken into consideration. The coordination of
DA and STDP strengthens the connections between MOFC
and StrD1, and the connections between LOFC and StrD2.
When agent receives positive reward, MOFC fires and facilitates
the activity of StrD1. By this way, the activity of MOFC can
facilitate the direct pathway. When agent receives negative
reward, activity of LOFC facilitates the indirect pathway by
strengthening the connections between LOFC and StrD2. To
sum up, MOFC and LOFC can enlarge the difference between
two competitive pathways and accelerate the decision-making
process.

There are also other neurocomputational models inspired by
decision-making mechanism in the brain. Frank et al. modeled
the direct pathway and indirect pathway in brain decision-
making with DA regulation in their model (Frank, 2005). They
further took the effect of OFC into account (Frank and Claus,
2006). The main difference of network architecture between
our method and Frank’s works is the completeness of decision-
making circuit. We model direct, indirect and hyperdirect
pathways, while the hyperdirect pathway is ignored in Frank’s
works. Many decision-making models have not considered the
STN brain area (Frank and Claus, 2006; Zeng et al., 2017) and
the connection between DLPFC and thalamus (Gurney et al.,
2015). The excitatory input from STN is essential for GPi for
the other inputs (StrD1 and GPe) are inhibitory. Only the
projection of STN can help GPe and GPi function. If there is
no STN, GPe and GPi will never fire, and the thalamus can not
obtain inhibitory input from BG. Then thalamus always outputs
randomly action. The excitatory input from DLPFC is very
important for thalamus due to the input fromGPi is inhibitory. If
there is no excitatory input from DLPFC, thalamus will never fire
as well. To sum up, the excitatory input from STN and DLPFC
is not only very necessary in human brain decision-making, but
also computationally very important in our model.

Baston et al. considered DA and acetylcholine collective effect
on the biologically inspired BG model (three pathway model). In
this model, tonic activity of DA was also considered (Baston and
Ursino, 2015b), while in our model, we only consider the phasic
activity of DA (peak during positive feedback and dip during
negative feedback). Baston et al. proposed a mathematical model
to reproduce the main BG structures and pathways. This model

FIGURE 11 | During the learning process, the change of weights between LOFC and StrD1, and LOFC and StrD2 (A). The change of weights between MOFC and

StrD1, and between MOFC and StrD2 (B). When comparing the model with and without the effect of MOFC-LOFC, the change of firing rate of StrD1 (C) and StrD2

(D). The red bars represent the firing rates without MOFC-LOFC, and the black bars represent the firing rates with MOFC and LOFC.
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contained both the dopaminergic and the cholinergic system to
train synapses in the striatum (Baston and Ursino, 2015a). They
further proposed a compartmental model of levodopa to build
a general model of medicated Parkinson’s disease (Baston et al.,
2016). The main difference between our model and these works
is that we take the effects of MOFC and LOFC into consideration.

MOFC and LOFC are usually ignored in the existing works
(Frank andClaus, 2006; Gurney et al., 2015; Zhao et al., 2017). For
the UAV flying through a window task, Figure 11 shows the effect
of MOFC and LOFC on accelerating decision-making. When
obtaining positive reward, the MOFC-StrD1 connections will be
strengthened. When obtaining negative reward, the LOFC-StrD2
connections will be strengthened based on STDP mechanism.
Figure 11A shows the change of connection weights between
LOFC and striatum. It is obvious that the weights between LOFC
and StrD2 is larger than the weights between LOFC and StrD1.
This conclusion is consistent with the prediction. Figure 11B
shows the connection weights between MOFC and striatum. The
conclusion is expected that the weights between MOFC and
StrD1 is larger than the weights between MOFC and StrD2.
Figures 11C,D compare the different firing rates of StrD1 and
StrD2 in conditions with MOFC-LOFC and without MOFC-
LOFC. By adding MOFC and LOFC brain areas, the firing rates
of StrD1 and StrD2 are higher. By this way, the learning process
is accelerated.

We test 100 steps and record the time cost of generating an
action (the required iterative time). We compare the time cost
with and without the effect of MOFC-LOFC. For the model
with the effect of MOFC-LOFC, the average time cost is 51.423
steps, while for the model without the effect of MOFC-LOFC, the
average time cost is 70.613 steps. This indicates that MOFC and
LOFC can accelerate the decision-making process.

Although the current BDM-SNN model incorporates several
important inspirations both from the connectome and the
mechanisms perspectives from human brain, more inspirations
can be used to further refine the model. For DA regulation
mechanism, this paper focuses on the phasic burst of DA, which
is triggered by unexpected rewards (Schultz et al., 1993). DA also

exhibits tonic single spike activity, which refers to spontaneously
occurring baseline spike activity (Grace and Bunney, 1984a,b;
Grace andOnn, 1989). Baston et al. used the neurocomputational
model to reproduce the function of BG, and analyzed the
effects of different tonic dopamine levels on finger tapping task
outcomes (Baston and Ursino, 2016). We will further work on
the mechanism of tonic DA and integrate it with our current
work. Besides, the detailed DA regulation mechanism needs to be
further studied and added to the future work. In this paper, the
state needs to be predefined before learning, an automatic state
classification method during decision-making will be further
investigated. Decision-making in human brain is a complex
process, and it may contain more complex and subtle circuits
and functions. We will further explore the multi-task decision
making circuit and mechanisms in human brain, and optimize
the existing model to conduct more complex tasks.
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