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Tracking people has many applications, such as security or safe use of robots. Many
onboard systems are based on Laser Imaging Detection and Ranging (LIDAR) sensors.
Tracking peoples’ legs using only information from a 2D LIDAR scanner in a mobile robot
is a challenging problem because many legs can be present in an indoor environment,
there are frequent occlusions and self-occlusions, many items in the environment such
as table legs or columns could resemble legs as a result of the limited information
provided by two-dimensional LIDAR usually mounted at knee height in mobile robots,
etc. On the other hand, LIDAR sensors are affordable in terms of the acquisition price
and processing requirements. In this article, we describe a tool named PeTra based on
an off-line trained full Convolutional Neural Network capable of tracking pairs of legs
in a cluttered environment. We describe the characteristics of the system proposed
and evaluate its accuracy using a dataset from a public repository. Results show that
PeTra provides better accuracy than Leg Detector (LD), the standard solution for Robot
Operating System (ROS)-based robots.

Keywords: convolutional networks, LIDAR, people tracking, robotics, cluttered environment

1. INTRODUCTION

Detecting and tracking people are very useful capabilities for different systems, in particular for
improving navigation in mobile robots and also to facilitate more socially acceptable robots, but
also in security applications, for instance using biometric data (Ngo et al., 2015; Gavrilova et al.,
2017) or safely using robotics platforms (Morante et al., 2015). There are many solutions in the
literature that try to solve this problem using a multi-modal approach, typically with vision and
range sensors (Arras et al., 2012), but these kinds of approaches are very expensive both from the
point of view of the cost of the sensor and the computing capabilities needed for processing and
integrating, and are more likely to generate contradictory information. For this reason, systems
based only on range sensors are more desirable. Regarding the classifiers to process sensor data,
Convolutional Neural Networks (CNNs) has emerged as a very popular solution (Long et al., 2015).

Laser Imaging Detection and Ranging (LIDAR) sensors are reliable and currently affordable
range sensors that provide information about a dynamic environment at good rates (∼20− 30 Hz)
that can be processed in real-time, as each scan consists of an array of just a few 100 integers.
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Usually, mobile robots mount LIDAR scanners in a low
position (∼ 30 − 50 cm from the ground) to detect obstacles,
which are used to build occupancy maps and to navigate. The
information provided is an accurate estimate of the distance in
precise angles (resolution of 0.5◦). Thismeans that objects such as
tables or chair legs, trunks of plants, etc., may be easily confused
with peoples’ legs. It is also difficult to keep track of a particular
person (pair of legs) in a crowded environment because many
occlusions can happen.

Different solutions have been proposed previously in the
literature to deal with the problem of tracking people using
a 2D LIDAR scanner mounted on a mobile robot. Navigation
in peopled, mapped, indoor environments has been recently
reviewed (Rios-Martinez et al., 2015). The use of the geometric
characteristics of human legs and the frequency and phase of
walking motion have been tested (Lee et al., 2006), but cannot
deal with partial occlusions, changes in peoples’ speed, etc. In this
article we are concerned with the specific problem of detecting
pairs of legs (from a person) and being able to track them.

Early research (Schulz et al., 2003) applied Bayesian filtering
to track different objects in the perceptual range of the robot
to estimate the number of people in the current scan based on
the number of moving local minima in the scan. Unfortunately,
this supposes that people are continuously moving, giving poor
results in cluttered environments (where the number of local
minima is misleading).

Other research (Arras et al., 2012) proposed a solution based
on AdaBoost to learn to detect individual legs. In a second level
they proposed a multi-target tracking framework that uses leg
observations to infer peoples’ state of motion.

Another report (Leigh and Zhang, 2015) described a tracking
method considering both legs, rather than individual ones. They
proposed using a combination of Kalman filters to predict
behaviors over consecutive scans and a Global Nearest Neighbor
filter to solve the scan-to-scan data association problem. This
solution has the drawback of using two different steps (prediction
and association) that we are trying to solve with a one-
step approach. Also, the authors acknowledge the problem of
adapting their ad-hoc proposal. We propose that a more general
system based on machine learning can be built.

Other researchers (Aguirre et al., 2014) have used Support
Vector Machines to learn the different patterns of legs that can
appear in robot surroundings corresponding to moving or still
people. However, their approach is limited, tracking only a single
person in a controlled scenario.

Other methods using several steps have been proposed. For
instance, some have (Ondruska et al., 2016) deployed a Recurrent
Neural Network (RNN) to filter an input stream of raw laser
measurements in order to directly infer object locations, along
with their identity in both visible and occluded areas. Others

Abbreviations: CNN, Convolutional Neural Network; ERL, European Robotics
league; INCIBE, Instituto Nacional de Ciberseguridad de España; LD, Leg
Detector; LIDAR, Laser Imaging Detection and Ranging; MRPT, Mobile Robot
Programming Toolkit; ReLU, Rectified Linear Unit; RNN, Recurrent Neural
Network; ROS, Robot Operating System; RTLS, Real Time Location System; MA,
Moving Average.

(Premebida et al., 2009) described a sensor fusion architecture.
The fusion process occurs at the feature level, combining a
LIDAR sensor and a camera for improving the detection system’s
reliability and accuracy. A different approach (Szarvas et al.,
2006) presented a real-time pedestrian detection system utilizing
a LIDAR-based object detector and CNN-based image classifier.
The proposed method achieves a processing speed of over 10
frames/s speed by constraining the search space using the range
information from the LIDAR.

Some solutions have also been developed for the Robot
Operating System (ROS) framework (Quigley et al., 2009), the
most popular framework for developing robotic applications.
For instance, the cob_people_perception package allows to find
leg-like patterns of laser scanner readings. This software is
based on the LD approach and implementation. LD is the most
popular package for tracking people by using a LIDAR sensor
in ROS-based robots. It obtains incoming messages from the
LIDAR scanner and uses trained data to classify the groups
of laser records as possible legs. Detection is performed by a
classifier using Random Trees implemented with the OpenCV
API. However, LD has an important drawback; the project has
not received continuous development and there is not a version
of the software for the latest ROS versions.

Other ideas have been the use of heuristic knowledge, such
as some research (Mashad Nemati et al., 2016) that proposes a
technique that relies on the estimation of the reappearance event
both in time and location. In the same way, a utility function to
approximate and predict the trajectory of a walking partner has
also been proposed (Morales et al., 2014).

In summary, we consider that learning techniques are a
more general approach than heuristic or ad-hoc techniques for
this problem. We also propose that a single shot approach can
solve the problem in a more compact and consistent way than
approaches based on several steps. Under this assumption, we
propose a system based on CNNs developed by the Robotics
Group at the University of León, named PeTra, for developing
tracking systems based on LIDAR measurements. PeTra has
been developed and tested on a mobile robot based on the ROS
framework.

CNNs have been typically used on classification tasks, where
the output to an image is a single class label (Lawrence et al., 1997;
Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). In our
case, we want to label the pixels of an occupancy map (image),
not the whole image. We have explored different alternatives and
we have found that the ideas proposed in the U-Net architecture
(Ronneberger et al., 2015)match with our requirements. The next
section describes in depth the system built.

Evaluating neural networks requires a good validation dataset.
Collecting and organizing a training set needs time and domain-
specific knowledge. There is a large collection of robotic
datasets available from various mobile robots, vehicles, or just
handheld sensors, for instance the Repository of robotics and
computer vision datasets1 forMobile Robot Programming Toolkit
(MRPT). However, most may not be suitable for training neural
networks. For PeTra’s validation, a dataset known as Range-based

1https://www.mrpt.org/robotics_datasets
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people tracker classifiers Benchmark2 (RRID:SCR_01574) was
compiled.

In order to evaluate PeTra accuracy, we have compared its
results with the ones obtained by LD, the most popular package
to track people by using a LIDAR sensor in ROS-based robots.
Evaluation was conducted in an indoor mock-up apartment
located at the Robotics Lab at the University of León (Spain). A
mobile robot called Orbi-One, with an on-board LIDAR sensor,
was used to track peoples’ locations using either PeTra or LD.

The rest of the paper is organized as follows. The next
section describes the system that was built, including a detailed
explanation of the architecture of the CNN used. Materials and
methods used to evaluate the accuracy of PeTra are described
in section 2. Section 3 shows the results of PeTra performance
compared to LD. Section 4 discusses the above results. Finally,
our contribution and the next steps foreseen are presented at
section 5.

2. MATERIALS AND METHODS

A set of experiments was carried out to evaluate PeTra accuracy.
They were conducted in the indoor mock-up apartment at
Leon@Home Testbed3, a Certified Testbed4 of the European
Robotics league (ERL) located in the Robotics Lab at the
University of León. Its main purpose is to benchmark service
robots in a realistic home environment. Figure 1, left shows the
apartment plan.

Orbi-One robot, shown in Figure 1, middle, with an on-board
LIDAR sensor, was used to track people either using PeTra or
LD under different scenarios that will be described in section
2.5. Peoples’ location was ascertained using a commercial Real
Time Location System (RTLS) based on radio beacons shown in
Figure 1, right. The location calculated by the RTLS was used as
ground-truth data to calculate the error of PeTra and LD systems.

In the Youtube channel of the Robotics Group of the
University of León, readers can find a video demonstration5 of
PeTra and LD working as displayed on Rviz, a well-known tool
for displaying robot information for the ROS framework.

Below, the main components of the experiment are described
in depth as well as the methods used to evaluate accuracy.

2.1. Orbi-One Robot
Orbi-One is a service robot manufactured by Robotnik6. It
accommodates sensors, such as a RGBD camera, a LIDAR sensor,
and an inertial unit. It can operate a manipulator arm attached to
its torso and it has a wheeled base for moving around the room.
An Intel Core i7 CPU with 8 GB of RAM allows it to run the
software to control the robot hardware. The software to control
the robot hardware is based on a ROS framework.

2http://robotica.unileon.es/index.php/Benchmark_dataset_for_evaluation_of_range-
based_people_tracker_classifiers_in_mobile_robots
3http://robotica.unileon.es/index.php/Testbed
4https://www.eu-robotics.net/robotics_league/erl-service/certified-test-beds/
index.html
5https://youtu.be/Qa6eEJzUlRg
6http://www.robotnik.es/manipuladores-roboticos-moviles/rb-one/

2.2. KIO RTLS
A commercial RTLS (KIO) has been used to provide ground-
truth data. KIO calculates the position of a mobile transceiver,
called a tag, in a two- or three-dimensional space. In order to
do so, KIO uses radio beacons, called anchors, that have been
previously located in known positions in the surroundings. Red
markers in Figure 1, left show the position of the 6 anchors used
in the experiments described in the paper. They are attached
at the ceiling of the mock-up apartment. The distribution of
the anchors has been chosen following a previously established
method (Guerrero-Higueras et al., 2017). Figure 1, right shows
two KIO anchors.

The KIO tag was carried by the person to be tracked in our
experiments. Location estimates provided by this system have
an average error of ±30 cm according to the manufacturer’s
specifications. Calibrations done by the authors of this paper
show that the error is higher in some areas and lower in
others, but on average the claims of the manufacturer are correct
(Guerrero-Higueras et al., 2017).

2.3. PeTra
PeTra is a tool for detecting and tracking people developed by
the Robotics Group at the University of León. The system is
based on a CNNwhich uses an occupancymap built from LIDAR
measurements as input. We explored different alternatives and
we have found that the configuration proposed in the U-
Net architecture by Ronneberger et al. (2015) is the one that
best matches with our requirements. U-Net architecture was
developed for Biomedical Image Segmentation. It consists of a
contracting path to capture context and a symmetric expanding
path that enables precise localization that we need to look for an
specific pattern (pair of legs) in the occupancy map.

2.3.1. Neural Network Configuration
U-Net architecture was originally proposed to segment
biomedical images. We have adapted it to LIDAR map “images.”
Basically, the architecture is an evolution of the full CNN
proposed in Long et al. (2015). It consists of supplementing the
usual contracting network by successive layers, where pooling
operators are replaced by upsampling operators. Hence, these
layers increase the resolution of the output. In this way, the
contracting path captures context and a symmetric expanding
path enables precise localization of targets.

Figure 2 illustrates the architecture of the CNN embedded
in PeTra. It is inspired by the design in Ronneberger et al.
(2015), adapting sampling sizes. Basically, the PeTra network
consists of a contracting path on the left side and an expansive
path on the right side of the picture. The contracting path
consists of the repeated application of two 3 × 3 convolutions,
followed by a Rectified Linear Unit (ReLU) and a 4 × 4 max
pooling operation with stride 2 for downsampling. At each
downsampling step we doubled the number of feature channels.
Every step in the expansive path consists of a 4 × 4 up-
convolution that reduces the number of feature channels, a
concatenation with the corresponding feature map from the
contracting path, and two 3 × 3 convolutions, each followed
by a ReLU. At the final layer a 1 × 1 convolution is used to

Frontiers in Neurorobotics | www.frontiersin.org 3 January 2019 | Volume 12 | Article 85

https://scicrunch.org/resolver/RRID:SCR_01574
http://robotica.unileon.es/index.php/Benchmark_dataset_for_evaluation_of_range-based_people_tracker_classifiers_in_mobile_robots
http://robotica.unileon.es/index.php/Benchmark_dataset_for_evaluation_of_range-based_people_tracker_classifiers_in_mobile_robots
http://robotica.unileon.es/index.php/Testbed
https://www.eu-robotics.net/robotics_league/erl-service/certified-test-beds/index.html
https://www.eu-robotics.net/robotics_league/erl-service/certified-test-beds/index.html
https://youtu.be/Qa6eEJzUlRg
http://www.robotnik.es/manipuladores-roboticos-moviles/rb-one/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Guerrero-Higueras et al. Tracking People From LIDAR Scans

FIGURE 1 | Robotics mobile lab plan (left), Orbi-One robot (center), and KIO RTLS anchors (right).

FIGURE 2 | Architecture of the CNN used by PeTra.

map each 64-component feature vector to the desired number of
classes.

In order to define the input of the network, we have projected
the range measurements into a two dimensional map centered
around the robot. This occupancy map is defined as a 256 ×

256 matrix, with a resolution of about 2 cm. The occupancy
map presented in this work is not a standard occupancy map
containing probability values as known in the literature. The
values of each cell could be:

0: meaning either the LIDAR scan went through it without
detecting any obstacle, or it did not go through that position

during the reading due to occlusions or being out of
range (LIDAR range is 240 degrees in the front of the
robot),

1: , meaning an obstacle was found in that position.

2.3.2. Operation
PeTra has been developed and tested on a mobile robot based
on the ROS framework. It has been designed as a ROS node
with the CNN described at section 2.3.1 embedded on it. Once
the network is trained, the system is capable of performing the
following steps in real time:
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1. First, the data provided by the LIDAR sensor is processed
to build a two-dimensional occupancy map in front of the
robot. Figure 3, top left shows Orbi-One and two people at
the study area. Figure 3, top right shows the same situation
over the apartment plan. Figure 3, bottom left illustrates
the occupancy map obtained from the LIDAR’s readings
on the above situation. The occupancy map is presented as
a 256 × 256 picture, where white pixels denote positions
where the LIDAR scan found an obstacle and black pixels
denote positions where either the LIDAR scan went through
without detecting any obstacle or did not go through that
position.

2. Then, the occupancy map of the previous step is given to
the network as input data. The network produces a second
occupancy map representing the zones where legs have been
detected. Figure 3, bottom right shows the network output
after processing the occupancy map shown in Figure 3,
bottom left.

3. Finally, a mass center calculation returns peoples’ locations,
which is published as a location message in a specific topic.

Location messages include, among other data, the location
coordinates and a timestamp that is precise to the nanosecond,
as shown in Figure 4.

FIGURE 4 | Location message (PointStamped message, in ROS terminology)
published at the /person topic. It includes a header with a nanosecond-precise
timestamp and some identification data as well as a body with the Cartesian
coordinates of the location.

FIGURE 3 | Top left: Orbi-One and two people at the kitchen of the mock-up apartment. Top right: same situation over the apartment plan. Bottom left:

occupancy map built from LIDAR’s readings on the above situation. Bottom right: PeTra’s output after processing the above occupancy map.
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FIGURE 5 | Information of the robot as displayed on Rviz (running PeTra in the right and without running it to the left): Yellow markers show LIDAR readings; the red
arrow shows Orbi-One’s location and orientation, the beginning of the arrow matches the robot location; blue markers show leg location estimates; and the green
marker shows the person center.

Location messages published by PeTra will be used to evaluate
its performance by comparing it with ground-truth data. PeTra
also publishes visualization Marker messages to indicate where
detection happened. These markers can be displayed on Rviz, as
shown on Figure 5.

2.3.3. Neural Network Training
A CNN embedded in PeTra was trained using data gathered at
the Robotics Lab of the University of León (see Figure 1, left). To
get training data a single person walked in a straight line toward
the robot and then turned around to move away while the robot
remained still. This situation was repeated in two locations at the
mock-up apartment, the kitchen and the living room.

To label training data, KIO location estimates were used. In
order to do so, for each LIDAR scan, an occupancy map was
created. Then, discarding all LIDAR readings close to the KIO
location estimate, leg position were labeled. To illustrate this
process Figure 6 shows the labeling from a specific LIDAR scan.
Figure 6, left shows some information of the robot as displayed
on Rivz. LIDAR’s readings are shown as white points. The red
arrow shows Orbi-One robot’s pose (location and orientation).
The robot location matches the beginning of the arrow. The pink
marker shows the KIO location estimate of the person in the
scene. Blue markers show the LIDAR readings close to the PeTra
location estimate. Figure 6, middle shows the occupancy map
created from the above data. Figure 6, right shows the labeled
data by gathering the LIDAR readings close to the KIO location
estimate.

The training dataset includes 2,790 pairs of images
(occupancy- and labeled-map). Two thousand two hundred
and twenty four were used to train the network and 550 to test
it. PeTra training data is available at the University of León
Robotics group website7 As mentioned in the introduction, for

7http://robotica.unileon.es/~datasets/LegTracking/PeTra_training_dataset/
npy_train_test_globales.tar.gz

PeTra evaluation, in order to ensure an optimal generalization,
a different dataset was used including situations at different
environments with several people in the scene, as will be
explained later.

2.4. Leg Detector (LD)
LD is a standard ROS package which takes messages published
by a LIDAR sensor as input and uses a machine learning-trained
classifier to detect groups of LIDAR readings as possible legs. The
code is available in a public repository8, but is unsupported at this
time.

Figure 7 shows LD location estimates as displayed on Rviz. It
publishes the location for the individual legs. Markers colored in
a black-to-blue gradient show leg location estimates. A close-to-
black marker represents a small chance that it is a real leg while
a close-to-blue marker represents a high probability. Some false
positives appear in Figure 7, right, see the blue marker close to
the wall. LD can also attempt to pair the legs together (displayed
as red markers on Rviz) and publish their average as an estimate
of where the center of the person is displayed on Rviz as a green
marker.

2.5. Evaluation
A complete dataset, different than the training dataset, has
been used for PeTra evaluation. This section describes how the
evaluation dataset has been built. Later, the evaluation method is
proposed.

2.5.1. Data Collection
Evaluation data, different than training data to ensure
generalization, is needed to evaluate PeTra. Therefore,
Range-based people tracker classifiers Benchmark dataset2

(RRID:SCR_01574) was used. The dataset has different versions
and data from version 2 were used in the evaluation. Data were

8https://github.com/wg-perception/people
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FIGURE 6 | Information of the robot as displayed on Rivz (left): white points show LIDAR readings; the red arrow shows Orbi-One’s location and orientation, the
beginning of the arrow matches the robot location; the pink marker shows the KIO location estimate; and blue markers show the LIDAR readings close to the PeTra
location estimate. Occupancy map built from LIDAR readings (middle). Labeled data (right).

FIGURE 7 | Information of the robot as displayed on Rviz (running LD in the right and without running it to the left): Yellow markers show LIDAR readings; the red
arrow shows Orbi-One’s location and orientation, the beginning of the arrow matches the robot location; black-to-blue markers show leg location estimate,
close-to-black markers represent a small chance that it is a real leg, close-to-blue markers represent a high probability; red markers show paired legs; and the green
marker shows the person center.

gathered in 14 different situations, where the robot stood still
as one person, carrying a KIO tag, moved around it. Situations
represent different human-robot interactions that may occur in
robotics competitions such as ERL9 or RoboCup10, in particular
in the “Following and Guiding” test where a robot has to follow
an operator in a cluttered environment. Figure 8 illustrates each
of these situations. Three different locations were defined (black
numbered markers in Figure 1, left show Orbi-One locations
during the data gathering) resulting in 42 scenarios (14 situations
× 3 locations).

Recently, a new version of the dataset was released (version 3).
These data were also used in the evaluation. New data were

9https://www.eu-robotics.net/robotics_league/
10http://www.robocup.org/

gathered according to situations 5 and 10 (see Figure 8) on three
different locations (kitchen, living room and bedroom), but in
this case Orbi-One was not still but was instead moving around
the room.

Rosbag files were used to record the state of the robot by
gathering data from the robot’s sensors and actuators such as
LIDAR scans, odometry data, etc. A rosbag file is equivalent to
a recording of the state of the robot in a period. A rosbag file
was created for each scenario. In all of them, the person to be
tracked was carrying a KIO tag in order to get his real location.
Each rosbag file contains the following data:

– LIDAR sensor data which include, among other information,
the following: acquisition time of the first ray for each scan,
start/end angle, angular distance between measurements, and
range data.
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FIGURE 8 | Recognition situations recorded as shown at Álvarez-Aparicio et al. (2018).

– PeTra location estimates which include a position [x, y, z] and
a timestamp.

– Location estimates calculated by LD including data for
individual legs and paired legs which will be compared to
ground-truth data.

– Locations provided by KIORTLSwhich also include a position
and a timestamp.

– Useful information such as map information, odometry
of the robot base, and transformation information,
respectively.

Further information about the dataset may be found at Álvarez-
Aparicio et al. (2018).

2.5.2. Evaluation Method
In order to evaluate PeTra accuracy, a comparison with LD
was done. In order to empirically decide which one offers the
best results, location estimates of people from both systems can
be compared to the ground-truth data provided by KIO RTLS.
The accuracy error of both PeTra (ePeTra) and LD (eLD) in a
specific instant of time has been calculated as the euclidean
distance between their location estimates (lPeTra and lLD) and
ground-truth data provided by KIO-RTLS (lKIO). A comparison
may be done just in case there is a valid location estimate
from PeTra or LD, otherwise ePeTra and eLD will respectively
get a maximum value. Equations 1 and 2 show ePeTra and eLD

calculation,

ePeTra =

{

Max. range value if ∄ lPeTra

d(lPeTra, lKIO) =
√

∑n
i=1(lPeTrai − lKIOi )2 if ∃ lPeTra

(1)

eLD =

{

Max. range value if ∄ lLD

d(lLD, lKIO) =
√

∑n
i=1(lLDi − lKIOi )2 if ∃ lLD

(2)

where n is the number of dimensions considered. In our
experiments, only X and Y coordinates are considered. The
Z coordinate is constant since a mobile robot moves on
the ground. Ground-truth data location estimates (lKIO) are
provided as Cartesian coordinates by KIO RTLS. PeTra and LD
location estimates (lPeTra and lLD) are also provided as Cartesian
coordinates but using the LIDAR location as the coordinates’
origin.

The evolution of ePeTra and eLD over time was used to decide
the system which works better. The accuracy error was calculated
for the period of time covered for each Rosbag file included in the
dataset.

Regarding the above, there are two important issues to deal
with as detailed in Álvarez-Aparicio et al. (2018). First, KIO,
PeTra and LD use their own coordinate origins to represent
locations. In order to compare these locations they ought to be
represented using the same coordinate origins. The tf package,
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see Foote (2013), included in the ROS framework core, is in
charge of transforming KIO, PeTra and LD location estimates,
allowing for easy comparison. tf operates with a central server
that contains all transform information. On the other hand,
each message published for the recorded topics has its own
timestamp with precision to the nanosecond, so comparing
locations in a concrete instant of time may not be an easy task.
A synchronization method is needed to compare measurements
from different topics. To synchronize data in our experiments,
we have used the timestamp of the PeTra location estimates and
then we have selected the closest measure in time from both LD
and KIO.

3. RESULTS

The accuracy of PeTra has been evaluated vs. LD accuracy
applying the described method. Table 1 shows the mean error
and standard deviation for the 14 situations of the second version
of the dataset. As can be seen in the table, the average error
of ePeTra at locations 1, 2, and 3, are 0.17, 0.43, and 0.20 m
respectively; it is lower than eLD at all locations (0.30, 0.75, and
0.49 m respectively).

The standard deviations of ePeTra at locations 1, 2, and 3, are
0.13, 0.22, and 0.13 m respectively; which are also slightly lower
than eLD (0.15, 0.28, and 0.33 m respectively).

Figure 9 shows the evolution of the accuracy error for both
PeTra and LD over the time horizon given by Rosbag files
recorded at locations 1, 2, and 3, on situations 5, and 10, of
the second version of the dataset. Green markers represent eLD.
Red markers represent ePeTra. Green and red lines illustrate eLD
and ePeTra Moving Average (MA). MAs were used to smooth
out short-term fluctuations and highlight longer-term trends
or cycles. The same analysis has been done for all scenarios
at all locations. Complete results are shown in Figures S1–S3.

According to Table 1, ePeTra is slightly lower on average than eLD
for scenarios 5 and 10. This is shown in the figure, ePeTra is lower
than eLD on scenario 5 at location 3, and on scenario 6 at locations
1, 2, and 3. However, there are specific moments where eLD is
lower, especially at scenario 5 on locations 1 and 2.

Table 2 shows the mean error and standard deviation for the
two situations of the third version of the dataset. As can be
seen in the table, the average error of ePeTra at the kitchen, the
living room, and the bedroom, are 0.18m, 0.13m, and 0.53m,
respectively; it is lower than eLD at the three rooms (0.38, 0.57,
and 0.64 m).

The standard deviations of ePeTra at the three rooms are 0.25,
0.15, and 0.23 m respectively are slightly higher than standard
deviations of eLD at the kitchen and at the bedroom (0.22 and
0.22 m) and lower at the living room (0.30 m).

Figure 10 shows the evolution of the accuracy error for both
PeTra and LD over the time horizon given by rosbag files
recorded at locations 1, 2, and 3, on situations 5, and 10, of the
third version of the dataset. Green markers represent eLD. Red
markers represent ePeTra. Green and red lines illustrate eLD and
ePeTra MA. According to the figure, ePeTra is lower than eLD most
of the time for both scenarios.

Regarding performance, PeTra spends ≈ 0.3 s on calculating
a location estimate from LIDAR sensor data when running on
Orbi-One hardware configuration as described in 2.1. With the
same hardware platform LD spends ≈ 0.1 s on calculating a
location estimate.

4. DISCUSSION

Table 1 shows that PeTra has a lower mean error than LD at the
three locations. These differences represent an accuracy increase
of 43%, 42%, and 59% at locations 1, 2, and 3, respectively.
Considering the standard deviation, differences between PeTra

TABLE 1 | Mean error and standard deviation (m) using data from version 2 of the dataset.

Location 1 Location 2 Location 3

Situation X̄ePeTra X̄eLD X̄ePeTra X̄eLD X̄ePeTra X̄eLD

1 0.02 (±0.02) 0.21 (±0.04) 1.40 (±0.03) 1.16 (±0.03) 0.03 (±0.01) 0.52 (±0.09)

2 0.48 (±0.47) 0.17 (±0.11) 1.25 (±0.29) 1.51 (±0.19) 0.48 (±0.35) 0.33 (±0.08)

3 0.08 (±0.10) 0.32 (±0.15) 0.06 (±0.03) 0.62 (±0.40) 0.06 (±0.02) 0.20 (±0.08)

4 0.09 (±0.06) 0.30 (±0.15) 0.36 (±0.50) 0.85 (±0.39) 0.15 (±0.12) 0.32 (±0.11)

5 0.43 (±0.12) 0.35 (±0.13) 0.95 (±0.46) 0.84 (±0.30) 0.38 (±0.07) 0.54 (±0.10)

6 0.16 (±0.22) 0.21 (±0.10) 0.55 (±0.44) 0.63 (±0.44) 0.36 (±0.29) 0.61 (±0.27)

7 0.18 (±0.22) 0.39 (±0.25) 0.20 (±0.14) 0.95 (±0.52) 0.21 (±0.13) 0.24 (±0.12)

8 0.11 (±0.14) 0.26 (±0.11) 0.08 (±0.07) 0.73 (±0.28) 0.08 (±0.06) 0.39 (±0.16)

9 0.29 (±0.18) 0.25 (±0.15) 0.69 (±0.60) 0.56 (±0.42) 0.41 (±0.20) 1.78 (±2.89)

10 0.10 (±0.06) 0.36 (±0.16) 0.10 (±0.07) 0.71 (±0.24) 0.19 (±0.13) 0.50 (±0.16)

11 0.05 (±0.03) 0.26 (±0.08) 0.08 (±0.18) 0.18 (±0.06) 0.08 (±0.09) 0.28 (±0.05)

12 0.04 (±0.02) 0.27 (±0.16) 0.06 (±0.05) 0.53 (±0.27) 0.04 (±0.04) 0.55 (±0.13)

13 0.12 (±0.11) 0.49 (±0.28) 0.13 (±0.10) 1.03 (±0.34) 0.23 (±0.22) 0.35 (±0.30)

14 0.19 (±0.11) 0.35 (±0.16) 0.12 (±0.12) 0.18 (±0.13) 0.10 (±0.11) 0.18 (±0.09)

Average 0.17 (±0.13) 0.30 (±0.15) 0.43 (±0.22) 0.75 (±0.28) 0.20 (±0.13) 0.49 (±0.33)
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FIGURE 9 | ePeTra (m) and eLD (m) evolution over time (hh:mm:ss) on scenarios 5 (1st row), and 10 (2th row), at locations 1 (left), 2 (center), and 3 (right). Red
markers show ePeTra, green markers show eLD, red line show MA(ePeTra), and green line shows MA(eLD).

TABLE 2 | Mean error and standard deviation (m) using data from version 3 of the dataset.

Kitchen Living room Bedroom

Situation X̄ePeTra X̄eLD X̄ePeTra X̄eLD X̄ePeTra X̄eLD

5 0.20 (±0.33) 0.35 (±0.25) 0.14 (±0.17) 0.56 (±0.29) 0.92 (±0.34) 0.98 (±0.33)

10 0.16 (±0.16) 0.40 (±0.19) 0.12 (±0.12) 0.57 (±0.31) 0.13 (±0.12) 0.29 (±0.11)

Average 0.18 (±0.25) 0.38 (±0.22) 0.13 (±0.15) 0.57 (±0.30) 0.53 (±0.23) 0.64 (±0.22)

and LD represent a reduction of 13, 21, and 60% at locations 1,
2, and 3. Thus, PeTra is more consistent over time at all locations
when Orbi-One remains still. Considering each situation, ePeTra
is lower on average than eLD, however, there are not too many
differences on multi-person scenarios (scenarios 2, 5, 6 and 9). It
is expected because the training data employs a single person.

Figures S1–S3 visually illustrate the evolution over time of
ePeTra and eLD. They show that ePeTra is lower than eLD most of
the time for most of the scenarios at the three locations analyzed.
However, we must analyze carefully the differences between
different situations. In order to do so, scenarios 5 and 10 have
been selected for in-depth analysis. Graphics of Figure 9 visually
illustrate the evolution of ePeTra and eLD specifically on these
scenarios. These scenarios have been chosen because they include
a large variety of situations with one or several people standing or
moving around in the environment. They also include situations
where PeTra gets a better performance and a worse performance
comparing to LD.

The first row of Figure 11 shows information of the robot on
situation 5 at location 2 as displayed at Rviz. On this situation,

recorded at the living room of the mock-up apartment, four
people stand still in front of the robot while another one moves
away. The red arrow shows the robot’s pose. The beginning of
the arrow matches the robot’s location. Yellow markers show
LIDAR’s readings. These readings allow the identification of the
people on the scene. Two half-circles can be guessed in front
of the robot at several places in the image. These two half-
circles are the shape that the sensor gathers when a person is
in the LIDAR range. In this case, PeTra is able to detect two
of the people in the scene as shown in Figure 11, top middle.
Another person close to the wall is not detected because just
one of her legs can be seen. The fourth person is hidden behind
another one and is not detected either. Regarding LD, it identifies
3 people in the scene, as shown in Figure 11, top right, but
just one of them corresponds to a real person, the others have
been located by pairing legs from different people or even from
furniture.

The second row of Figure 11 shows information of the robot
on situation 10 at location 3. It was recorded at the bedroom of
the mock-up apartment. Here, a person first moves away and
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FIGURE 10 | ePeTra (m) and eLD (m) evolution over time (hh:mm:ss) on scenarios 5 (1st row), and 10 (2nd row), at locations 1 (left), 2 (center), and 3 (right). Red
markers show ePeTra, green markers show eLD, red line shows MA(ePeTra), and green line shows MA(eLD).

FIGURE 11 | Information of the robot as displayed on Rviz for scenarios 5 (1st row), and 10 (2nd row). Yellow markers show LIDAR readings. The red arrow shows
Orbi-One’s location and orientation. The beginning of the arrow matches the robot location. PeTra’s location estimates are shown on the center: blue markers show
leg location estimates and the green marker shows the person’s center. LD location estimates are shown on the right: black-to-blue markers show legs location
estimates, close-to-black markers represent a low chance it is a real leg, close-to-blue markers represent a high probability; red markers show paired legs; and the
green marker shows the person center.
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then moves toward the robot. The LIDAR’s readings allow the
identification of the person on the scene. In this case, both PeTra
and LD identify the person correctly, but LD also identifies some
points as people’s legs that in fact match furniture legs. These
matchings are displayed as black-to-blue markers in Figure 11,
bottom right.

Regarding results of Table 2, again ePeTra has a lower mean
error than eLD, representing an accuracy increase of 52, 77, and
18% at locations 1, 2, and 3 ,respectively. The standard deviation
is slightly higher at locations 1 and 3 (12 and 4%) and lower
at location 2 (50%). Graphics of Figure 10 visually illustrate the
evolution of ePeTra and eLD over time, showing that PeTra offers
better accuracy than LDmost of the time in both situations. These
results demonstrate that PeTra is also more consistent over time
at all locations when the Robot moves.

5. CONCLUSIONS AND FURTHER WORK

This paper presented a system named PeTra to track pair of
legs (people) by processing LIDAR sensor data using CNNs.
This could be used in several applications, such as improving
navigation, facilitating human-robot interaction, or in security
and safety. To demonstrate that PeTra allows the tracking of
people, it has been compared with LD, a well-known solution
for tracking people from LIDAR sensor data, at several locations
and situations. Evaluations have been done using data different
than the ones used to train and test both models. As a result,
experiments proved that PeTra offers a better accuracy in most
scenarios.

The main contribution of this work is the PeTra system
itself. But in addition, we also want to point out the technical
contributions of this work, which include:

1. A people tracking system ready to be used by anymobile robot
using the ROS framework.

2. A method to evaluate the performance of range-based people
trackers in mobile robots by comparing their results with the
data contained in public dataset (RRID:SCR_015743). The
dataset is described in section 2.5.1. Data are available at the
University of Leon Robotics group website2.

3. A system to transform LIDAR sensor data to a two-
dimensional occupancy map as described in section 2.3.1,
which enables processing them as a picture. This makes
LIDAR sensor data treatable by classifiers based on neural
networks which used pictures as input.

Regarding further work, there are several aspects that have to be
analyzed. On the one hand, a network optimization is needed to
improve performance. Amobile robot such as Orbi-One needs to
get peoples’ locations in real time as soon as LIDAR sensor data
is received. A 0.3 s delay can be too muchinon certain situations.

LIDAR sensor data pre-processing could improve
performance. Currently, a Boolean matrix is built considering
just two situations: in the first one, pointed out as the value 1,
LIDAR scan found an obstacle in a given position; in the second
one, pointed out as the value 0, LIDAR scan went through it
without detecting an obstacle in that position or did not go
through it due to an occlusion. Differentiating the cases when the
LIDAR scan found an obstacle and when it did not go through
that position, could be useful to generate new fit and evaluation
data for the CNN used by PeTra.
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