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A tight coupling between the neuronal activity and the cerebral blood flow (CBF) is the
motivation of many hemodynamic response (HR)-based neuroimaging modalities. The
increase in neuronal activity causes the increase in CBF that is indirectly measured by HR
modalities. Upon functional stimulation, the HR is mainly categorized in three durations:
(i) initial dip, (ii) conventional HR (i.e., positive increase in HR caused by an increase in
the CBF), and (iii) undershoot. The initial dip is a change in oxygenation prior to any
subsequent increase in CBF and spatially more specific to the site of neuronal activity.
Despite additional evidence from various HR modalities on the presence of initial dip
in human and animal species (i.e., cat, rat, and monkey); the existence/occurrence of
an initial dip in HR is still under debate. This article reviews the existence and elusive
nature of the initial dip duration of HR in intrinsic signal optical imaging (ISOI), functional
magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS).
The advent of initial dip and its elusiveness factors in ISOI and fMRI studies are
briefly discussed. Furthermore, the detection of initial dip and its role in brain-computer
interface using fNIRS is examined in detail. The best possible application for the initial
dip utilization and its future implications using fNIRS are provided.

Keywords: initial dip, neuronal firing, vector phase analysis, brain–computer interface (BCI), functional near-
infrared spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI), intrinsic signal optical imaging
(ISOI)

INTRODUCTION

Over the last few decades, researchers in the neuroscience field have made significant advances
in decoding thoughts based on brain activities. A complete understanding of the underlying
neuronal mechanisms and signaling pathways is required to decode the brain. Therefore, interest
in understanding the neurovascular coupling (NVC) has rapidly grown over the last years. NVC
can be defined as a process that links the change in regional neuronal activity to the local cerebral
blood flow (CBF) (Raichle, 1998). A tight coupling exists between the changes in the neuronal
activity and the changes in CBF caused by functional stimulation (Villringer and Dirnagl, 1995),
which is the basis for currently available functional neuroimaging techniques, including position
emission tomography (PET) (Terpogossian et al., 1975; Fox and Raichle, 1984; Ollinger and
Fessler, 1997), intrinsic signal optical imaging (ISOI) (Grinvald et al., 1988), functional magnetic
resonance imaging (fMRI) (Ogawa et al., 1990; Bandettini et al., 1992), and functional near-infrared
spectroscopy (fNIRS) (Hoshi and Tamura, 1993; Villringer et al., 1993; Kim et al., 2017).

Position emission tomography requires radioactive isotopes to monitor the hemodynamic
response (HR) and metabolic changes associated with the neuronal activity, which limits its use
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in terms of continuous and repeated measurements (Hillman,
2007; Irani et al., 2007). ISOI is a minimally invasive technique
used to measure the changes in HR [i.e., oxy-hemoglobin (HbO),
deoxy-hemoglobin (HbR), and total hemoglobin (HbT)] by
recording the images of the cortex illuminated by different
wavelengths with a charged-couple device camera (Tso et al.,
1990). fMRI is a non-invasive technique for measuring blood
oxygenation level-dependent (BOLD) changes that rely on the
HbR changes acting as an endogenous paramagnetic contrast
agent (Kwong et al., 1992). fNIRS is a relatively new and low-
cost non-invasive technique that uses near-infrared light of
two wavelengths to simultaneously determine the changes of
oxy-hemoglobin (1HbO) and deoxy-hemoglobin (1HbR) (Kato
et al., 1993). In comparison to other existing techniques like
electroencephalography (EEG), electrocorticography, magneto-
encephalography, and single unit recording, the aforementioned
HR-based functional imaging techniques have an advantage
of mapping a large population of neurons at a high spatial
resolution (Vanzetta and Grinvald, 2008). However, all these
techniques are indirect measurements of neuronal activity;
therefore, understanding their relation to the neuronal activity
is crucial for the correct interpretation of the functional brain-
imaging data.

HR-based modalities use the increase of blood flow
(HbO/1HbO or/and HbR/1HbR) as an indirect marker
for neuronal activity (Ances, 2004). However, the spatial
and temporal characteristics of the HR as an alternative to
the neural activity are still being debated (Logothetis et al.,
2001; Ugurbil et al., 2003; Hillman, 2014). The HR caused by
functional stimulation is mainly categorized into three response
components (Frostig et al., 1990; Ernst and Hennig, 1994): (i) An
initial increase/decrease in HbR/HbO caused by the extraction
of oxygen by nearby active neurons known as the initial dip;
(ii) the positive/negative response of HbO/HbR, which is also
known as the conventional HR, caused by a large increase in
CBF; and (iii) the undershoot, which is a decrease in response
below the baseline. Figure 1 shows the schematic of a typical
normalized HR depicting the initial dip, main HR period, and

FIGURE 1 | A typical hemodynamic response including the initial dip modeled
by three gamma functions assuming a 10 s task.

undershoot period. This HR was modeled by three gamma
functions assuming a 10 s task (Shan et al., 2014). The initial dip
response is believed to be a faster and better spatial localizer on
the neuronal activity than the delayed HR because it is originated
from the initial increase (or decrease) in HbR (or HbO) due
to the increase in metabolism followed by the increase in CBF
(Duong et al., 2000; Kim et al., 2000a).

These neuroimaging modalities can also be used to provide
patients a means of communication with the real world through
a brain–computer interface (BCI). The main role of the BCI is
to translate brain signals and generate reliable commands with
high accuracy to control external devices like a robotic arm/leg
or a wheelchair in a real environment for patients (Mcfarland
and Wolpaw, 2010, 2011; Nicolas-Alonso and Gomez-Gil, 2012;
Ortiz-Rosario and Adeli, 2013; Muller-Putz et al., 2015; Hong
et al., 2018a). Among all HR-based modalities, fMRI and fNIRS
can be used for non-invasive BCI applications (Naito et al., 2007;
Matthews et al., 2008; Sitaram et al., 2009; Sokunbi et al., 2014).
fMRI has a constraint being bulky; therefore, it cannot be used as
a portable device. However, it can be used for training patients to
learn self-regulation of specific brain areas (Sitaram et al., 2008).
In comparison to fMRI, fNIRS has a great potential to be used
for BCI applications because of its high temporal resolution, low
cost, and portability (Naseer and Hong, 2015; Vansteensel et al.,
2017). The main limitation of HR for BCI is its slow nature and
inherent onset delay (Jasdzewski et al., 2003; Cui et al., 2010; Ahn
and Jun, 2017). A possible solution for coping up with this delay
is the utilization of initial dip detection for fast fNIRS-based BCI
applications (Hong and Naseer, 2016).

This paper presents a review focusing on initial dip detection
during the HR. First, the existence of initial dip and its elusive
nature will be briefly discussed using ISOI and fMRI. We will then
discuss in detail the existence of the initial dip using fNIRS and
its role in BCI. Some possible contributing factors in the initial
dip elusiveness, future implications, and extensions will also be
presented.

WHAT IS INITIAL DIP?

In ISOI, the onset of a neuronal activity-dependent oxygen
delivery was first found to occur before the increase in the
cerebral blood volume (CBV) and the CBF (Frostig et al., 1990).
Upon activity, the HbR starts to increase, followed by a later
and more pronounced decrease. This initial increase in the
HbR is caused by the early extraction of oxygen by locally
metabolized neurons from the capillary network before the
vasculature provides more oxygenated blood to the active spot
resulting in the CBV and the CBF to increase (Malonek and
Grinvald, 1996). This early increase in the HbR is highly spatially
coincident with the area of neuronal activity as compared to
the delayed and prolonged decrease/increase in the HbR/CBV.
In fMRI, the initial increase in the HbR at the beginning of
the neuronal activity subsequently leads to an early decrease in
the BOLD signal (Menon et al., 1995). This early decrease in the
BOLD signal was first termed as “initial dip” in the fMRI research
community. Similarly, in fNIRS, an initial decrease/increase in
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the 1HbO/1HbR upon activity represents the initial dip (Kato
et al., 1999; Kato, 2004).

EXISTENCE OF INITIAL DIP IN
DIFFERENT HR MODALITIES

Figure 2 shows the percentage of articles published on the initial
dips appearing ISOI, fMRI, and fNIRS during 1990 to 2018
from the Web of Science, http://isiknowledge.com. The initial dip
existence and its elusive nature in each modality are discussed
herein separately in the subsequent sections.

Initial Dip in ISOI
After the inaugural work on the existence of an initial dip
(Grinvald et al., 1991), Malonek and Grinvald (1996) did further
in-depth analysis to study the activity-dependent changes in the
HbO and the HbR in the visual cortex (brain area 18) of an
anesthetized cat. They found that the HbR transiently increased
and highly spatially confined to the neuronal active site. In
comparison to the HbR, the delayed HbO and CBV increase
was found to be less localized to the neuronal activity site. The
authors interpreted that this initial increase in HbR was caused
by an increased oxygen demand from the activated neurons
(i.e., an increase in the neuronal activity could lead to a local
increase in the oxidative metabolism). The initial dip can be
expected to highly localize to the neuronal activity because of the
local increase in metabolism. To compensate for this increased
oxygen demand, more oxygenated blood comes into the active
site, resulting in an increase in the CBV and the CBF (i.e., like
“watering the garden for the sake of one thirsty flower”).

The controversy was started by raising doubt on the type of
analysis used by Malonek and Grinvald (1996). They used the
classical Beer–Lambert model to estimate the stimulus-evoked
changes in the HbO and the HbR without considering the
wavelength dependency on the optical pathlength. After which,
several groups investigated the effect of optical pathlength on
the initial dip by employing more rigorous spectroscopic analysis
models in rats (Mayhew et al., 1999, 2000; Nemoto et al., 1999;
Kohl et al., 2000; Jones et al., 2001; Lindauer et al., 2001;
Sheth et al., 2004, 2005; Suh et al., 2006b). Unfortunately, these

FIGURE 2 | Percentage breakdown of the articles on initial dip (1990–2018):
total number of articles was 103 (ISOI: 24, fMRI: 64, fNIRS: 15) from Web of
Science (www.isiknowledge.com).

groups came up with conflicting conclusions, resulting in the
elusive nature of the initial dip. Initial dip was detected in the
spectroscopic data of one group (Mayhew et al., 1999, 2000; Jones
et al., 2001; Sheth et al., 2004), but was not observed in the data
of other groups using the same methodology (Kohl et al., 2000;
Lindauer et al., 2001).

Similarly, the differences also existed in the optical studies
related to the concurrent decrease in the HbO with the increase in
the HbR that affected the interrelationship between the changes
in oxygen metabolism, CBV, and capillary recruitment (Buxton,
2001). The decrease in the HbO was found in some studies
(Devor et al., 2003, 2005), but not in others (Dunn et al.,
2005; Devor et al., 2007). Therefore, the other techniques [e.g.,
oxygen phosphorus quenching (Vanzetta and Grinvald, 1999)
and direct measurements of the changes in the partial pressure
of tissue oxygen (pO2) using an O2 microelectrode (Ances et al.,
2001; Thompson et al., 2003)] were further used to find hypo-
oxygenation (i.e., decrease in the HbO). The oxygen phosphorous
quenching technique measures the functional stimulation driven
changes in oxygen concentration within the microvasculature.
Using the oxygen phosphorous quenching technique, Vanzetta
and Grinvald (1999) detected the initial hypo-oxygenation in
a cat. Lindauer et al. (2001) used the same recording method,
but did not find hypo-oxygenation in a rat. However, in the
case of direct measurements of pO2, a transient decrease in
pO2 was repeatedly observed before the CBF increase both in
a rat and a cat (Ances et al., 2001; Thompson et al., 2003).
This deoxygenation (i.e., a transient decrease in pO2) was
better localized in the spiking activity than the later phase of
the response (Thompson et al., 2004, 2005); thereby further
conforming to the findings on the initial dip.

Using ISOI, the initial dip was also found in a monkey
(Shtoyerman et al., 2000) and in humans (Suh et al., 2006a).
An early decrease/increase in the HbO/HbR was observed in
humans, which was spatially focused in the stimulated gyrus
(Ma et al., 2009). Sirotin et al. (2009) provided an alternative
explanation for the initial dip, instead of the increase/decrease
of the HbO/HbR. According to them, the initial dip can
be well explained by the fast increase in the HbT with no
increase in the HbR. Similarly, previous studies showed that the
neuronal activation generates different spatio-temporal-evoked
HR patterns. Each of these patterns becomes dominant at
different times and co-localize to a different extent with the
neuronal activity (Chen-Bee et al., 2007, 2010). Table 1 presents
the studies that specifically focused on the presence and absence
of the initial dip using ISOI and some other modalities from years
2003 to 2018.

Initial Dip in fMRI
The first fMRI study on the initial decrease in the BOLD response
was presented in 1995, in which the brain maps of human
subjects were found to display a negative change in the signal
intensities after the onset of photonic stimulation (Menon et al.,
1995). The pixel exhibiting the negative response showed the
time course with an initial dip response peaking at approximately
2 s. The authors provided the following interpretation of the
BOLD signal that was in good agreement with the initial ISOI
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TABLE 1 | Studies that specifically focused on the initial dip in the ISOI and some other modalities (years: 2003–2018, source: Web of Science).

Reference Modality Species Alert/anesthetic Stimulation Area

Thompson et al., 2003 O2 microelectrode Cat Anesthetic (thiopental) Visual stimulus Visual cortex (area 17)

Sheth et al., 2004 ISOI Rat Anesthetic (halothane) Whisker deflection and
hindpaw stimulation

Barrel cortex

Thompson et al., 2004 O2 microelectrode Cat Anesthetic (thiopental) Visual stimulus Visual cortex (area 17)

Suh et al., 2005 ISOI Rat Anesthetic (urethane) Hindlimb stimulation Neocortex

Sheth et al., 2005 ISOI Rat Anesthetic (halothane) Hindpaw stimulation Somatosensory cortex

Thompson et al., 2005 O2 microelectrode Cat Anesthetic (thiopental) Visual stimulus Visual cortex (area 17)

Foster et al., 2005 O2 microelectrode and
NADH imaging

Rat Anesthetic (halothane) Hypoxia and synaptic
activation

Hippocampal slices

Bahar et al., 2006 ISOI Rat Anesthetic (urethane) 4-amino-pyridine Neocortex

Fukuda et al., 2006 ISOI Cat Anesthetic (isoflurane) Visual stimulus Visual cortex

Suh et al., 2006a ISOI Human Anesthetic (isoflurane and
remyfentanyl)

Electrical stimulation Motor, sensory and
language cortex

Chen-Bee et al., 2007 ISOI Rat Sodium pentobarbital Whisker deflection Somatosensory cortex

Prakash et al., 2007 Optical spectroscopy Rat and mice Anesthetic (halothane) Forepaw stimulation Somatosensory cortex

Schiessl et al., 2008 ISOI Monkey Anesthetic (isoflurane) Visual stimulus Visual cortex

Lesage et al., 2009 ISOI Rat Anesthetic (isoflurane) Spinal cord injury Spinal cord

Ma et al., 2009 ISOI Human Anesthetic (isoflurane and
remyfentanyl)

Electrical stimulation Motor, sensory and
language cortex

Sirotin et al., 2009 ISOI Monkey Alert Visual stimulus Visual cortex

Chen-Bee et al., 2010 ISOI Rat Sodium pentobarbital Whisker deflection Somatosensory cortex

Lee et al., 2012 ISOI and NIRS Rat Anesthetic (isoflurane) Electrical stimulation Somatosensory cortex

Ma et al., 2016 ISOI Cat Anesthetic (isoflurane) Transcorneal electrical
stimulation

Visual cortex

Lu et al., 2017 ISOI Monkey Anesthetic (isoflurane) Moving light spot stimulus Visual cortex

Sintsov et al., 2017 ISOI Rat Anesthetic (isoflurane) Whisker stimulation Somatosensory cortex

studies: at the start of a neuronal activity, the neurons drew
oxygen out of the capillary network resulting in the local increase
in the paramagnetic HbR that caused the magnetic resonance
(MR) intensity to decrease. To compensate for this initial oxygen
demand, more oxygenated blood came to the active spot because
of the large CBF increase. This increase in the CBF caused the
local decrease in the HbR that resulted in an increase in the MR
signal.

In comparison to the fMRI study on initial dip, an early
study of functional magnetic resonance spectroscopy (fMRS)
reported a smaller duration of initial dip and proposed different
mechanisms. Menon et al. (1995) suggested that these differences
may be caused by the difference in stimulus durations or the
partial volume effect. Ernst and Hennig (1994) used a short
stimulus duration (0.5 or 1 s), while Menon et al. (1995) used
a 10 s stimulus duration. Another study was also conducted by
the same fMRS group to further check the effect of different
stimulus durations and echo time (TE) on the initial dip (Hennig
et al., 1995). They found that the magnitude of the initial dip
decreased with the increase of stimulus duration as well as TE,
which contradicted the nature of the BOLD signal and did not
agree well with the ISOI studies (Hu and Yacoub, 2012). These
inconsistencies between the fMRI and fMRS data highlighted the
initial dip controversy more.

To follow up on the discrepancies in the fMRI and fMRS
data, Hu et al. (1997) performed an fMRI study to further check
the effect of stimulus duration (1.5–6 s) on the initial dip. The

previous fMRI study by Menon et al. (1995) used a 10 s stimulus
duration, but did not examine the dependency of the initial dip
on the stimulus duration. The initial dip was detected for all
stimulus durations and independent from the stimulus duration
for stimuli longer than 3 s. The initial dip magnitude decreased
for the short stimulus duration. In comparison to the initial
dip magnitude, the magnitude and the rise time of the positive
response and the undershoot increased with the increase in the
stimulus duration. The initial dip peaked at approximately 2 s and
lasted for approximately 4 s depending on the subject. Finally, the
ratio of the initial dip peak to the HR peak was approximately
1/3. However, the ratio of the initial dip peak to the HR peak
later varied with the strength of the magnetic field of the fMRI
system (Janz et al., 1997, 2000; Yacoub and Hu, 1999; Yacoub et al.,
2001). All these findings replicate the results of the ISOI studies
(Grinvald et al., 1991; Malonek and Grinvald, 1996) and further
confirmed the existence of initial dip.

The controversy around the initial dip continued to grow
because many studies on animals were unable to detect the initial
dip in different brain areas. Some fMRI studies detected the initial
dip in the visual cortex of a cat (Duong et al., 2000; Kim et al.,
2000a), whereas others were not able to detect any (Jezzard et al.,
1997). Similarly, several fMRI studies were not able to detect
the initial dip in the somatosensory cortex of rats (Mandeville
et al., 1999; Marota et al., 1999; Silva et al., 1999, 2000; Yu
et al., 2014), while a study detected the initial dip in the outer
layer I in the somatosensory cortex of a rat (Tian et al., 2010).
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Logothetis et al. (1999) was also able to detect the initial dip in a
monkey. Most of the early fMRI studies used the visual cortex to
study the initial dip in humans (Hu et al., 1997; Fransson et al.,
1998; Yacoub et al., 1999; Janz et al., 2000). Therefore, researchers
started to think that the initial dip can only be detected in the
visual cortex. The initial dip was later found in the motor cortex
(Yacoub and Hu, 2001; Roc et al., 2006; Lindquist et al., 2008) and
recently detected in the prefrontal cortex (Kohno et al., 2015).
Several studies finally tried to model the relationship between
the CBF and the oxygen metabolism to address the controversial
initial dips (Buxton et al., 1998, 2004; Robinson et al., 2006;
Blanchard et al., 2011; Kim and Ogawa, 2012; Kim et al., 2013;
Hadjistassou et al., 2016; Mathias et al., 2017a,b; Angleys et al.,
2018); however, the controversy on the presence or interpretation
of the initial dip still exists (Uludag, 2008, 2010; Yu et al., 2014).

Table 2 shows the fMRI studies related to the initial dip from
years 2003 to 2018. Several studies also continued to report on the
initial dip (Yesilyurt et al., 2008; Tian et al., 2010; Tse et al., 2010;
Fang and Lee, 2013; Watanabe et al., 2013). Siero et al. (2015)
did a very comprehensive study to determine the cortical depth
dependence of different HR phases (i.e., initial dip, main HR,
and undershoot) in the human visual cortex using 7T-fMRI. They
found that the initial dip was dependent on the cortical depth,
and the magnitude of the initial dip in the outer cortical region
was the largest among the layers. Therefore, they conjectured that

the initial dip magnitudes in the deep cortical layers would be
very small and may not be detectable without a sufficient signal-
to-noise ratio. Schellekens et al. (2017) also recently found the
initial dip in the human visual cortex for a single moving bar’s
trajectory task. They observed that the amplitude of the positive
response and the initial dip in the BOLD signal changed along the
motion of the trajectory. No initial dip was present in the BOLD
signal when the bar stimulus was near the onset of its motion
trajectory. However, the initial dip appeared, and its amplitude
increased as the bar stimulus moved closer to the end of its
trajectory. They interpreted that the initial oxygen consumption
in response to the signaling of a motion stimulus would increase
as the stimulus keeps moving. Therefore, they suggested that, at
least under some conditions, the initial dip is associated with a
neuronal mechanism (i.e., perhaps inhibition).

Initial Dip in fNIRS
Kato et al. (1999) performed the first study that investigated the
presence of an initial dip using non-invasive optical imaging (i.e.,
fNIRS) in humans. They used a 24-channel fNIRS system on
the human visual cortex to measure 1HbO and 1HbR during a
photonic stimulation. They observed an initial increase/decrease
in the 1HbO/1HbR after the onset of the stimulation. They
claimed that an initial decrease in the 1HbO is the evidence for
the initial oxygen consumption and the contraction of vascular

TABLE 2 | fMRI initial dip studies (years: 2003–2018, source: Web of Science).

Reference fMRI type (field strength) Species Alert/anesthetic Stimulation Area

Behzadi and Liu, 2006 ASL-fMRI (3T) Human Alert Visual stimulus Visual cortex

Roc et al., 2006 EPI-fMRI (1.5T) Human Alert Visually guided bilateral
hand squeeze task

Motor and visual cortex

Lindquist et al., 2008 Rapid-3D-fMRI (3T) Human Alert Visual-motor and
auditory-motor-visual
stimulus

Visual, motor, and auditory
cortex

Uludag, 2008 EPI-fMRI (3T) Human Alert Visual stimulus Visual cortex

Yesilyurt et al., 2008 EPI-fMRI (3T) Human Alert Visual stimulus Visual cortex

Lindquist, 2010 Rapid-3D-fMRI (3T) Human Alert Visual-motor and
auditory-motor-visual
stimulus

Visual, motor, and auditory
cortex

Tian et al., 2010 EPI-fMRI (7T) Rat Anesthetic (isoflurane) Forepaw stimulation Somatosensory cortex

Tse et al., 2010 EPI-fMRI (3T) Human Alert Visual stimulus Visual cortex

Fang and Lee, 2013 Optogenetic-fMRI (7T) Rat Anesthetic (isoflurane) Optogenetic stimulation Motor, hippocampus, and
thalamus

Watanabe et al., 2013 EPI-fMRI (3T) Human Alert Visual stimulus and finger
tapping task

Visual and motor cortex

Yu et al., 2014 EPI-fMRI (11.7T) Line
scanning-fMRI (11.7T)

Rat Anesthetic (isoflurane) Forepaw and whisker-pad
stimulation

Barrel cortex

Kohno et al., 2015 EPI-fMRI (3T) Human Alert Visual picture stimuli Ventrolateral prefrontal
cortex, visual cortex, and
amygdala

Rudrapatna et al., 2015 DT2-fMRI (4.7T)
GE3d-EPI-fMRI
b-SSFP-fMRI

Rat Anesthetic (isoflurane) Spreading depolarization Whole brain

Siero et al., 2015 EPI-fMRI (7T) Human Alert Visual stimulus Visual cortex

Lundengard et al., 2016 EPI-fMRI (3T) Human Alert Intensity and frequency
visual stimulation

Visual cortex

Schellekens et al., 2017 EPI-fMRI (7T) Human Alert Single moving bar’s
trajectory stimulus

Visual cortex
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bed during the initial cerebral metabolism. Jasdzewski et al.
(2003) later did an in-depth study using differential pathlength
factor (DPF) analysis to further investigate the presence of
initial dips and HR differences (i.e., onset times and time-to-
peak response of HbO, HbR, and HbT) in the fNIRS signals
measured from the motor and visual cortices using a rapid-
presentation event-related paradigm. They found that the initial
dip was present in both visual and motor cortices. The initial
dip was clearly observed and did not disappear in the visual
data analyzed with extreme DPF values. However, in the case
of the motor cortex data, they only found the initial dip for
the implausible values of the DPF. They further observed that
the HR was delayed by 2 s from the onset. Moreover, the
onset of the HbO increase occurred before the HbR decrease
for both visual and motor cortices. Therefore, they suggested
that different regions in the brain behave differently in relation
to the occurrence of initial dips because of different capillary
transit times. To further check that the NIRS has the ability
to measure the initial dip response, Kato (2004) showed that
NIRS has high sensitivity to oxygen exchanges in the capillaries
when compared to the fMRI-BOLD signal. Based on this, he
demonstrated that NIRS can measure a neuronal-related fast-
oxygen response in the capillaries, which is called the fast-oxygen
response in capillary event (FORCE), later termed as initial dip.

He then suggested that NIRS imaging has a great potential in
elucidating the relationship between the initial dip response and
the neuronal activity. Akiyama et al. (2006) found a significant
increase in the 1HbR and a decrease in 1HbO (non-significant)
within 1–3 s after task initiation at the center of the primary
motor cortex. They also observed that the channel surrounding
the center area of the primary motor cortex only showed
increase/decrease of the 1HbO/1HbR. Similarly, another study
of Wylie et al. (2009) examined the spatiotemporal co-variations
among 1HbO, 1HbR, and 1HbT in the visual cortex for their
contrast-reversing checkerboard experimental paradigm. They
observed a decrease or increase in the 1HbO/1HbR at the
start of the activity, which demonstrated the consumption of
oxygen at the time of neuronal activity (initial dip) prior to
the main HR. Table 3 shows the fNIRS studies that specifically
focused on the initial dip response. The studies on the initial dip
have slightly increased in recent years. The possible reasons for
the increase in the fNIRS studies on the initial dip may be its
additional features of simultaneous measurement of the 1HbO
and the 1HbR, non-invasiveness, and portability. Therefore, it
can be said that fNIRS has huge potential as a sensor utilizing
the initial dip responses for measuring the neuronal activities in
humans and in animals (Lee et al., 2012; Mahmoudzadeh et al.,
2017).

TABLE 3 | Studies on the initial dip in fNIRS (years: 2003–2018, source: Web of Science).

Reference Species Alert/anesthetic Stimulation Area Detection method

Jasdzewski et al., 2003 Human Alert Visual stimulus and finger
tapping task

Visual and motor cortex Time-series visualization

Kato, 2004 Human Alert Auditory stimulus Auditory cortex Time-series visualization

Akiyama et al., 2006 Human Alert Hand grasping task Motor cortex Time-series visualization

Akin et al., 2006 Healthy and migraine
human patients

Alert Breadth holding task Prefrontal cortex Time-series visualization

Wylie et al., 2009 Human Alert Visual stimulus Visual cortex Time-series visualization

Lee et al., 2012 Rat Anesthetic
(isoflurane)

Electrical stimulation Somatosensory cortex Time-series visualization

Yoshino and Kato, 2012 Human Alert Single word listening task Auditory cortex Vector-based phase
analysis

Sano et al., 2013 Human Alert Nasal and mouth breathing
task

Prefrontal cortex Vector-based phase
analysis

Dutta et al., 2015 Human stroke survivors Alert Anodal tDCS stimulation Central site Cz Time-series visualization

Hong and Naseer, 2016 Human Alert Mental arithmetic and finger
tapping tasks

Prefrontal and motor cortex Vector phase analysis with
a threshold circle

Zafar and Hong, 2017 Human Alert Mental arithmetic, mental
counting, puzzle solving,
finger tapping, finger
poking, and visual stimulus
tasks

Prefrontal, motor,
somatosensory, and visual
cortex

Vector phase analysis with
a threshold circle

Li et al., 2017 Human Alert Left and right hand
grasping tasks

Motor cortex SVM classifier

Khan and Hong, 2017 Human Alert Mental arithmetic, mental
counting, mental rotation
and word generation tasks

Prefrontal cortex LDA classifier

Mahmoudzadeh et al., 2017 Rat Anesthetic
(urethane)

Forepaw stimulation and
French male/female words
listening task

Somatosensory and
auditory cortex

Time-series visualization

Zafar and Hong, 2018 Human Alert Right-hand thumb and little
finger tapping

Left motor cortex Vector phase analysis with
dual threshold circles
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DETECTION OF THE INITIAL DIP IN
fNIRS

Vector Phase Analysis
As observed in Table 3, most fNIRS studies used time series
visualization and statistical analysis to discuss the initial dip
response. However, Yoshino and Kato (2012) used a method,
called vector phase analysis, for the systematic detection of
initial dips. The vector phase analysis is a polar coordinate plane
method defined by 1HbO and 1HbR as orthogonal vector
components. Two other vector components [i.e., cerebral oxygen
exchange (1COE) and 1CBV) are obtained by rotating the
vector coordinate system defined by 1HbO and 1HbR by 45◦
counterclockwise using the following equations (Yoshino et al.,
2013).

1CBV =
1
√

2
(1HbO+1HbR) (1)

1COE =
1
√

2
(1HbR−1HbO) (2)

The value of 1CBV is slightly lower than 1HbT, since 1HbT is
calculated as the sum of 1HbO and 1HbR as follows.

1HbT = 1HbO+1HbR (3)

Using Eqs. (1) and (3), the relationship between 1CBV and
1HbT is represented as (Oka et al., 2015).

1CBV =
√

21HbT (4)

The magnitude and the phase of a vector p = (1HbO, 1HbR) in
the phase plane can be calculated as follows.∣∣p∣∣ = √1HbO2 +1HbR2 (5)

6 p = tan−1
(

1HbR
1HbO

)
= tan−1

(
1COE
1CBV

)
+ 45

◦

(6)

The ratio of 1COE to 1CBV (i.e., 1COE/1CBV) defines
the degree of oxygen exchange. Therefore, 1COE represents
the oxygen exchange in the blood vessels and thus also the
neuronal activities (Oka et al., 2015). 1COE > 0 indicates that
deoxygenation is occurring in the capillaries as a result of oxygen
consumption by the nerve cells and, therefore, represents hypoxia
in the blood vessels. On the other hand, 1COE < 0 indicates
that the oxygen-containing red blood cells are being supplied by
the arteries and, thus, a high level of oxygenation in the blood
vessels. Figure 3 shows the phase diagram and its decomposition
into eight phases/regions. Table 4 summarizes the description
and interpretations of these eight phases/regions. Phases 1 to 5 in
Table 4 are the initial dip phases because they reflect an increase
in either 1HbR or 1COE. Therefore, an event-related vector
residing in these regions is defined as an initial dip. The increases
of 1CBV and 1HbR in Phases 1 and 2 (i.e., mostly observed in
the fMRI and ISOI) are called the hyperemia dip phases (Malonek
and Grinvald, 1996; Jones et al., 2001; Hu and Yacoub, 2012).
Phases 3–5 are the hypoxic dip phases with a decrease in the

FIGURE 3 | Vector phase diagram with threshold circles (Yoshino and Kato,
2012; Hong and Naseer, 2016; Zafar and Hong, 2018).

1HbO. Phase 3 is called the hypoxic-hyperemia dip caused by
the increase in the 1CBV, whereas Phases 4 and 5 are categorized
as the hypoxic-ischemia dip caused by the decrease in the 1CBV.
It is noted that Phases 1–3 occur in all three modalities (i.e.,
ISOI, fMRI, and fNIRS). ISOI and fMRI initial dip studies were
mostly focused on the initial increase in the 1HbR and 1CBV
(Sirotin et al., 2009). In these three phases (i.e., 1–3) both the
1HbR and 1CBV increase enabling the vector phase analysis to
detect the ISOI and fMRI initial dips. However, in Phases 4 and
5, the 1CBV is decreasing, which cannot be visualized/discussed
in ISOI and fMRI (Sintsov et al., 2017). As fNIRS simultaneously
measured 1HbO and 1HbR, the decrease in 1CBV can possibly
be detected, which enables fNIRS to detect five types of initial
dips. Out of these five initial dip phases, the hypoxic dip phases
(i.e., Phases 3–5, in which 1COE > 0) frequently occurred in
the fNIRS signals (Sano et al., 2013; Zafar and Hong, 2017).
Phases 3–5 indicate a hypoxic change in the blood vessels, thereby
representing deoxygenation in the capillaries. Both 1HbR and
1COE decrease in Phases 6–8, and these are called non-dip
phases. In comparison to the non-dip phases, neuroactivation in
the initial dip phases is considered higher (Yoshino and Kato,
2012).

Synthetic 1HbO and 1HbR trials were generated with the
designed hemodynamic response function (dHRF) assuming a
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TABLE 4 | Phase division of the vector diagram.

Phases Conditions Description Modalities in which a specific phase can possibly occur

1 0 < 1HbR < 1HbO,
1COE < 0 < 1CBV

Hyperemia dip phase with 1HbR > 0 ISOI, fMRI, and fNIRS

2 0 < 1HbO < 1HbR,
0 < 1COE < 1CBV

ISOI, fMRI, and fNIRS

3 1HbO < 0 < 1HbR,
0 < 1CBV < 1COE

Hypoxia-hyperemia dip phase with 1COE > 0 ISOI, fMRI, and fNIRS

4 1HbO < 0 < 1HbR,
1CBV < 0 < 1COE

Hypoxia-ischemia dip phase with 1COE > 0 fNIRS

5 1HbO < 1HbR < 0,
1CBV < 0 < 1COE

fNIRS

6 1HbR < 1HbO < 0,
1CBV < 1COE < 0

Non-dip phases with 1COE < 0 fNIRS

7 1HbR < 0 < 1HbO,
1COE < 1CBV < 0

fNIRS

8 1HbR < 0 < 1HbO,
1COE < 0 < 1CBV

ISOI, fMRI, and fNIRS

ISOI, intrinsic signal optical imaging; fMRI, functional magnetic resonance imaging; fNIRS, functional near-infrared spectroscopy.

trial period of 35 s (i.e., 10 s task and 25 s rest) to further
elaborate the vector phase analysis. The dHRF-HbO was modeled
by convolving three gamma functions with the trial period.
Similarly, dHRF-HbR was generated by multiplying dHRF-HbO
with a −1/3 factor (Pinti et al., 2017). Figure 4 shows the
time-domain signals of 1HbO, 1HbR, 1COE, 1CBV and the
trajectories of individual phases for the time period from 0 to
4 s. The time domain signals help to visualize the trajectory of
each phase. For example, in Phases 1 and 2, there is no initial
decrease in the 1HbO but, at the same time, 1HbR increases
representing the initial consumption of oxygen. Similarly, there
is no initial increase in 1HbR in Phase 5 but an initial decrease
in 1HbO showing the initial oxygen consumption. Phases 3
and 4 are the most likely and appropriate representation of the
initial dip because the 1HbO and 1HbR are decreasing and
increasing at the same time. It is also important to note that
the trajectory of a correct single trial HR (having initial dip) will
initially remain in Phases 1–5 within first 2–4 s, and then it will
move to the non-initial dip phases (i.e., 6–7 s), after 2–4 s. Table 4
and Figure 4 present that the vector phase analysis includes
all possible interpretations of the initial dips that can possibly
be observed in the ISOI, fMRI, and fNIRS modalities. Another
advantage of the vector phase analysis is that the 1COE vector
cannot easily be affected by the changes in the 1CBV or skin
blood flow because the 1CBV is perpendicular to 1COE [please
see the details in Oka et al. (2015)]. Therefore, the 1COE can be
a better physiological indicator of increased brain functionality
compared to the conventionally used 1HbO and 1HbR.

Threshold Circle Criterion in the Vector
Phase Analysis
Single Threshold Circle Criterion
The main issue in the vector phase analysis of Yoshino and Kato
(2012) was that an unrelated large fluctuation of 1HbO and
1HbR in the resting state and even during the task period might
be interpreted as an initial dip. Moreover, the detection time of

an initial dip was not specified in the vector diagram. This issue
was further addressed by Hong and Naseer (2016) by introducing
a threshold circle (red circle, Figure 3) in the vector diagram. The
radius of the threshold circle was determined during the resting
state period as follows.

r1 = max
(√

1HbO2
resting +1HbR2

resting

)
(7)

They proposed that this threshold circle can be used as a decision
criterion for the initial dip occurrence. Their criteria for initial
dip detection were (i) the trajectory must lie in any of Phases 2–5
(i.e., 1COE > 0), and (ii) the magnitude of the trajectory should
deviate from the threshold circle. They also found the time of
initial dip occurrences using the threshold circle in the vector
diagram. Because of the inherent onset delay in fNIRS, they
also proposed the usage of an auto-regressive moving average
model with an exogenous input in combination with the vector
phase analysis method to predict, q-steps ahead, the occurrence
of initial dips. They were able to reduce the time lag in detecting
an initial dip to approximately 0.9 s. The single threshold circle
criteria in the vector phase diagram worked significantly well
to reducing the detection time of brain activity in fNIRS BCI.
However, large fluctuations of 1HbO and 1HbR above the
threshold circle during the task period can still be interpreted as
an initial dip.

Dual Threshold Circles Criterion
Zafar and Hong (2018) recently proposed to use a secondary
circle as an upper bound for initial dip detection (black dotted
circle in Figure 3) in the vector phase analysis to further reduce
the false detection of initial dip. The radius of the second
threshold circle was defined as follows.

r2 = r1 + ρ(p1 + SD) (8)

where p1 and SD, respectively, are the amplitude and the standard
deviation of the conventional HR, and ρ is the ratio of the
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FIGURE 4 | Phase diagrams depicting the ideal trajectories (0 to 4 s) of individual phases using dHRF-based HbO and HbR, Phases 1∼5 represents the initial dip
response and Phases 6 and 7 denote the conventional hemodynamics response: (A) Phase 1, 0 < 1HbR < 1HbO, 1COE < 0 < 1CBV, (B) Phase 2,
0 < 1HbO < 1HbR, 0 < 1COE < 1CBV, (C) Phase 3, 1HbO < 0 < 1HbR, 0 < 1CBV < 1COE, (D) Phase 4, 1HbO < 0 < 1HbR, 1CBV < 0 < 1COE,
(E) Phase 5, 1HbO < 1HbR < 0, 1CBV < 0 < 1COE, (F) Phase 6, 1HbR < 1HbO < 0, 1CBV < 1COE < 0, (G) Phase 7, 1HbR < 0 < 1HbO, 1COE
< 1CBV < 0, and (H) Phase 8, 1HbR < 0 < 1HbO, 1COE < 0 < 1CBV.

amplitude of the initial dip (p0) and p1. The value of ρ, p1, and SD
can be determined through the averaging of the HRs over several
trials from the most active channel for a given task. Once the
experimental data is obtained, the radius (r2) can be calculated
based on the averaged data and its SD for the specific tasks,
measured locations, and subjects.

In Zafar and Hong (2018), the value of ρ was set to 0.3
using the empirical data. Moreover, in the case of no initial dip
detection due to averaging or noises, the ratio was still kept to
0.3 for the second threshold circle. They defined more specific
regions for the hypoxic initial dip and the conventional HR on
the vector phase diagram using the dual threshold circles. The
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hypoxic initial dip region (i.e., the red shaded area in Figure 3)
was defined as the region between the two threshold circles in
Phases 3–5. Similarly, the outer region of the first threshold circle
in Phases 7 and 8 was defined as the HR region (i.e., the blue
dotted area in Figure 3). The requirement that the trajectory
must lie within the two threshold circles in Phases 3–5 was the
proposed criterion for the detection of initial dip. Any trajectory
going outside the secondary threshold circle was considered as
a false dip or noise. Finally, if the trajectory remains within the
two threshold circles in Phases 3–5 within first 2–4 s period and
it moves to either Phase 7 or 8 after 2–4 s, it was considered
as a correct trajectory of HR upon the given trial including the
initial dip. Using the dual threshold circles in the vector phase
analysis, they were able to separate the false dip channels among
the candidate channels found with the single threshold circle
criteria, thereby improved the detection percentage of initial
dips.

dHRF-Based Detection of Initial Dip
The detection of initial dip in the HR can also be done using an
initial-dip-based dHRF, which can be generated by convolving
the canonical hemodynamic response function (cHRF) made
with three gamma functions, denoted by h(k), with the stimulus
period, u(k), as follows.

dHRF(k) =
k−1∑
n= 0

h(n)u(k− n) (9)

u(k) =
{

1, if k ∈ task,
0, if k ∈ rest,

(10)

where task and rest represent the task period and the rest period,
respectively. Recalling that the most frequently used option for
the modeling of cHRF is a gamma function (Friston et al., 1994,
1998), the following three gamma functions can be used to model
the cHRF including the initial dip, HR, and undershoot (Shan
et al., 2014).

h(k) =
3∑

i= 1

Ai
kai−1β

ai
i e−βik

0(αi)
(11)

where i represents the number of gamma functions, Ai is the
amplitude, αi and βi tune the shape and the scale, respectively,
and k is the time step. Then, t-statistics analysis can be used to
estimate the initial dip in the HR by fitting the measured HR
to the initial-dip-based dHRF. Please see Friston et al. (2007),
Lindquist et al. (2009), Hong et al. (2018b) for details.

FACTORS AFFECTING THE INITIAL DIP

Some possible contributing factors in the elusive nature of
initial dip could be from different species, anesthesia, different
methodologies adopted, surgical procedures, and stimulation
protocols [please see Ances (2004), Vanzetta and Grinvald
(2008), and Hu and Yacoub (2012) for further details]. The
difference in species can affect the dynamics in the HRs. Prakash
et al. (2007) showed that the HRs caused by the functional

stimulation were different in the neocortices of mice and rats.
The authors concluded that the HRs under a physiological
stimulation can differ in the species because of different cortical
architectures. In addition, several studies in ISOI and fMRI
on the rat somatosensory cortex were not or scarcely able
to detect the initial dip. A possible reason for this might be
that smaller animals like rats have a higher blood flow and
a subsequently lower cerebral transit time because of their
shorter mean capillary length, which results in a small or
no initial dip (Ances, 2004; Vanzetta and Grinvald, 2008).
Similarly, several studies showed that the degree of anesthesia
and anesthetic versus alert conditions can affect the initial
dip magnitude in rats (Berwick et al., 2002) and monkeys
(Shtoyerman et al., 2000). The initial dip magnitudes in awake
animals were significantly larger than those in anesthetized
animals. The degree of anesthesia can affect metabolism and
blood flow, which in turn affects the magnitude of initial dip
(Jones et al., 2001). In addition, the amount of oxygen in the
blood (i.e., oxygen blood saturation) and the hypercapnia level
may influence the initial dip amplitude (Hyder et al., 1998,
2000; Mayhew et al., 2001). Similarly, Fukuda et al. (2006)
enhanced the initial dip in a cat visual cortex by reducing the
arterial blood flow pressure. Furthermore, caffeine, which is a
vasoconstrictor that can affect the blood flow response, reduces
the initial dip magnitude in humans (Behzadi and Liu, 2006).
Finally, different stimulation protocols may induce different
metabolic demands that can influence the amount of HbO/HbR
in the microcirculation, thereby resulting in different HRs
(Vanzetta and Grinvald, 2001). Schellekens et al. (2017) recently
showed that the neuronal activity can be directly associated
with specific stimulus features, which can be the main possible
reason for the elusiveness of the initial dip. In summary, several
physiological factors can affect the existence of the initial dip
and contribute to the discrepancies and elusive nature of initial
dip.

ROLE OF THE INITIAL DIP IN BCI

In general, a BCI scheme includes (i) signal acquisition and
preprocessing, (ii) feature extraction, (iii) classification, and (iv)
feedback. In the HR-based imaging for BCI, the detection of
HRs (i.e., the increase of 1HbO) is the main focus on neuronal
command interpretation (Matthews et al., 2008). To the best of
authors’ knowledge, ISOI has not been used for BCI applications
so far. However, fMRI and fNIRS were used for many non-
invasive BCI applications.

fMRI-Based BCI
With the technical advances in MRI, a real-time fMRI can work
as a closed-loop system that allows simultaneous acquisition,
analysis, and visualization of brain images in real-time (Cox
et al., 1995; Sitaram et al., 2007). The univariate and multivariate
methods were used for the analysis of fMRI images in real-
time. In univariate analysis, the brain activity is measured from
thousands of brain locations repeatedly and then each location
is analyzed separately for decoding perceptional or cognitive
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tasks (Haynes and Rees, 2006). The main objective of the
univariate analysis is to determine the voxels that are significantly
correlated with a specific task. The univariate methods include
the real-time correlation and general linear model analysis
(Gembris et al., 2000; Bagarinao et al., 2003). In contrast
to univariate methods, multivariate or pattern-based methods
take into account the pattern information of the brain activity
measured simultaneously at many locations (Cox and Savoy,
2003; Haynes and Rees, 2005b; Kriegeskorte et al., 2006). Pattern-
based methods use voxel intensities and their spatiotemporal
relationships as features to decode the brain activity (Kamitani
and Tong, 2005; Sitaram et al., 2008). The frequently used
classifiers in pattern-based methods include multilayer neural
networks (Norman et al., 2006), linear discriminant analysis
(LDA) (Carlson et al., 2003; Haynes and Rees, 2005a; O’toole
et al., 2005), support vector machine (SVM) (LaConte et al.,
2005, 2007; Mourao-Miranda et al., 2005), Gaussian naive
Bayes classifiers (Mitchell et al., 2004), and correlation-based
classifiers (Haxby et al., 2001; Spiridon and Kanwisher, 2002).
Finally, the output of a classifier is feedbacked to help the
participants/patients to exercise voluntary self-regulation on the
specific brain area. The feedback can be presented in the form
of visual (deCharms et al., 2004; Chiew et al., 2012; Sitaram
et al., 2012; Veit et al., 2012; Zapaa et al., 2018), auditory (Posse
et al., 2003; Yoo et al., 2006), and virtual reality (Lorenzetti et al.,
2018).

Several studies successfully demonstrated that the participants
using real-time feedback in fMRI-BCI were able to perform
voluntary self-regulation on a focused brain region, see details in
Ruiz et al. (2014) and Sorger et al. (2018). The applications of real-
time neuro-feedback in fMRI-BCI for healthy subjects include the
voluntary self-regulation of motor areas (Yoo and Jolesz, 2002;
Yoo et al., 2004, 2008; Berman et al., 2012; Johnson et al., 2012),
sensory areas (Scharnowski et al., 2012; Robineau et al., 2014;
Auer et al., 2015), auditory cortex (Yoo et al., 2006), language
areas (Rota et al., 2009), emotion areas (Weiskopf et al., 2003;
Caria et al., 2007, 2010; Zotev et al., 2011), and working memory

areas (Zhang et al., 2013; Sherwood et al., 2016). In the case
of patients, the real-time neuro-feedback helps to remediate the
pathological brain activation associated with different disorders
including neurological disorders (Subramanian et al., 2011;
Sitaram et al., 2012; Guan et al., 2015) and psychiatric disorders
(Ruiz et al., 2013; Hartwell et al., 2016; Kirsch et al., 2016; Zotev
et al., 2016). However, all the real-time neuro-feedback fMRI-
BCI studies used the increasing positive HR/BOLD response to
provide feedback to the participants, which limits its temporal
resolution due to a time lag between the neuronal activity and the
detected BOLD response (Sitaram et al., 2007). So far, no study
has used the initial dip response of the HR/BOLD to provide
immediate feedback to the participants. The initial dip can help
to reduce the neurofeedback time in fMRI-BCI. Another major
limitation of fMRI-BCI is the bulky hardware and the restrictive
environment that prevents fMRI-BCI to be used as a portable
device, thereby making fMRI-BCI unsuitable for the routine
use.

fNIRS-Based BCI
Functional near-infrared spectroscopy has so far shown great
potential for use as a portable device for BCI applications (Park
et al., 2016; Yin et al., 2016; Chaudhary et al., 2017; Huang et al.,
2017; Sereshken et al., 2017). However, the main issue associated
using fNIRS signals for BCI applications is the inherent 2 s
time delay from the neuronal activation (Jasdzewski et al., 2003;
Hong and Nguyen, 2014). Therefore, researchers in the fNIRS
community employed various features in 0–5, 2–7, 0–10, 0–15, 0–
17, and 0–20 s time windows to classify the HRs from the same or
different brain regions using multi-class classification algorithms
(Power et al., 2011; Khan et al., 2014; Schudlo and Chau, 2014;
Gateau et al., 2015; Khan and Hong, 2015; Hong and Santosa,
2016; Hong et al., 2017; Liu and Hong, 2017; Shin et al., 2017).
The commonly used HR (i.e., 1HbO and 1HbR) features include
the signal mean, signal peak, signal slope, skewness, kurtosis,
variance, standard deviation, number and sum of peaks, root
mean square, and median (Hwang et al., 2016; Naseer et al.,

TABLE 5 | Functional near-infrared spectroscopy (fNIRS)-BCI studies using the initial dip.

Reference Paradigm Brain area Features Window size Classifier Commands Accuracy

Zafar and
Hong, 2017

Mental arithmetic,
mental counting, and
puzzle solving tasks

Prefrontal cortex Signal mean, minimum,
signal slope, skewness,
and kurtosis of 1HbO

2.5 s LDA 3 57.5% using
signal mean
and minimum
values

Li et al., 2017 Left and right hand
grasping tasks

Motor cortex Mean 1HbO and
1HbR for fNIRS and
wavelet coefficient for
EEG

2 s SVM 2 85.5% for
fNIRS and
91.0% for
hybrid
EEG-fNIRS

Khan and
Hong, 2017

Mental arithmetic,
mental counting,
mental rotation and
word generation tasks

Prefrontal cortex Signal peak, minimum,
and signal mean of
1HbO

2 s LDA 4 75.6%

Zafar and
Hong, 2018

Right-hand thumb and
little finger tapping

Left motor cortex Signal mean and
minimum value of
1HbO

2.5 s LDA 2 74.9%

LDA, linear discriminant analysis; SVM, support vector machine.
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FIGURE 5 | Subjects and brain areas used in initial dip studies: (A) human vs.
animal (cat, rat, and monkey) subjects, (B) brain areas. The charts were
constructed using 103 articles (1990–2018) from Web of Science
(www.isiknowledge.com).

FIGURE 6 | Trend of publications on initial dip in ISOI, fMRI, and fNIRS
(source: Web of Science).

2016a; Hong et al., 2018b). The signal mean, signal peak, and
signal slope in the 2–7 s (i.e., 5 s) windows from the onset were
found to yield better classification accuracies for fNIRS-BCI using
HRs (Hong et al., 2015; Naseer and Hong, 2015). Like fMRI, the
frequently used classifiers for the fNIRS features discrimination
include LDA, SVM, extreme machine learning, Bayes classifiers,
and neural networks (Chan et al., 2012; Yin et al., 2015; Bui
et al., 2016; Kim et al., 2016; Naseer et al., 2016b; Ding et al.,
2017).

Zafar and Hong (2017) recently addressed the issue of the
inherent delay by applying the initial dip detection method (i.e.,
the vector phase analysis) through changing the threshold circle

of Hong and Naseer (2016) from max(1HbO2
+ 1HbR2)1/2

to max{1HbO, 1HbR} to the classification problem of three
mental tasks that originated from the prefrontal cortex for BCI.
They examined five features of 1HbO during the initial dip
phase: signal mean, signal minimum, signal peak, skewness,
and kurtosis in different window sizes (i.e., 0–1, 0–1.5, 0–
2, and 0–2.5 s) to classify multiple tasks from the prefrontal
cortex in an offline analysis. They concluded that the signal
mean and the signal minimum as features for the initial dip
worked well in the 0–2.5 s window to classify three prefrontal
tasks using the LDA as a classifier. They demonstrated that the
moving window size in the fNIRS-based BCI can be reduced to
2.5 s using the initial dip detection method. Similarly, another
study used the mean value of 1HbO and 1HbR in the 0–
2 s window as an initial dip feature for the classification of
left- and right-hand movements (Li et al., 2017). They were
able to attain a higher classification accuracy of 85.5% using
SVM as a classifier for the two-class BCI in a reduced window
size of 0–2 s. Khan and Hong (2017) also achieved an LDA-
based high classification accuracy of 75.6% in a reduced window
size (i.e., 0–2 s) for a four-class fNIRS-BCI using the signal
minimum as an initial dip feature. Recently, the improvement
in the classification accuracies using dual threshold circles in the
vector phase diagram and the use of three gamma functions for
online fNIRS-BCI using initial dip has been proposed. Table 5
presents more details on fNIRS-BCI studies using the initial
dip.

DISCUSSION AND FUTURE
IMPLICATIONS

As observed in Figure 2, the initial dip has been studied and
detected in various modalities. Various subjects (i.e., human
and animal species) and brain areas have been considered in
these studies. Figure 5 shows the percentage breakdown of these
studies. Therefore, the question whether the detected initial dip
is/was a noise or artifact is very unlikely. The discrepancy in
the findings or the elusive nature of the initial dip may be
caused by methodological or physiological differences. Although
the initial dip has shown potential in ISOI and fMRI for
mapping the orientation columnar structure, the reliability,
reproducibility, and interpretation of the initial dip have been
argued for several years (Kim et al., 2000b; Logothetis, 2000;
Sirotin et al., 2009; Uludag, 2010; Uludag and Blinder, 2018).
Studies continued reporting about the initial dip (Tables 1,
2), but the interests in the initial dip studies in ISOI and
fMRI have significantly faded over the years because of the
inability to make wide use of it (see Figure 6), especially in
humans.

The BCI so far seems to be a potential application for the
initial dip utilization. The main objective of the BCI is to translate
the brain signal into commands instead of understanding the
brain signals in terms of NVC or diagnosis of a brain disease.
The three research issues in the BCI field are as follows: (i)
how to increase the classification accuracy, (ii) how to increase
the number of brain commands for improving the degrees
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FIGURE 7 | Brain–computer interface (BCI) framework: application of the initial dip detection.

of freedom of an external device, and (iii) how to quickly
decode the brain commands by reducing the delay. The initial
dip can help address two out of these three issues for the
BCI. First, the initial dip detection can reduce the detection
time (i.e., window size for BCI). Second, the generation of
brain commands from a restricted brain region can become
diverse, which consequentially results in an increased number of
commands from a wider brain region, because the initial dip is
spatially specific to regional neuron firing. The previous fNIRS
studies (Table 5) showed the application of the initial dip in the
BCI. Although these studies demonstrated that the utilization of
the initial dip detection can reduce the window size to 2 or 2.5 s
for fNIRS-BCI, significant research is still needed to improve the
method of analysis and signal-to-noise ratio of fNIRS signals to
achieve a better initial dip detection.

Previous fNIRS-BCI studies only used the constant DPF
analysis to detect the initial dip. Jasdzewski et al. (2003) showed

that the initial dip did not disappear when using the extreme
DPF analysis in the visual cortex. It also only appeared in
the motor cortex for plausible DPF values. Zafar and Hong
(2017) found the initial dip in the prefrontal, motor, and
visual cortices with the constant DPF analysis, but did not
observe the initial dip in the somatosensory cortex. Similarly,
most of the studies on the somatosensory cortex of a rat
did not also detect the initial dip, with a possible reason
of small capillary transit time. The detection of the initial
dip in human somatosensory should be further investigated,
and would be helpful in identifying the specific brain area in
somatosensory that can help in restoring sensation in amputees
(Ghafoor et al., 2017). More research is required to check
the effect of DPF values on the initial dip in fNIRS signals
obtained from different brain areas. This DPF analysis will help
in fNIRS brain imaging to distinguish the capillary vascular
responses.
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Figure 7 illustrates the proposed BCI framework
incorporating the initial dip detection. The main difference
from the conventional scheme that uses the HRs is that even
though the initial dip detection procedure fails, the conventional
scheme still backs up. A fail-tolerant loop must be considered
in the feature selection and classification for online control
command generation. The major concern to be addressed in
the future is the improvement of the initial dip detection for
fNIRS-BCI applications. The vector-phase analysis with a dual
threshold circle is one of the available options. However, future
research is needed to determine the optimal radius for the
threshold circles. Similarly, for online fNIRS-BCI, an extensive
future work is required to determine the best possible functions
(e.g., gamma function, Gaussian function, half cosine function,
etc.) for modeling the initial-dip-based dHRF. The possible
utilization of the initial dip in brain diagnosis and therapy is also
proposed in Figure 7 because some previous studies found initial
dip in patients (Akin et al., 2006; Suh et al., 2006a; Dutta et al.,
2015).

The delay between the oxygen consumption and the additional
blood flow results in the form of initial dip. It is not possible
for the additional blood to arrive in from a too distal area to
the epicenter of activation within a very short period of time
(Hadjistassou et al., 2016), but it comes from nearby. This delay
can vary from 0.1 to 2 s (Buxton et al., 2004). Several previous
studies have reported that the peak of an initial dip occurs at
approximately 2–2.5 s and the dip phase completes around 3.5–
4.5 s (Hu and Yacoub, 2012; Zafar and Hong, 2017). Therefore,
the selection of features and window size for the classification
of initial dip for fNIRS-BCI also needs much attention. Table 5
shows that the signal mean of 1HbO/1HbR and the signal
minimum of 1HbO extracted in the 0–2 or 0–2.5 s window
are mostly used as features for the initial dip classification. Li
et al. (2017) were able to achieve high classification accuracy in
a reduced window (i.e., 2 s) using hybrid EEG-fNIRS. Therefore,
the use of EEG-NIRS, fast optical response (Hu et al., 2011),
and adaptive signal processing algorithms (Hu et al., 2010,
2013; Hamadache and Lee, 2017; Song et al., 2017; Li et al.,
2018) can help to reduce the inherent delay in the HR, which
further result in a possible reduction of the window size. Also,
in the future, other features, including 1HbR, 1COE, and
1HbT should be investigated for further improvement of the
initial dip classification accuracy. Another interesting issue that
should be addressed in the future is the initial dip appearing
in 1HbT, which can be more reliable and spatially specific
to the neuronal activity site as compared to 1HbO or vice
versa.

Finally, the current need is to understand how the brain
works and how these neuroimaging modalities can be helpful
for mankind. Considering that fMRI has high spatial, but low
temporal resolution, further research by combining neuronal
modalities (e.g., EEG) with the HR modalities might be a more
promising brain diagnostic endeavor. The study by Dutta et al.
(2015) demonstrated that the initial dip in HbO due to anodal
transcranial direct current stimulation was associated with an
increase in the log-transformed power of EEG within 0.5–
11.25 Hz frequency band in stroke patients. Therefore, in the
future, the initial dip phenomenon might be well addressable by

combining EEG either with fNIRS or fMRI (Shah et al., 2013;
Hong and Khan, 2017; Mano et al., 2017). In summary, all
recent advancements or findings using non-invasive modalities
like EEG, fMRI, and fNIRS are adding information toward a
better understanding of the brain.

CONCLUSION

The ultimate goals of these HR-based neuroimaging modalities
are (i) to provide an understanding of the NVC and (ii) how these
modalities can be used as a means of communication to disabled
persons, resulting in the betterment of humanity. Meanwhile, the
spatial and temporal characteristics of the HR as an alternative
to the neuronal activity are still being debated. Therefore, in this
article, we presented a review on the existence and the elusive
nature of the initial dip duration of HRs in ISOI, fMRI, and
fNIRS. We discussed the brief story of the initial dip and the
beginning of the controversy regarding the presence of the initial
dip in ISOI/fMRI. We also presented the detection and the role of
the initial dip in the brain–computer interface using fNIRS.

The initial dip was successfully detected in ISOI, fMRI,
and fNIRS. Other techniques like phosphorous quenching and
direct tissue-oxygen O2 microelectrode also showed evidence for
prior oxygenation before the increase in the CBF that further
confirmed the existence of the initial dip. Therefore, the detected
initial dip using the abovementioned modalities is not likely to
be an artifact. However, the discrepancy in detecting the initial
dip is most likely caused by methodological, physiological, and
modality differences.

Furthermore, the BCI seems to be a potential application
for the initial dip utilization. Despite the low spatial resolution
of fNIRS compared to ISOI and fMRI, fNIRS can be used for
BCI applications with the advantage of providing simultaneous
information on oxyhemoglobin and deoxy-hemoglobin,
portability, and low cost. The use of the initial dip can help
reduce the window size for generating the brain commands for
BCI. Initial dips can also help increase the number of commands
from a wide area because they are more spatially specific to the
neuronal sites. Therefore, research on the initial dip must be
continued, and more sophisticated methods of analysis must be
developed to reduce the elusiveness surrounding the initial dip.
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