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The growing interest of the industry production in wearable robots for assistance and

rehabilitation purposes opens the challenge for developing intuitive and natural control

strategies. Myoelectric control, or myo-control, which consists in decoding the human

motor intent from muscular activity and its mapping into control outputs, represents a

natural way to establish an intimate human-machine connection. In this field, model

based myo-control schemes (e.g., EMG-driven neuromusculoskeletal models, NMS)

represent a valid solution for estimating the moments of the human joints. However,

a model optimization is needed to adjust the model’s parameters to a specific subject

and most of the optimization approaches presented in literature consider complex NMS

models that are unsuitable for being used in a control paradigm since they suffer

from long-lasting setup and optimization phases. In this work we present a minimal

NMS model for predicting the elbow and shoulder torques and we compare two

optimization approaches: a linear optimization method (LO) and a non-linear method

based on a genetic algorithm (GA). The LO optimizes only one parameter per muscle,

whereas the GA-based approach performs a deep customization of the muscle model,

adjusting 12 parameters per muscle. EMG and force data have been collected from

7 healthy subjects performing a set of exercises with an arm exoskeleton. Although

both optimization methods substantially improved the performance of the raw model,

the findings of the study suggest that the LO might be beneficial with respect to GA

as the latter is much more computationally heavy and leads to minimal improvements

with respect to the former. From the comparison between the two considered joints, it

emerged also that the more accurate the NMS model is, the more effective a complex

optimization procedure could be. Overall, the two optimized NMS models were able

to predict the shoulder and elbow moments with a low error, thus demonstrating the
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potentiality for being used in an admittance-based myo-control scheme. Thanks to

the low computational cost and to the short setup phase required for wearing and

calibrating the system, obtained results are promising for being introduced in industrial

or rehabilitation real time scenarios.

Keywords: neuromusculoskeletal model, EMG, upper limb, optimization, myo-control, genetic algorithm, torque

prediction, exoskeleton

1. INTRODUCTION

In the last decades the interest in powered exoskeleton suits
has known a substantial growth (Hill et al., 2017). Exoskeletons
are “wearable robots” conceived for being worn by the users
in order to assist or increase their physical performance (Wolff

et al., 2014; Buongiorno et al., 2018). This kind of devices
are mostly exploited in industrial applications, with the aim
of decreasing workers’ pain and preventing musculoskeletal
disorders (Bostelman et al., 2017; de Looze et al., 2017). They

are also used in (neuro)rehabilitation applications with the aim
of enhancing the recovery process and minimizing functional
disability, with consequent earlier reintegration in activities of
daily living (Frisoli et al., 2016; Veerbeek et al., 2017).

Theoretically, myoelectric control (or myo-control) represents
a straightforward way to decode the human motor intent from
electromyographic signals (EMG) and encode it into high-
level input signals for controlling exoskeletons or prosthesis
(Leonardis et al., 2015; Farina et al., 2017; Vujaklija et al., 2017).
Despite the technology behind the development of exoskeletons
is rapidly growing, the myo-control schemes have yet to be
validated as viable control approach for commercial applications
in robotic exoskeletons control (Ison and Artemiadis, 2014).
Indeed, the myo-control schemes based on pattern recognition
are not suitable for being used in rehabilitation or industry
applications due to both their inability to simultaneously
activate several degrees of freedom (DoFs) and the low
classification accuracy (Hahne et al., 2017). In addition, pattern
recognition approaches do not allow to modulate the level of
robotic assistance resulting in a non-natural user-exoskeleton
interaction. As example, a trigger-based control scheme allows
the user to start a predefined robot movement without being able
of controlling the speed or the direction of the movement once
it is started (Barsotti et al., 2015). It follows that simultaneous
and proportional control paradigms have been gaining attention
over the last years (Jiang et al., 2012; Buongiorno et al., 2015,
2016, 2017; Lobo-Prat et al., 2017), establishing themselves
as promising tools to reduce the gap between research and
commercial applications (Roche et al., 2014).

Among the myo-control schemes, the ones relying on
the biological aspects of the human control have revealed
to be the most suitable for real scenario applications (Aoi
and Funato, 2016; Crouch and Huang, 2017). The two
main “biologically inspired” schemes for myo-control are:
the synergistic approach and the model-based approach.
Although the debate about whether the human motor system
composes complex movements through flexible combinations of
elementary bricks (also called muscle synergies) or not (Kutch

and Valero-Cuevas, 2012; Berger et al., 2013), several studies
investigated the synergistic approach for myoelectric control
focusing on the estimation of the force applied by the hand
(Berger and d’Avella, 2014; Buongiorno et al., 2017). The model-
based paradigms, that uses EMG-driven neuromusculoskeletal
(NMS) models, are particularly suited for the estimation of
the human’s articulation moments (Lloyd and Besier, 2003;
Buchanan et al., 2004; Sartori et al., 2012, 2015), thus theoretically
representing a valid solution for motor intention detection in
myo-control. On the other hand, such detailed EMG-driven bio-
mechanical models require long lasting setup and calibration
procedures since they consider (1) the muscle activity of a large
number of muscles and (2) a big set of model’s parameters that
has to be optimized (Durandau et al., 2018). These aspects lead to
a low usability of the model-based myo-control scheme in a real
application scenario, of course.

Several studies in literature demonstrated the ability of
accurately estimating the joints torques of high detailed bio-
mechanical models which require long lasting setup and
calibration procedures (Durandau et al., 2018). Lloyd et al.
proposed a detailed model of the knee composed by 15 muscles
and adjusted 4 parameters for each muscle without considering
the optimization of the NMS model geometry (Lloyd and Besier,
2003). Sartori et al. built a sophisticated knee joint model with 13
muscles, and they found that on the basis of themodel complexity
the optimization procedure could last from few minutes to 5
h (Sartori et al., 2012). Buchanan et al. modeled and tested
a human elbow with seven primary muscles during isometric
contractions (Buchanan et al., 2004). Although Buchanan et al.
considered many muscles, they optimized only four EMG-
dependent parameters without considering the NMS geometry
optimization. In Pau et al. (2012) the authors used a two-muscles
elbow’s model (24 parameters in total) to estimate the elbow’s
movements. The optimization procedure, based on a genetic
algorithm, featured of an execution time of about an hour.
Cavallaro et al. (2006) presented an EMG-driven NMS model
with a large set of optimized parameters (11 per muscle) to
estimate the elbow and the wrist moments from the activity of
12 muscles. The optimization was based on a genetic algorithm
- optimization time is not reported. Fleischer et al. proposed a
simplified model of the knee composed by six muscles (Fleischer
and Hommel, 2008) and optimized 4 parameters per muscle. The
model presented by Fleischer et al. has then been used to control
a lower limb exoskeleton.

From the analysis of the literature, it then emerged that really
few research groups (Fleischer and Hommel, 2008; Pau et al.,
2012) have so far investigated the performance of simplified
versions of a EMG-driven NMS model to reduce both the setup
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and calibration phases. It might be thought that the lack of
research works investigating the use of EMG-driven models for
the online control of upper limb devices is explained by: (1) the
shortage of simple optimization approaches, and (2) the absence
of study that validate and discuss the performance of model
composed by a reduced number of muscles.

Given the demonstrated ability of NMS model in predicting
joints torques, in this work we propose a minimal EMG-driven
NMS model of the elbow and shoulder joints for moment
prediction, and we present a comparison between a simple linear
optimization procedure (LO) vs. a more complex one based on
a genetic algorithm (GA-based). In addition to the algorithm
complexity, the two procedures differ also in the number of
optimized model’s parameters: the GA-based method optimizes
12 parameters per muscle, whereas the linear method adjusts
only 1 parameter per muscle. In this way it is possible to
compare a really fast approach (LO) which optimizes only the
basic model parameters (i.e., body mass and maximum muscle’s
force) against one which takes into account a bigger set of the
muscle variables and non-linear relationships (GA-based). This
manuscript extends our previous works (Buongiorno et al., 2015,
2016) under three main aspects: increasing the number of tested
subjects for both methods, extending the investigation of the LO
method from the elbow joint only to both the elbow and shoulder
joints and, reporting a structured comparison between the two
methods. It is worth mentioning that both methods have been
applied on a simplified upper limb model featuring only four
muscles for the shoulder and two muscles for the elbow. Hence,
the proposed model has the main advantage of requiring a short
time for both the setup and the calibration phases making such
approach suitable for being introduced real applications.

In the sections that follow, we present the experimental setup,
the adopted EMG-driven NMS model, the description and the
comparison of the two proposed optimization methods. We
present the data acquisition protocol and the experimental setup,
the adopted EMG-driven NMS model, and the description of the
two optimization approaches in the second section. In the third
section, we report the results of the comparison study including
the statistical analysis. Finally, we discuss the main findings of the
study correlating them to the industrial andmedical applications.

2. MATERIALS AND METHODS

We asked participants to wear an upper limb exoskeleton and
reach force-targets in a virtual environment provided bymeans of
a head-mounted display (HMD). The human hand was rendered
as a virtual spherical object moving accordingly to the isometric
force applied to the exoskeleton’s handle provided with a 3-axis
force transducer.

2.1. Participants
Seven healthy, right-handed male subjects (mean age 26.7 years,
SD 2.6, age range 23–30) participated in the experiments after
giving written informed consent. The experimental procedures
were conducted in accordance with the Declaration of Helsinki
and approved by the Ethical Review Board of Scuola Superiore

Sant’Anna. All except one subject had no previous experience
with upper-limb exoskeleton interaction.

2.2. Experimental Setup
Subjects were asked to wear the upper limb exoskeleton
Light-Exoskeleton (L-Exos, Frisoli et al., 2005) on the right
arm (Figure 1A) and grab the sensorized handle (or end-
effector, EE). Subjects’ arm was then fixed to the exoskeleton’s
structure by means of an appositely conceived belt. The L-Exos
has four actuated DoFs conceived for supporting elbow and
shoulder movements (shoulder adduction/abduction, shoulder
flexion/extension, shoulder internal/external rotation and elbow
flexion/extension) and one passive DoF used for measuring
the wrist prono-supination angle. Subjects were immersed in a
virtual room characterized by only textured floor and walls by
wearing a HDM (Oculus Rift, Oculus VR). The virtual engine
displayed a spherical red cursor matching the position of the L-
Exos’s handle, thus providing the user with a visual perception
of his real hand position (Figure 1A). Surface electromyographic
(EMG) activity was recorded from the following four muscles
acting on the shoulder and elbow: biceps brachii long head
(BB), triceps brachii long head (TB), anterior deltoid (AD), and
posterior deltoid (PD) (Figure 1B). These four muscles have
been selected since BB and TB features the higher moment
generation capacity among all the muscle crossing the elbow
joint (Murray et al., 2000), whereas AD and PD are the
most activated muscles during shoulder flexion and extension
(Kronberg et al., 1990). EMG activity was recorded with passive
Ag/AgCl foam pre-gelled electrodes with a diameter of 24 mm
placed in bipolar configuration (inter-electrode distance set to 20
mm). All electrodes were connected to the g.USBamp amplifier,
(http://www.gtec.at/) and digitally converted (1,200 Hz sample
frequency, 12 bit resolution). The amplifier provided a high SNR
built-in digital filter (5 –500 Hz) and the notch filter was set at
50 Hz. Ground and reference electrodes were positioned on the
right clavicle. All the measurements were conducted following
SENIAM recommendations (Hermens et al., 1999). The L-Exos’s
pose (joint angles) and the force applied to the EE were also
recorded with a sample frequency of 1,200 Hz. The virtual scene
was designed using the XVR software (VRMedia) and rendered
by a PC workstation with a refresh rate of 60 Hz. The position of
the virtual cursor was computed in real time using a simple spring
model that elaborates the 20 Hz low-pass filtered force data.

2.3. Data Acquisition Protocol
The acquisition session started with the recording of the EMG
data corresponding to the maximum voluntary contraction
(MVC). The subject is seated in front of a desktop with the
his right elbow flexed at 90 deg and fixed to the desktop
itself, and is asked to apply in sequence the maximum force
against the desktop along four directions (upward, downward,
frontward and rearward respect to the desktop) and maintain
the maximum contraction for 10 s. The subject, after 10 min
break, was invited to wear both the exoskeleton and the HMD
and grasp the exoskeleton’s handle while supporting his arm.
Once the subject is immersed in the virtual environment, he
was asked to perform isometric reaching tasks following the
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FIGURE 1 | The experimental setup. (A) The subject wears the upper limb exoskeleton controlled in position and the HMD displaying the cursor and the target

spheres in a 3D virtual environment. (B) The neuromusculoskeletal model adopted in the study and the electrodes placement. (C) The five end-effector positions lying

on the sagittal plane explored in the experiment.

instructions shown in the virtual scenario. In particular, the tasks
consisted in moving a virtual cursor (a red semi-transparent
sphere) from the rest position (i.e., zero force) to the target
position (a green semi-transparent sphere) by applying isometric
force at the EE (see Figure 1A). During the acquisition protocol,
the subject has to reach 8 randomly assigned targets (2 targets
× 4 directions) in each of five different positions of his right
hand. The five predefined hand’s positions lie on a plane that is
parallel to the sagittal plane and crosses the shoulder articulation
(see Figure 1C-the authors will refers to such plane as “sagittal
plane”). The distance between the target and the rest cursor
position was set such that the module of the force needed to reach
the target was equal to 15 N. In order to provide a more natural
interaction, the cursor position was not restricted in the sagittal
plane. A trial consisted in the reaching of a single target. At the
beginning of each trial, the subject is requested to keep the red
cursor still for 2 s. Next, a green target sphere appears and subject
had to reach the target and keep the cursor into the target for
0.2 s. The admitted force error is set to 2 N (proportional to the
difference between the radius of the target sphere and the radius
of the cursor sphere). Once the task was successfully completed
the force target disappeared and the subject was asked to return
in the rest position for ending the trial.

The adopted strategy to drive the robotic exoskeleton at
the five experimental poses is based on the bounded jerk
on-line trajectory planning proposed in Frisoli et al. (2013).
A proportional-derivative joint position control with a feed-
forward gravity compensation was used to both control the
robot pose during the movements among the five poses and to
guarantee the isometric condition during each trial. The control

torque vector of the L-Exos τJ (4 × 1) is defined at joint level by
the following equation:

τJ = KP(θ
∗ − θ)+ KD(θ̇∗ − θ̇)+ τG(θ) (1)

where θ∗ and θ are the vectors (4× 1) of the desired and current
joint angles, respectively; θ̇∗ and θ̇ are the vectors (4 × 1) of
the desired and current estimated joint speeds, respectively; KP

andKD the diagonal positive-definite proportional and derivative
gain matrices (4 × 4), respectively. To compensate the mass of
each moving links of the robotic exoskeleton, the feedforward
compensation term, τG(θ), based on the kinetostatic model of the
robot, was provided.

2.4. The Adopted EMG-Driven Hill-Based
NMS Model
In order to shorten the time needed for the system calibration and
setup, thus making the approach suitable for the potential clinical
and industrial applications, we adopted a simplified version of the
EMG-driven NMS model reported in Buchanan et al. (2004) and
Lloyd and Besier (2003) (see Supplementary Material for a brief
description of the model). In particular, we have introduced the
following simplifications:

• the muscle activation dynamic was not considered since it
is strongly dependent on both electrode placement and skin
condition (Lloyd and Besier, 2003), in fact such a large
variability (that has also been reported in Sartori et al., 2012)
prevents the choice of a default (or not optimized) value for the
recursive filter’s parameters. This simplification was already
introduced in Cavallaro et al. (2006).
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• in order to minimize the level of detail of the model, the
optimal muscle fiber length, lo was considered independent
from the muscle activation level. Lloyd et al. have
demonstrated that such simplification on the knee joint
leads just to a slight decrement of the moment estimation
performance (from R2 = 0.91 to R2 = 0.85) (Lloyd and
Besier, 2003).

• we considered a stiff-tendon model; this assumption is
supported by Sartori et al. (2009, 2012), which determined that
a stiff-tendon model do not compromise the model prediction
ability. In particular in the work of Sartori et al. (2012) a stiff-
tendon model introduced an error that, on average, was <10%
of the range of variation observed in the reference values
respect with an elastic-tendon model. However, the moments
predicted with the stiff-tendon model were better correlated to
the experimental moments.

Considering that the NMS model has been trained in isometric
conditions (v(t) ≈ 0,∀t that implies fv(v) ≈ 1 - see
Supplementary Material for a detailed definition of fv(v)), it
results that the adopted EMG-driven model could be described
by the following equations:

τ p =

N
∑

i= 1

τi =

N
∑

i= 1

Fmt
i ri(θ) (2)

Fmt = Ft = Fm cosφ = FmO

[

fl(l̃) · a+ fP(l̃)
]

cosφ (3)

l̃ =
l

lo
, a(t) =

eAu(t) − 1

eA − 1
, φ = arcsin

lo sinφo

l
(4)

u(t) = e(t − d) (5)

where τ p is the predicted articulation moment, N is the number
of muscles considered in modeled articulation, τi is the moment
contribution of the i-th muscle-tendon unit, r(θ) is the moment
arm that depends on the articulation angles, Fmt is the force
generate by the muscle-tendon unit, Ft is the tendon force, Fm

is the force generated by the muscle fibers; FmO is the maximum

isometric muscle fiber force; fl(l̃) is the normalized fiber length-

force relationship; fp(l̃) is the normalized fiber length- passive
force relationship; a is the muscle activation level; l and v are

the fiber length and fiber contraction velocity, respectively; l̃ is
the normalized fiber length; lo is the optimal fiber length; φo is
the pennation angle at lo. The parameter A identifies the non-
linearity shape factor (A can range in [−3, 0] Lloyd and Besier,
2003)and d is the electro-mechanical delay (range from 10 to
150 ms Corcos et al., 1992). e(t) represents the pre-processed
EMG signal obtained with the three consecutive following
steps:

1. high-pass filtered (20 Hz second-order Butterworth);
2. rectified and normalized over the MVC;
3. low-pass filtered (5 Hz second-order Butterworth).

TABLE 1 | List of the adopted EMG-driven NMS model parameters.

Parameter Description Default value GA LO

Muscle/Articulation Variables

(1) x electromechanical delay 80 ms (experimentally set) – –

(2) A non-linearity factor −0.2 Sartori et al. (2012) X –

(3) lo optimal fibers length from Holzbaur et al. (2005) X –

(4) φo pennation angle at lo from Holzbaur et al. (2005) – –

(5) Fm
O

maximum isometric force from Holzbaur et al. (2005) X X

Muscle/Articulation Relationships

(6) lm(θ ) fibers-length/articulation-

angle

from Holzbaur et al. (2005) X –

(7) fA (̃l) normalized

active-force/fiber-length

from Holzbaur et al. (2005) X –

(8) fP (̃l) normalized

passive-force/fiber-length

from Holzbaur et al. (2005) – –

(9) r(θ ) moment

arm/articulation-angle

from Holzbaur et al. (2005) X –

Arm Gravity Model Parameters

(10) Ma arm mass percentage of body mass X X

(11) Mfh forearm/hand mass percentage of body mass X X

(12) L1 arm length measured – –

(13) l1 position of the arm’s center

of mass

half of the arm length – –

(14) l2 position of the forearm’s

center of mass

half of the forearm-hand

length

– –

For each of the optimization procedure (GA-genetic algorithm and LO-linear optimization),

the checkmark and the dash indicate that the parameter/curve has been optimized or not,

respectively. The parameter values have been set as the default values in case the specific

parameter was not considered in the optimization. The default values have been also used

to define ranging intervals used by the genetic algorithm reported in Table 2.

2.5. Model Optimization Procedures:
Genetic Algorithm and Linear Approach
It is well-known that an optimization procedure is required for
adapting the model to the specific subject, and thus improving
the prediction of the joint moments. In this work the following
two optimization procedures are proposed and compared:

1. a genetic algorithm based optimization procedure
(GA-based);

2. a linear optimization procedure (LO).

Although both the GA-based and the LO approaches optimize
the same EMG-driven NMS model (see section 2.4), the two
methods are substantially different and consider the optimization
of distinct sets of model’s parameters (see Table 1). Since the arm
weight affects the tonic component of the EMG signals, both
the optimization procedures considered the gravitational model
of the arm. As it will be deeply discussed below, both methods
require also the knowledge of a detailed muscluloskeletal model
that specifies the numerical value of all used parameters and the
trends of all relationships. Table 1 reports the default (normative
or not optimized) value/trend of the model parameters/curves
which have been taken from different sources:

• the literature (e.g., muscle fiber length, optimal muscle fiber
length, etc);
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• measures of subject’s body (e.g., bones’ length and body mass);
• from experimental trials (e.g., the electromechanical delay).

All the parameters/curves obtained from the literature have been
extracted by the Upper-Limb MusculoSkeletal Model developed
by Holzbaur et al. (2005) using the simulation software OpenSim
(Delp et al., 2007).

2.5.1. The Arm Gravity Model
Here, we briefly report the expressions of the gravity moments
at the shoulder and elbow articulations, τ

g
S and τ

g
E , respectively.

The two-dimensional gravity model is described by the following
equations that are functions of the shoulder’s elevation angle θ1
and elbow’s flexion angle θ2:

τ
g

el
= Mfh · l2 · g · sin(θ1 + θ2)

τ
g

sh
= Mfh · L1 · g · sin(θ1)+Ma · l1 · g · sin(θ1)+ τ

g

el

(6)

where g is the gravitational acceleration, the armmass is indicated
with Ma, the forearm/hand mass with Mfh, the length of the
arm is L1 while l1 is the distance between the center of mass
of the arm and the rotational joint axes of the shoulder and l2
is the distance between the center of mass of the forearm/hand
system and the rotational joint axes of the elbow. The arm length
(L1) was measured from the acromiale to radiale, whereas the
forearm/hand system length is measured from the bony tip of
the elbow to the tip of the middle finger. The distances l1 and
l2 were set equal to the half of the arm length and to the half of
the forearm plus hand length, respectively.

2.5.2. GA-Based Optimization Procedure
A GA-based optimization procedure allows to overcome
the difficulty of a non-linearity optimization problem
(Menolascina et al., 2009). In order to reduce the computational
complexity of the GA, we discarded the following four
parameters from the optimization procedure:

1. the value of the electromechanical delay, that has been set to 80
ms to maintain the temporal synchronization between muscle
activation signals and moment signals (as done in Lloyd and
Besier, 2003). This value has not been optimized since it is
affected by a minimal range variation (Cavanagh and Komi,
1979).

2. the pennation angle at the optimal fiber length has not been
optimized as done in most of the previous studies (Lloyd and
Besier, 2003; Buchanan et al., 2004; Sartori et al., 2012, 2015)

3. the normalized passive-force/fiber-length relationship.
Since the exercise was designed in such a way that the
subjects’ muscles never reached elongated configurations, we
considered negligible the force contribution of the muscle
tissue elasticity.

4. the length of the considered body’s links that have been
measured.

The muscle/articulation relationships lm(θ) and r(θ), were fitted
using a 3rd order polynomial function. It results that four
coefficients had to be optimized for each relationship (ali and ari
indicate the i-th coefficient of lm(θ) and r(θ), respectively). The

TABLE 2 | Allowed variation range of each optimized NMS parameter.

No Parameter Bound

1 A [−3, 0[

2 Fm
O

Fm
O
’×[0.7, 4]

3 lo lo’±30%

4 σA σA’±10%

5–8 al
i
of l, i = 1, ..., 4 al

i
’±30%

9–12 ar
i
of r, i = 1, ..., 4 ar

i
’±30%

13 Ma Ma’±30%

14 Mfh Mfh’±30%

The parameter with the apostrophe indicates the default (or non-optimized) value.

active force/fibers-length fA(l̃) has been fitted with a Gaussian
function with unitary mean and the standard deviation σA as
the optimized parameter. The fitting procedures were conducted
using the least squares approach, obtaining an averaged adjusted
R2 coefficient of 0.95± 0.15.

GA cost function. The root mean square error (ERMS) between
τ p - τ g and τm, has been selected as the cost function of the GA
to be minimized:

CostFunction =

√

∑K
i= 1(τ

m
i − (τ

p
i − τ

g
i ))

2

K
(7)

where K is the number of time samples composing the “Training
set,” i is the index of the i-th time sample, τ p is the total estimated
torque by the NMS model, τ g is the gravity torque estimated by
the arm gravity model (see section 2.5.1) and τm is the interaction
torque between the subject and the L-Exos computed using the
tri-axial force sensor at the EE and the positional Jacobian (the
superscriptm stands formeasured).

Table 2 reports the list of all the optimized muscle parameters
with the corresponding bounds – the parameter with the
apostrophe in the right column indicates the default value.
Regarding the parameter A we adopted the boundaries reported
in Buchanan et al. (2004), whereas, in order to let the NMSmodel
to account for the limited number of muscles, we set the variation
range of the maximum muscle force equal to FmO ’×[0.7, 4]. The
bounds of the other parameters were set as a percentage of
variation of the default value. The default value of body mass
parameters (Ma, Mfh) were set as percentages of body mass
(Winter, 1990).

2.5.3. Linear Optimization Procedure
The linear optimization method is based on the same set of
equations used by the GA-based approach (Equations 2–6) but
only considers the optimization of:

• the maximum muscle force FmO to account for the limited
number of modeled muscles;

• the mass of the modeled body segments due to its high
variability.

This minimal set of optimized variables has been chosen for
two main reasons: (1) to express the model in a form that is
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“linear in the parameters,” and (2) to adjust the two main
macroscopic parameters that suffer from a high inter-subjects
variability. The linear expression of the model can be easily
obtained as follows.

Substituting the definition of Fmt (Equation 3) in the
Equation 2, the total articulation torque τ p can be expressed as
follows:

τ p =

N
∑

i= 1

FO
m
i Ai, Ai = ri(θ)·

[

fli(l̃i) · ai + fPi(l̃i)
]

cosφi (8)

In static conditions, the total torque exerted by a human
articulation can be written as follow:

τ h = τ g + τ e; τ g =

J
∑

j= 1

τ gj (9)

where τ g is the gravity torque applied by the considered
articulation to sustain the distal part of the limb and τ e is the
torque applied to balance other external forces. The term τ gj

represents the gravity contribution of the j-th limb link acting
on the considered articulation. It is worth noting that in static
conditions τ p and τm are estimations of τh and τe, respectively.
Then it results:

τ e =

N
∑

i= 1

FO
m
i Ai −

J
∑

j= 1

f scj τ ′gj (10)

where τ ′gj is the non-optimized j-th gravity contribution and f scj
is a scale factor that will be optimized in order to adjust the j-
th gravity term (or, in other words, the mass of the j-th limb
link). Since τ e is expressed as a linear combination of parameters
(Equation 10), it results that, if the terms Ai and τ ′gj are known,
it is possible to optimize the coefficients FO

m
i and f scj using a

linear optimization algorithm. The cost function to beminimized
is equal to the cost function used in GA-based approach (see
Equation 7).

2.6. Method Comparison: Optimization
Experiments
The performance of the two proposed optimization methods
were evaluated using the datasets acquired as described in
section 2.3. Firstly, the training and validation sets were created
by randomly assigning each of the two isometric contractions
(per direction and per point) to one set or to the other one.
Each optimization method was then used to optimized both
the shoulder and elbow articulations as two independent NMS
models using the training dataset. The shoulder model includes
the BB, TB, DA, and DP muscles, whereas the elbow model
considers only the BB and TB muscles.

2.6.1. GA-Based Optimization
The non-linear GA-based optimization employs Genocop III that
is a genetic algorithm for constrained and unconstrained
optimization (Michalewicz and Nazhiyath, 1995). The
chromosome used for the shoulder’s model optimization is

composed by 50 genes (12 muscle parameters times 4 muscles
plus 2 parameters of the gravity model-see Table 2), whereas the
chromosome for the elbow’s model optimization considers 25
genes (12 muscle parameters times 2 muscles plus 1 parameter
of the gravity model-see Table 2). Genocop III was set with two
different populations composed by 10 chromosomes each and
with the following two stop criteria:

1. variation of the best fitness function value less than or equal to
a certain threshold;

2. maximum number of generations reached.

2.6.2. Linear Optimization
Concerning the linear optimization of both shoulder and elbow
models, we used the linear least squares algorithm. Focusing on
the shoulder model, the equation 10 can be written as follow:

τ esh = FO
m
−BBABB + FO

m
−TBATB + FO

m
−DAADA + FO

m
−DPADP

− f scshτ shg − f scel τ
el
g (11)

whereas the elbow model can be expressed with:

τ eel = FO
m
−BBABB + FO

m
−TBATB − f scel τ

el
g . (12)

2.7. Performance Measures and Statistical
Analysis
We compared the two proposed optimization methods
evaluating the estimation performance on the validation dataset
in terms of coefficient of determination (R2) and root mean
square error (ERMS) between the measured and predicted
torques. Differences in performance were assessed by a 3 × 2
repeated measures factorial design. The involved factors were
the model optimization state (non-optimized, optimized with
the GA-based method, optimized with the linear method) and
the investigated articulation (elbow and shoulder). A 2-way
ANOVA test was then conducted separately for each of the two
performance metrics extracted (ERMS and R2). The homogeneity
of variance was assessed by means of the Mauchy test and, in case
of significance, the Greenhouse-Geisser correction was adopted.
Normality of the data was assessed by means of the Lilliefors test.
Finally, we followed up the interaction in case of a significant
interaction between the two factors.

3. RESULTS

To address the question whether the GA-based method performs
better than the linear one on a new dataset, i.e., validation
dataset, the twomethods were compared in terms of R2 and ERMS

between the moment predicted by the optimized model and the
reference joint moments.

Figure 2 reports the performance measures for each subject
before the optimization and after the two different optimization
procedures. The ANOVA test conducted using the ERMS

performance highlighted a high significant effect of the
optimization method and a significant effect of the investigated
articulation as well (Optimization method F(2,12) = 24.4, p <

0.001, η2p = 1.00; Joint F(1,6) = 8.7, p = 0.026, η2p = 0.39).
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FIGURE 2 | ERMS and R2 performance obtained in the experiment. Left and right columns relate to the elbow and shoulder joints, respectively. The first row reports

the ERMS performance, and the second row the R2 performance. Each panel reports the performance for each subject and the averaged performance with the

standard deviations. Asterisks mark the significance of the Bonferroni corrected post-hoc comparison tests (* < 0.05 and ** < 0.01).

There was also a significant ordinal interaction between the
two factors, F(2,12) = 7.5, p = .008, η2p = 0.87. Follow-up
Bonferroni-adjusted pairwise comparison indicated that for both
joints the two optimization methods lead to a significant better
performance than the non-optimized models. Interestingly, as
for the elbow joint we found that the error obtained with the
Non-Linear optimization method was significantly lower than
the one obtained with the Linear method (p = 0.034), the
difference found for the shoulder joint was not significant (p =

0.140) even though the Non-Linear method lead to smaller
ERMS.

Regarding the ANOVA test conducted on the R2 coefficients,
we found a highly significant effect of the optimization method
and, even though there was no effect of the Joint factor, a
significant ordinal interaction effect was found ( Optimization
method F(2,12) = 50.8, p < 0.001, η2p = 1.00; Joint F(1,6) = 3.6,

p = 0.105, η2p = 0.36; interaction F(2,12) = 9.2, p = .004,

η2p = 0.93). Follow-up Bonferroni corrected post-hoc tests, fixing
the level of the Joint factor, revealed that, for both Joint factor’s
levels, the R2 obtained with the non-linear optimization method
was significantly higher than the one obtained with the linear
optimization method (p = 0.016 and p = 0.034 for elbow and
shoulder, respectively).

Interestingly, fixing the level of the optimization state factor
lead to different results regarding the two ANOVA tests
conducted over the two performance metrics. In particular, the

TABLE 3 | R2 performance post-hoc comparisons for each joint.

Articulation Opt. State (I) (J) p-value

(I) (J) µ ± σ µ ± σ

Elbow No GA 0.81± 0.06 0.90± 0.04 0.002

No Lin 0.81± 0.06 0.85± 0.06 0.015

Lin GA 0.85± 0.06 0.90± 0.04 0.016

Shoulder No GA 0.82± 0.06 0.92± 0.03 0.002

No Lin 0.82± 0.06 0.91± 0.03 0.001

Lin GA 0.91± 0.03 0.92± 0.03 0.034

ERMS on the shoulder joint was significantly higher than the
elbow ERMS for both the non-optimized model and the GA-based
optimized model, whereas concerning the model optimized with
the linear method there was no significant difference between
the ERMS of the two joints. The details about the post-hoc
comparison are reported in Tables 3, 4 for the R2 and the ERMS,
respectively.

The durations of the linear and GA-based optimization
procedures are 0.0010 ± 0.0005 s and 90 ± 30 s, respectively.
All the tests have been run on a PC with Microsoft
Windows7 64 bit, CPU quad core i7 1.73 GHz and 8 GB
RAM.
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TABLE 4 | ERMS performance Bonferroni corrected post-hoc comparisons for

each joint.

Articulation Opt. State (I) (J) p-value

(I) (J) µ ± σ [Nm] µ ± σ [Nm]

Elbow No GA 2.89± 0.68 1.39± 0.25 0.010

No Lin 2.89± 0.68 1.72± 0.35 0.030

Lin GA 1.72± 0.35 1.39± 0.25 0.022

Shoulder No GA 4.67± 1.87 1.73± 0.36 0.012

No Lin 4.67± 1.87 1.86± 0.39 0.015

Lin GA 1.86± 0.39 1.73± 0.36 0.140

4. DISCUSSIONS

In this study we showed that the shoulder and elbow moment,
generated along the sagittal plane in isometric conditions,
could be predicted using a minimal upper limb NMS model
optimized with a simple linear approach. Although the isometric
condition is far from the natural functioning of the muscles in
daily-life activities (Merletti and Farina, 2016), we considered
and optimized the model in isometric conditions with the
goal of reducing the model complexity, that is in line with
the main rationale of the study. This choice has been done
already in previous works (Manal et al., 2012; Buongiorno
et al., 2016), in which a model optimized in isometric
conditions was used in quasi-static conditions for the real-time
estimation of joint torques. The linear optimization approach
has been compared with a GA-based optimization one. The
two optimization methods differed not only for the algorithm
complexity, but also in terms of the number of optimized
parameters.

As reported in Figure 2, both the proposed optimization
methods were able to significantly improve the articulation
moment estimation. As expected, these significant improvements
clearly evidenced the need for an optimization procedure to
adapt the model to the specific subject. In particular, considering
both the proposed approaches together, the average ERMS

percentages of improvement due to the optimization methods
were of 46.1 and 61.57% for the elbow and the shoulder,
respectively, and the average R2 percentages of variation were
of 7.6 and 12.23% for the elbow and the shoulder, respectively.
Looking at Figure 2, it is interesting to note how both
the optimization procedures lead to higher improvement for
shoulder articulation than for the elbow articulation. This finding
could be related to the fact that the proposed model for
the shoulder is much more approximated than the adopted
model for the elbow model. In fact, among the nine muscles
crossing the elbow joint (nine muscles, i.e., Triceps Long,
Triceps Lateral, Triceps Medial, Anconeus, Supinator, Biceps
Long, Biceps Short, and Brachialis Brachioradialis) the biceps
and the triceps could be easily considered the two main muscles.
Moreover, the elbow joint could be considered an articulation
with only one DoF. On the other hand, the shoulder can
be considered as a 4 DoFs articulation (Seth et al., 2016)

actuated by a multitude of muscles (18 muscles, i.e., Deltoid
Anterior, Deltoid Middle, Deltoid Posterior, Supraspinatus,
Infraspinatus, Subscapularis, Teresminor, Teresmajor, Pectoralis
major Clavicular, Pectoralis major Sternal, Pectoralis major Ribs,
Latissimus dorsi Thoracic, Latissimus dorsi Lumbar, Latissimus
dorsi Iliac, Coracobrachialis, Biceps Long, Biceps Short, and
Triceps Long) whereas the presented NMS shoulder model
considered only four muscles. Hence, our model did not consider
seven muscles of the elbow joint and 13 muscles of the shoulder
joint (the Deltoid Middle should not give a contribution in
flexion/extension in the sagittal plane) and it has to be noted that
for each muscle there are a variety of parameters to be optimized.

Focusing on the comparison between the two optimization
methods, an interesting aspect emerged following up the
interaction of the ANOVA tests. Regarding the elbow joint,
the GA-based method is significantly more effective in moment
prediction than the linear method (p < 0.05 for both the ERMS

and R2 performance). This statement is not true for the shoulder
model, where the difference between the two methods is not
significant in term of ERMS (p = 0.140). In fact, looking at the
percentage of variation of ERMS from the raw model, the GA-
based approach reached an improvement of 51.78 and 61.57%
for the elbow and the shoulder respectively, whereas the linear
procedure obtained a percentage of variation of 40.51 and 60.19%
for elbow and shoulder, respectively (see Figure 2). Thus, it can
be noted that there is a difference between the two methods
of 11.2 percentage points for the elbow vs. the 2.7 points for
the shoulder. This is quite interesting since these findings could
actually reveal that a deep optimization of the NMS model of
a specific articulation is more effective if the modeled muscles
are representative of the articulation. Hence, we could claim
that, the use of the linear method to optimize a limited number
of model parameters leads to similar performances achieved
by optimizing a large set of parameters using a more complex
and computationally expensive approach (GA-based). This result
could also suggest a way for selecting the best approach between
adjusting a large set or a small set of parameters based on the
level of model simplification (in terms, for instance, of number of
considered primary muscles).

The big computational time needed for calibrating a NMS
model represents a well-known problem in literature (Sartori
et al., 2012, 2009). In particular, a long optimization procedure
limits the use of model-based approach in myo-control. As
the optimization time using the linear method is smaller
than the optimization time required by the GA-based method
(milliseconds vs. few minutes), the similar results yielded by
the two methods are particularly relevant for the possible final
applications of the system, in which a short time spent for the
training phase increases both the usefulness and the usability of
the system. It is worth noting that an NMS model accounting for
a high level of detail leads to long lasting optimization procedures
with an average timing of 1 h (Pau et al., 2012).

A simple model could also potentially avoid the “over-fitting”
problem. More in detail, it can be taken for granted that the
more muscles are considered, the more parameters can be
adjusted, and the more those parameters are allowed to change,
the better the model fitting will be. However, as found by
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FIGURE 3 | The myoelectric Control Scheme. Raw surface EMG signals are pre-processed to compute the muscle excitation e(t). The neuromusculoskeletal model is

used to predict the reference torques (Equations 2–6). Through the admittance control the predicted torques are used to generate the reference joint angles of the

assistive device. The local controller is based on a position PD controller with gravity compensation. The measured joint positions are fed back to the PD controller

and to the torque predictor.

Zheng et al. (1998) and discussed by Buchanan et al. (2004), “Too
Many Parameters Is Not Good.” In fact, if from one side having
many parameters could potentially improve the fit between the
estimated joint moment and the measured joint moment, from
the other side models with many parameters generally have
little predictive ability. However, as future works, it would be
interesting to investigate how the torque estimation performance
and the computational time of the optimization would change by
incrementally increasing the model complexity in terms of both
analyzed muscles and optimized parameters.

For future studies, the two proposed optimization techniques
may be compared in dynamic conditions and tested within a
myo-control scheme. However, we have previously tested both
optimization methods in a myoelectric control scenario with
promising results (Buongiorno et al., 2015, 2016). In particular,
we proposed an admittance control able to generate the desired
trajectory of an upper limb exoskeleton according to the
EMG-based motion intention detection of the user (Figure 3).
The described myoelectric control was assessed evaluating
the measured interaction force between the subject and the
exoskeleton while performing free movements at different speeds
along the sagittal plane.

5. CONCLUSION

This paper has presented a linear optimization procedure to
optimize an EMG-driven neuromusculoskeletal model of the
shoulder and elbow that consider a reduced number of muscles.
We compared the linear method with a complex approach that
consider a genetic algorithm. The two methods differed both in
the numbers of optimized parameters and in the optimization

procedure. As expected, both the two methods substantially
increased the estimation performance of the original model
showing significant improvements in both the two explored arm
joints. Thanks to the low computational cost and the short setup
phase required for wearing and calibrating the system, obtained
results are promising for being introduced in an industrial or
rehabilitation scenario for intention recognition purposes. Future
works will include the comparison of the two optimization
approaches with other body articulations and in myo-control
with admittance control of an upper-limb exoskeleton.
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