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Spiking neural networks (SNNs) offer many advantages over traditional artificial neural

networks (ANNs) such as biological plausibility, fast information processing, and energy

efficiency. Although SNNs have been used to solve a variety of control tasks using the

Spike-Timing-Dependent Plasticity (STDP) learning rule, existing solutions usually involve

hard-coded network architectures solving specific tasks rather than solving different

kinds of tasks generally. This results in neglecting one of the biggest advantages of ANNs,

i.e., being general-purpose and easy-to-use due to their simple network architecture,

which usually consists of an input layer, one or multiple hidden layers and an output

layer. This paper addresses the problem by introducing an end-to-end learning approach

of spiking neural networks constructed with one hidden layer and reward-modulated

Spike-Timing-Dependent Plasticity (R-STDP) synapses in an all-to-all fashion. We use the

supervised reward-modulated Spike-Timing-Dependent-Plasticity learning rule to train

two different SNN-based sub-controllers to replicate a desired obstacle avoiding and

goal approaching behavior, provided by pre-generated datasets. Together they make up

a target-reaching controller, which is used to control a simulated mobile robot to reach

a target area while avoiding obstacles in its path. We demonstrate the performance

and effectiveness of our trained SNNs to achieve target reaching tasks in different

unknown scenarios.

Keywords: spiking neural network, R-STDP, supervised learning, end-to-end control, autonomous locomotion

1. INTRODUCTION

Despite the success of traditional artificial neural networks (ANNs) in learning complex non-linear
functions, the interest of spiking neural networks (SNNs) is steadily increasing due to the fact that
SNNs offer many fundamental and inherent advantages over traditional ANNs, such as biological
plausibility (Maass, 1997), rapid information processing (Thorpe et al., 2001; Wysoski et al., 2010),
and energy efficiency (Drubach, 2000; Cassidy et al., 2014).

Since traditional ANN computing units process signals in the form of continuous activation
functions, they can be interpreted as their average pulse frequencies over a time window. Different
from this, SNNs process information in the form of pulses or spikes, which is much more similar to
the natural nervous system, and therefore, more biologically realistic and plausible. An advantage
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of this form of information processing is the possibility of
not only encoding spatial information like traditional ANNs
do, but also adding temporal information in the form of the
precise timing of spikes (Maass, 1997). This eliminates the
need for an averaging time window and allows for processing
information in continuous time, greatly reducing response
latencies (Frémaux et al., 2013). Since SNNs are able to transmit
and receive large volumes of data encoded by the relative timing
of only a few spikes, this also leads to the possibility of very
fast and energy-efficient computing. For example, experiments
have demonstrated that the visual pattern analysis and pattern
classification can be carried out by humans in just 100 ms,
in spite of the fact that it involves a minimum of 10 synaptic
stages from the retina to the temporal lobe (Thorpe et al.,
2001). Furthermore, in terms of energy efficiency, maintaining
the sufficient functions of the nervous system to perform various
tasks requires a continuous energy supply (Schoettle and Sivak,
2014). Yet, the human brain only needs remarkably low power
consumption, which is around 20 W of power (Drubach,
2000). Overall, SNNs have great potential to offer an accurate
and efficient way to model the principles underlying neural
structures devoted to locomotion control in living creatures.
Hence, mobile robots will be able to manage their weaknesses of
carrying limited computing resources and power supply based on
SNN-based controllers.

However, training these kinds of networks is notoriously
difficult, since the error back-propagationmechanism commonly
used in conventional neural networks cannot be directly
transferred to SNNs due to the non-differentiability at spike
times. Although there are successful attempts to combine the
advantages of SNNs and the back-propagation mechanism
together (Esser et al., 2015; Neftci et al., 2017), they basically
transfer the continuous errors into rate-based or probability-
based spikes, which gave away some of the inherent advantages
of SNNs, such as the temporal information encoded by the
timing of spikes.

Although a variety of learning rules for SNNs have been
proposed in the past (Ponulak and Kasinski, 2011; Bing et al.,
2018), solving different tasks usually involves constructing a
specific network architecture suited to solve them, limited by
lack of efficient and versatile training solutions. Initially, SNN-
based control tasks were performed by manually setting network
weights (e.g., Indiveri, 1999; Lewis et al., 2000; Ambrosano et al.,
2016). Although this approach is able to solve simple behavioral
tasks, such as wall following (Wang et al., 2009) or lane keeping
(Kaiser et al., 2016), it is only feasible for lightweight networks
with few connections or simple network architectures without
hidden layers.

Meanwhile, many other indirect and direct training methods
for SNNs have been proposed and demonstrated on robotic
applications. For direct training methods, researchers have been
working constantly on studying the underlying mechanism in
brains. As one of the fundamental rules for synaptic activities, the
functionality of the spike-timing-dependent plasticity (STDP)
has revealed that one synaptic connection is affected by the
precise timing of pre- and post-synaptic spikes. On this basis,
the STDP learning rule is used in robotic control. Neuroscience

studies also reveal that the brain modifies the outcome of STDP
synapses using one or more chemicals emitted by given neurons.
This mechanism inspires a new method for training SNNs and is
known as reward-modulated spike-timing-dependent plasticity
(R-STDP) (Izhikevich, 2007). Since the R-STDP can modulate an
SNN with external signals that are sparse or delayed, this method
is well suited for mobile robotic tasks.

Although the R-STDP learning rule assembles the natural
learning process better, there still exist many problems for
widespread implementations. The challenges for implementing
R-STDP on mobile robotic applications lie in several aspects.
First, there has been lacking of a unified learning paradigm
that can be easily applied to different tasks and assign neuron
modulations regardless of the multi-layered SNN structure.
Second, in order to shape desired behaviors of the robot,
defining proper rewards is important but complicated. Besides,
the working mechanism of the reward-based neuron modulator
is still unclear inmulti-layered SNNs. Third, the R-STDP learning
rule, similar to reinforcement learning, requires the agents to
explore and interact with the environment randomly at the
beginning. Improper parameters will consume long period of
time or even fail the tasks with high probability.

On the other hand, indirect training methods for SNNs based
on biological synaptic plasticity offers a fast and feasible way
to construct a robotic controller. The reasons are two-fold.
First, pre-acquired knowledge from traditional control methods
can quickly shape the behaviors of a robot and offer a basic
dataset to train the network based on the supervised learning
framework (Bouganis and Shanahan, 2010). Second, the SNN
with transferred policy can in return control the robot in an
energy-efficient way, which can be achieved by running on a
neuromorphic hardware (Blum et al., 2017).

To this end, our paper looks to explore an indirect SNN
training approach based on the R-STDP learning rule and
supervised learning framework.

A simple robot navigation task will be used as a case
study to demonstrate the performance of our controller.
Our main contributions are summarized as follows. First, a
simulated target-reaching scenario is constructed and adapted
with different traffic conditions for evaluating our proposed
SNN-based controller, in which a Pioneer robot mounted
with proximity sensors is regarded as the moving vehicle.
This controller consists of a goal-approaching sub-controller,
responsible for reaching a target area and an obstacle-avoiding
sub-controller, responsible for avoiding obstacles in the robot’s
path. Second, a supervised R-STDP learning rule is proposed
to train a simple one-hidden-layer SNN in an end-to-end
learning fashion. The SNN-based controller computes the robot’s
proximity sensor readings and the direction of a target as inputs
and the motor speed as the output. Finally, the training results
of our target-reaching SNN are analyzed in terms of accuracy
and then are further implemented in unknown scenarios to
demonstrate the feasibility.

The rest of this paper is organized as follows. The related work
is presented in section 2. Section 3 describes the modeling of
the SNN and the supervised R-STDP learning rule. Section 4
describes the methods to generate the reference datasets.
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Section 5 introduces the architecture of the overall target-
reaching controller and as well as its sub-controllers.

The training results and an evaluation of the performance of
the different sub-controllers and the target-reaching controller
as a whole in an unknown testing environment can be found
in section 6. Finally, the work is summarized and future work
is outlined in section 8. In the meantime, all of our codes and
experiment demos can be found in the Supplementary Files.

2. RELATED WORK

Formanymobile robots, the ability to navigate in its environment
is considered as the core function, which requires a robot to
plan its path toward the goal location and avoid obstacles at the
same time. In this study, performing navigation tasks on a mobile
robot are used as a case study for evaluating our proposed SNN
learning method.

Various model-based control methods for robotic
navigation tasks have been widely investigated few decades
ago (DeSouza and Kak, 2002; Kruse et al., 2013). For example,
Brooks (1986) proposed a robust layered control architecture
for mobile robots based on task-achieving behaviors.
Bicho et al. (1998) presented an attractor dynamic approach
to path planning, which only used low-level distance sensors
to implement autonomous vehicle motion. Huang et al. (2006)
proposed a steering potential function for vision-guided
navigation tasks by using a single camera without recovering
depth. Friudenberg and Koziol (2018) presented a new guidance
method, which can allow a mobile robot interceptor to guide to,
and rendezvous with, a moving target while avoiding obstacles
in its path.

Meanwhile, the navigation behavior achieved by the biological
intelligence in animal kingdoms exhibit excellent performance
to avoid unpredictable obstacles agilely even in complex
environments and outperform state-of-the-art robots in almost
every aspects, such as agility, stability, and energy-efficiency.

In order to achieve similar outstanding performances,
SNN architectures are increasingly being implemented for
solving robotic navigation tasks using different training
algorithms or running on neuromorphic hardware, due to those
aforementioned advantages of SNNs.

Wang et al. (2008, 2014) constructed a single-layer SNN
using a proximity sensor as the input and then trained it in
tasks such as obstacle avoidance and target reaching. In this
work, the propagation of the spikes through the network was
precisely planned, such that the controlled robot car managed to
avoid obstacles and long term plasticity was limited to only few
synapses through STDP.

Beyeler et al. (2015) implemented a large-scale cortical neural
network on a physical robot to achieve visual-guided navigation
tasks, which produced similar trajectories as human behavioral
data. However, most of the neurons in their network were still
used as refined planar representations of the visual field by
manually setting all the synaptic weights rather than training
them. In the work of Cyr and Boukadoum (2012), where
they used the classical conditioning to train a mobile robot to

navigate through the environment, it was even stated that their
architecture and initial synaptic weight matrix were intuitively
hand-coded. In another example by Nichols et al. (2013),
temporal difference learning was used to train a mobile robot
in a self-organizing SNN for a wall-following task. However,
each synaptic connection between neurons was formed when two
specific neurons were active at the same time, which ultimately
resulted in every single neuron in this multilayer structure having
a specific predetermined function. Moeys et al. (2016) adopted
the convolutional neural network (CNN) in the context of a
predator/prey scenario. The events from an event-based vision
sensor in each step are mapped into a frame of image based
on the scene activity, which is fed into the CNN as the input.
The network was off-line trained on labeled data and outputs
simple left, right, or forward action directly. Milde et al. (2017)
performed obstacle avoidance and target acquisition tasks with
a robotic vehicle, on which an SNN takes event-based vision
sensor as the input and runs on a neuromorphic hardware. It
is worth mentioning that some fixed SNN architectures aim at
solving a problem by imitating parts of structures of natural
neural networks found in living organisms such as the withdrawal
circuit of the Aplysia—a marine snail organism—in Alnajjar
et al. (2008), olfactory learning observed in the fruit fly or
honey bee in Helgadottir et al. (2013), or the cerebellum in
Carrillo et al. (2008).

There are other SNN-based control approaches that are
not necessarily dependent on the specific network architecture
but with other drawbacks that limit their further utility.
Bing et al. (2018) introduced an end-to-end learning approach
of SNNs for a lane keeping vehicle. Their SNN was constructed
with R-STDP synapses in an all-to-all connection and trained
by the R-STDP learning rule. Even this end-to-end sensorimotor
mapping drove the robot to follow lanes with different patterns,
their network had a simple architecture only with the input
layer and the output layer. Mahadevuni and Li (2017) solved
goal approaching task by training an SNN using R-STDP.
Shim and Li (2017) further proposed a multiplicative R-STDP
by multiplying the current weight to the normal R-STDP and
assigned the global award to all the synapses among two
separated hidden layers in an SNN. In fact, most of the other
approaches propose architectures that do not necessarily support
hidden layers in their networks. In Vasilaki et al. (2009) and
Frémaux et al. (2013), a map was fed into the network in the form
of cells which were directly connected to the output layer neurons
in a feed-forward and all-to-all manner. Each output neuron
represented a different movement direction. In other approaches,
such as Helgadottir et al. (2013) or Spüler et al. (2015), only
a limited amount of synaptic connections employ synaptic
plasticity while the majority of the synaptic strengths were fixed.
Unfortunately, similar approaches only work for simple tasks
rather than more complex tasks, which require precise tuning of
many more degrees of freedom, e.g., one or more hidden layers,
to solve the given task with satisfactory precision.

In summary, it can be seen that state-of-the-art SNNs based
on R-STDP are still far from being general-purpose and easy-to-
use, let alone the complexities in designing proper rewards or
tunning a group of learning parameters. To remove the burden
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of designing complicated SNN architectures, indirect approaches
for training SNNs are investigated. Foderaro et al. (2010) that
induced changes in the synaptic efficacy through input spikes
generated by a separate critic SNN. This external network was
provided with control inputs as well as feedback signals and
trained using a reward-based STDP learning rule. By minimizing
the error between the control output and optimal control law, it
was able to learn adaptive control of an aircraft. This was then
used to train a simulated flying insect robot to follow a flight
trajectory in Clawson et al. (2016). Similar ideas were presented
by Zhang et al. (2012, 2013), Hu et al. (2014), and Mazumder
et al. (2016) who trained a simple, virtual insect in a target
reaching and obstacle avoidance task. However, this method is
not suited for training an SNN onmulti-dimensional inputs since
the reward is dependent on the sign of the difference between the
desired and actual SNN output. This also reveals another defect
of most of current SNN-based control, which limits the use of
SNN only to one-dimensional output.

To remove those aforementioned barriers, the architectures
and learning rules used for SNNs should be able to operate on
networks with hidden layer(s), multiple outputs, and continuous
actions. These nice properties are also necessary in order for
SNNs to extend and rival the concept of deep traditional ANNs
using RL strategies or simply build the bridge between them.
Therefore, we propose a novel SNN training approach based on
R-STDP learning rule and the supervised learning framework.
Based on this method, an SNN-based controller for mobile robot
applications can be quickly and easily build with the help of
traditional control knowledge.

3. MODELING OF SPIKING NEURAL
NETWORK

While most SNN architectures are specifically designed for the
type of problems they are meant to solve, our SNN model
together with the proposed learning rule aims at providing
a simple universally usable network architecture similar to
traditional ANNs that can be applied to a variety of problems,
working in a black-box-like manner: The user should only think
about in what form the inputs should be fed into the network and
how the output is interpreted without having to worry about the
specific way the neurons are connected.

3.1. Network Model
Our proposed network has a simple architecture consisting of an
input layer encoding the sensory input vector with integrate-and-
fire (IF) neurons, a hidden layer of leaky integrate-and-fire (LIF)
neurons, and an output layer of LIF neurons, which provides the
output spike trains that are decoded into an output vector. The
network is a fully-connected feed-forward network, where the
specific values of all parameters are listed in the Appendix.

The input neuronsmodeled can be interpreted as an IF neuron
without leakage. Its firing threshold vth is set as 1 mV and the
neuron is modeled as

dvj

dt
= a · xj + b. (1)

vj is the membrane potential of the neuron. x is the inject current.
The parameter b is used to enable the input neuron firing even
when there is no stimulus, since a spike will be generated every
1
b
ms. This serves the purpose of helping to generate spikes for

low input values in the time window T and thus enabling learning
via STDP for inputs that would otherwise not have fired the input
neurons in T. With the factor a, the build-up of the membrane
potential can be scaled, limiting the amount of spikes generated
in T for a maximum input to (a + b) × T. In this work, a is set
to 0.2 and b = 0.025, resulting in the generation of one spike per
time window for no input and 11 spikes for maximum input. An
example is shown in Figure 1A.

The hidden and output layer consist of LIF neurons with
thresholds vth,hidden = 30 mV, vth,output = 25 mV. The neurons
in both layers share a refractory period τref = 3 ms and their
membrane time constant τm = 10 ms. The LIF neurons are
modeled as follows:

dvj(t)

dt
= (−vj(t)+ PSPj(t))/τm. (2)

Here, vj(t) is the jth neuron’s membrane potential, PSPj(t) is the
post-synaptic potential of the jth neuron. In this work, the PSP
induced by a presynaptic spike has the shape of an alpha function,
also referred to as alpha synapse (Gerstner and Kistler, 2002;
Rothman and Silver, 2014).

The shape of the resulting PSP is approximated by a system of
two differential equations:

dPSPj(t)

dt
= (−PSPj(t)+ ij(t))/τs

dij(t)

dt
= −ij(t)/τs +

∑

t
f
i

wijδ(t − t
f
i ),

(3)

where τs is a time constant controlling the decay of the PSP,

ij(t) is the inject current, t
f
i is the firing time of the ith neuron

connecting to the neuron and δ(·) is the Dirac delta function.
For the network to successfully learn a specific task, the exact
shape of the PSP is not decisive. It simply has to be a function
that allows for slow buildup of the membrane potential, resulting
in firing the post-synaptic neuron earlier when the synaptic
strength increases. Some mechanisms integrating the PSP by
simply increasing the membrane potential at the arrival time of
the pre-synaptic spike are not suited for this kind of network,
since this would result in firing the post-synaptic neuron only at
the same time the pre-synaptic neurons fires or after a certain
delay has passed. And then, the STDP learning rule will not work
with the delayed reward to adjust the synapses. The integration
of the post-synaptic potential is chosen to be alpha-shaped, since
the slow build up allows for integration of temporal information,
which includes the timing of the post-synaptic spike and the pre-
synaptic spike-timing and the strength of synaptic connection.

The output spike trains are decoded similarly to the leaky
integrator equation in Clawson et al. (2016). To further increase
the influence of the precise timing of the output spikes and
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FIGURE 1 | (A) Input encoding function for a = 0.2, b = 0.025, and xi = 0.5 in a time window T = 50ms, the horizontal dashed line means the firing threshold. (B)

Output function y(t) for α = 5, β = 0.05, and γ = 0 in a time window T = 100ms, the dashed vertical lines denote firing times of the output neuron.

TABLE 1 | SNN parameters.

SNN simulation Time window T = 50ms

Step size dt = 1ms

Input layer Input encoding a = 0.2, b = 0.025

Firing threshold 1

Hidden layer Firing threshold vth,hid = 30mV

Membrane time constant τm = 10ms

Synapse time constant τs = 5ms

Refractory period τref = 3ms

Output layer Firing threshold vth,out = 30mV

Membrane time constant τm = 10ms

Synapse time constant τs = 5ms

Refractory period τref = 3ms

Output decoding α = 20

β = 0.1

γ = 0

reward early spiking, it was slightly changed to

yi =
∑

t
f
i

α
T − t

f
i

T
exp(β(t

f
i − t))− γ , (4)

where α, β , γ are the output constants, yi is the output of the

ith output neuron and t
f
i are the firing times of this neuron.

Figure 1B shows the development of the output function in the
time window T for an exemplary spike train. All the neuron
parameters are shown in Table 1.

3.2. Supervised R-STDP Learning Rule
The basic idea underlying the proposed supervised R-STDP
learning rule is the following: calculating the reward according
to the supervised learning framework and strengthening a
synaptic connection based on the combination effect of a
dopamine reward and the STDP function, where STDP means
strengthening a synaptic connection results in a faster buildup
of the postsynaptic neuron potential when a presynaptic spike
arrives, leading to the postsynaptic neuron firing earlier.

For this learning rule, the weight changes proposed by an
STDP function are collected and a reward representing whether
the output is higher or lower than the desired output is calculated
after every simulation time window T. Then, this reward is used
to change the synaptic connections of the network under the
R-STDP learning rule.

The weights of the synaptic connections wij, where i and j are
the indices of the pre-synaptic and the post-synaptic neurons,
respectively, are updated after the simulation time window T and
follow the equations:

wij(t) = wij(t − 1t)+ 1wij(t) (5)

1wij(t) = η × rij(t)× STDPij(t)× gij(t). (6)

In this equation, t denotes the number of the current time
window and 1t = T. The learning rate η is a constant that
regulates the learning speed of the SNN. Inspired by traditional
ANNs, η starts at a maximum value ηmax and decreases toward
a minimum learning rate ηmin, such that the weight changes are
becoming finer as the training progresses. It is updated after every
training episode

η = ηmax −
ηmax − ηmin

epmax
× epcurr , (7)

where epmax is the number of training episodes and epcurr is
the current training episode. The function gij(t) is the synapses
eligibility trace. As opposed to eligibility traces in reinforcement
learning, here it models a phenomenon in biological neurons,
where synapses with higher efficacies produce greater weight
changes (Foderaro et al., 2010) and can be calculated as

gij(t) = 1− c1 × wij × exp(−c2 × abs(wij)/wmax), (8)

where c1 and c2 are positive constants. c1 is set to
1

wmax
to make

sure the eligibility traces only assume values between 1 and 0. The
weight changes proposed by the STDP function are collected and
represented by the term STDPij. This mechanism is modeled with
the help of two variables aij,pre and aij,post that are traces of the
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pre- and post-synaptic activity (Echeveste and Gros, 2015). They
are governed by the following differential equations:

τpre
d aij,pre

dt
= −aij,pre

τpost
d aij,post

dt
= −aij,post

(9)

Upon occurrence of a pre-synaptic spike, aij,pre is updated and the
proposed weight changes are modified:

aij,pre(t) = aij,pre(t − dt)+ Apre

STDPij(t) = STDPij(t − dt)+ aij,post .
(10)

When the post-synaptic neuron fires, aij,post is updated

aij,post(t) = aij,post(t − dt)− Apost

STDPij(t) = STDPij(t − dt)+ aij,pre.
(11)

The STDP function governed by these rules is equivalent to the
STDP learning rule. The reason for using this function is to
show the same behavior while being efficient and physiologically
plausible as biological neurons, since they do not have a memory
of all their fired spikes. The reward is represented by the term
rij. It can be seen as more of an adjustment than a reward, since
it determines whether the SNN output has to be lowered or
increased in order to reach the desired output.

After calculating the SNN’s output ySNN,k, a reward variable
that represents the relative deviation of each output from the
desired value ycon,k (provided by the dataset) is calculated for each
neuron indexed by k. As opposed to other R-STDP learning rules,
there is no global reward signal, but every synapse is assigned its
individual reward as

rk = (|ycon,k| − |ySNN,k|)/ymax. (12)

The value ymax is a maximum output that should not be exceeded.
Thus, the synapse connecting the jth neuron in the hidden-layer
and the kth neuron in the output layer are given a reward as

rjk = rk. (13)

To assign a reward to the synapses connecting the input to
hidden neurons, it has to be calculated differently. In this paper,
it is backpropagated through the layers: each hidden neuron
has one synaptic connection to each output neuron, where the
synapse is assigned a reward rk. With the help of the weights
of those synaptic connections the reward of a hidden layer
neuron (how much did it influence which output neuron) is
calculated, following (14). This hidden layer neuron reward can
now be assigned to the synapses connecting an input neuron to
this neuron.

ri,j = (
∑

k

|wjk|rk)/(
∑

k

|wjk|) (14)

Here, i indexes the ith input layer neuron, j indexes the jth hidden
layer neuron and k denotes the kth output layer neuron. With the

proposed rule for setting rewards for synapses, an SNN construed
with R-STDP synapses can be trained by the supervised learning
framework with a dataset. Next, the user simply has to set the size
of each layer of an SNN to achieve a desired behavior.

It should be noted that, while for the obstacle avoidance task,
both output reward values for the hidden-output-synapses are
calculated using (14), this was done slightly different for the goal
approaching SNN. This is because the output of one neuron
has to be precise, while the other neurons output simply has
to be higher for our goal-approaching sub-controller to exhibit
the aspired behavior. This will be explained in greater detail in
section 5.2. For this rule, the most important part is to correctly
judge whether an output has to be lowered or increased.

4. REFERENCE DATASET

The target-reaching controller (TR) is supposed to drive the
robot to reach a target area and avoid obstacles in its path.
Each task is to be solved by a sub-SNN-controller trained by the
supervised R-STDP learning rule, one for obstacle avoiding (OA)
and one for goal approaching (GA).

Therefore, two datasets are created consisting of 500 input-
output pairs, which are later used to train the sub-controllers
to approximate their obstacle avoiding and goal approaching
behaviors, respectively. The datasets are generated by simulating
the locomotion tasks in the Virtual Robot Experimentation
Platform (V-REP) (Rohmer et al., 2013).

4.1. Obstacle-Avoiding Dataset
The goal of the obstacle-avoiding sub-controller is to decide
in which direction the mobile robot should take to avoid an
encountered obstacle. For this purpose, an obstacle-avoiding
reference controller based on simple if-then rules (Zadeh, 1992)
is built. One piece of data in the dataset consists of the six sensor
readings of the sensors s1–s6, the two output angles αOA,ref ,L,
αOA,ref ,R and the turn to take, i.e., left or right.

The inputs of the obstacle-avoiding controller are the six
central front sonar-sensors of the pioneer robot (see Figure 2A).
The sensor reading si is given as the distance between the detected
object to the ith sensor’s position. Since sensors that do not
detect anything return random values between 0 and 1 for the
coordinates, an additional boolean variable detecti is used for
each sensor, which is True when an object is detected and False
if not.

The outputs are two angles αOA,ref ,L, αOA,ref ,R, which are
chosen based on the most central left and right sensors that do
not detect any obstacle. Negative angles represent right turning,
whereas positive angles represent left turning. To chose the
turning angle αturn for the robot, the angles are compared and
the one with the lower absolute value is chosen. If two have the
same absolute value, the sum of the left and right sensor readings
are compared and the side with the lower overall sensor readings
is chosen. The sensors are orientated at ±10, ±30, and ±50◦

at the front of the robot. To make sure the robot successfully
avoids the detected obstacle, output angles are set to a value that
is 10◦ higher than the respective sensor’s orientation angles. If all
sensors on one side detect an obstacle, the output angle is set to
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FIGURE 2 | (A) The Pioneer robot with its 6 on-board sonar sensors. Red line

denotes the sensors used for the obstacle-avoiding task. (B) Top-view of the

V-REP scene that is used to collect the data for the obstacle-avoiding dataset.

±90◦, implying a turn away from that obstacle. This turning rule
is shown in Algorithm 1.

To create the dataset, the robot controlled by the reference
controller drives around the training scene that can be seen in
Figure 2B. Meanwhile, the robot saves the sensor readings as well
as the outputs of Algorithm 1 every 200 ms, if an obstacle is
encountered. This scene is chosen as the training environment,
because it ensures the robot takes both left and right turns while
navigating through the scene. The controller then decides on the
turn to take by choosing the angle with the smaller absolute value
as the output angle αOA,ref . In the event that both output angles
are the same, the angle calculation algorithm additionally returns
the turn to take (1 for a left turn, 2 for a right turn) based on
which side’s detected obstacles are further away.

If all of the sensors s1–s6 return the following readings, no
obstacle will be encountered, which means the robot will not
collide with anything if moving forward.











s1, s6 ≥ 0.01

s2, s5 ≥ 0.15

s3, s4 = 1

(15)

4.2. Goal-Approaching Dataset
Another dataset is created to train the goal-approaching sub-
controller in order to reach a pre-set target area. This controller
gets the normalized vector Eg = (gx, gy) from the Pioneer robot to
the goal center as input and outputs a turning angle αGA,ref , which
results in the robot to directly face the target. Figure 3 shows the
Pioneer robot and its four imaginary goal positions g1–g4. It is
easy to see that the controller should later calculate a left turning
angle (α1 > 0◦) for y > 0, a right angle (α2 < 0◦) for y < 0,
and an angle |α3/4| > 90◦ for x < 0. The controller’s activity
could be restrained due to being exposed to very high output
angles (±180◦) in training, while experiencing mostly low target
angles when almost facing the goal. For this reason, all angles
>90◦ are clipped at±90◦:

αGA,ref =











arcsin(gy) if gx > 0;

90◦ if gy > 0, gx < 0;

−90◦ if gy < 0, gx < 0.

(16)

Algorithm 1: Algorithm to calculate the output angles for the
reference obstacle avoiding controller

procedure CALCOUTPUTANGLES(s)

αOA,ref ,L = 0◦, αOA,ref ,R = 0◦

sumL = s1 + s2 + s3, sumR = s4 + s5 + s6
turn = 0

if s3 == 1 then

αOA,ref ,L = 20◦

else if s2 == 1 then

αOA,ref ,L = 40◦

else if s1 == 1 then

αOA,ref ,L = 60◦

else

αOA,ref ,L = 90◦

end if

if s4 == 1 then

αOA,ref ,R = −20◦

else if s5 == 1 then

αOA,ref ,R = −40◦

else if s6 == 1 then

αOA,ref ,R = −60◦

else

αOA,ref ,R = −90◦

end if

if αOA,ref ,L > |αOA,ref ,R| then

turn = 1

else if αOA,ref ,L < |αOA,ref ,R| then

turn = 2

else if sumOA,ref ,L < sumOA,ref ,R then

turn = 1

else

turn = 2

end if

Return αOA,ref ,L,αOA,ref ,R, turn

end procedure

FIGURE 3 | The Pioneer robot with different relative goal positions (g1 - g4)

and the corresponding target angles (α1 - α4 ).
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To create the dataset, the coordinate pairs (gx, gy) are randomly
generated and then normalized. The absolute value of the target
angle is set to be >10◦, because αGA,ref ≤ 10◦ is treated here as
facing the target. From those normalized pairs (gx, gy), a target
angle is calculated according to (16). Similar to the obstacle-
avoiding SNN, the goal-approaching SNN later calculates two
output angles, one for each side. For this reason, the angle
of the side where the target is not located is set to ±180◦

to be consistent. One input-output pair then consists of the
two parts of the goal vector gx, gy and the two target angles
αGA,ref ,L, αGA,ref ,R.

4.3. Calculating the Pioneer-Robot Motor
Speeds
Since the reference datasets and SNN sub-controllers only
provide the turning angles, it is necessary to translate them into
actual motor speeds of the Pioneer robot in rad/s, where vforward
denotes the default motor speed when moving forward:

vleft = vforward − 1v(α)/2

vright = vforward + 1v(α)/2.
(17)

1v(α) is the difference in motor speeds necessary to achieve
a turn of α degree in 1 s. The default forward speed is set to
vforward = 5.0 rad/s.

5. CONTROLLER

In this section, the target-reaching (TR) control architecture
is presented which consists of an obstacle-avoiding (OA) sub-
controller and a goal-approaching (GA) sub-controller.

5.1. Target-Reaching Control Structure
Figure 4 shows the target-reaching control structure with which
the Pioneer robot is controlled during simulation. Upon starting
the simulation, V-REP passes the position of the target center
ptarget = (ptarget, x, ptarget, y) to the controller and the user is
required to set the target area by specifying a radius rtarget . After
every simulation time window, the controller is provided with
the position of the Pioneer robot pp3dx = (pp3dx,x, pp3dx,y), its
proximity sensor readings s1–s6, and the normalized vector to
the goal Eg. It is then checked in every step whether the robot
has reached the target area by calculating its distance d from the
target center as:

d =
√

(ptarget,x − pp3dx,x)2 + (ptarget,y − pp3dx,y)2, (18)

and then it is then compared to the initially specified target
radius rtarget . If the robot is not in the target area, the SNN-based
obstacle-avoiding sub-controller and the goal-approaching sub-
controller will calculate their angle outputs to drive the robot for
the next step, respectively. Finally, the motor speeds are further
calculated according to the output angle of the controller.

The output layer of both sub-controllers is equipped with
an additional neuron directly connected to the input layer,
being referred to as obstacle neuron (ON) and target-facing

FIGURE 4 | Structure of the Target-Reaching controller with its SNN

sub-controllers communicating with the V-REP simulator.

neuron (TN) for the obstacle-avoiding and goal-approaching
sub-controller in this work, respectively. These neurons are
added to the architecture to judge whether the SNN sub-
controllers should take action in controlling the mobile robot.
The obstacle neuron checks whether a forthcoming obstacle has
to be avoided. This is the case if the output yobst of the obstacle
neuron is higher than a threshold value yth,ON . Similarly, the
robot is not facing the target if the target neuron output ytarget <

yth,TN . They are trained using the same learning rule as for the
networks as a whole. With the output of these neurons, it is then
decided which turning angle αturn the robot has to take:

αturn =































αOA,L, if (yobst > yth,ON) ∧ (αOA,L < |αOA,R|)

αOA,R, if (yobst > yth,ON) ∧ (αOA,L > |αOA,R|)

αGA,L, if (ytarget < yth,TN) ∧ (αGA,L < |αGA,R|)

αGA,R, if (ytarget < yth,TN) ∧ (αGA,L > |αGA,R|)

0◦, else

,

(19)
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where αOA,L and αOA,R are the output of the obstacle-avoiding
controller, αGA,L and αGA,R are the output of the goal-
approaching controller. The subscript L and R represent turning
left or right. To translate the output of each SNN sub-controllers
into an angle, the following equation is used:

α = αmin,OA/GA + (αmax,OA/GA − αmin,OA/GA)× (ySNN/ymax),
(20)

where ySNN and ymax are the output and the maximum output of
each SNN, αmin, and αmax are the range of the turning angle. This
angle is then used to calculate the motor speeds of the Pioneer
robot according to (17).

5.2. Goal-Approaching Sub-controller
Figure 5A shows the topology of the goal-approaching SNNwith
its three input neurons gy,pos, gx,neg , and gy,neg , which are the x-
and y-components of the normalized goal vector Eg as shown in
Figure 3. Eg consists of gx, gy ∈ [−1, 1]. Since the inputs have to
be real values between 0 and 1, they are split into a negative part
gx,neg , gy,neg and a positive part gx,pos and gy,pos. Initially, both the
negative and positive parts are set to zero. During the locomotion,
if gy is positive, its positive part is set to gy, otherwise the positive
part is set to |gy|. The unset part remains zero. Since gx and gy
stand in relation to each other as g2x + g2y = 1, |gx| does not
provide any additional information and therefore gx,pos is not
fed into the network. However, gx,neg cannot be omitted, since
gx,neg < 0 implies that the output angle has to be >90◦. As
already mentioned in section 4.2, all output angles bigger than
90◦ are set to 90◦ in the dataset. For the hidden layer, there are
50 neurons inside.

The output neurons yGA,L and yGA,R are used for calculating
the output angles αGA,L, αGA,R according to (4) and (20). For goal
approaching, αmin,GA is set to 10◦ and αmax,GA to 100◦. ymax is
the SNN’s output for which αmax,GA is reached. For this problem,
it is set to ymax = 5. The third output neuron is responsible for
deciding whether the robot is facing the target or not, which is
directly connected to the input neurons. The threshold yth,TN is
set to 5 in the simulation.

5.3. Obstacle Avoiding Sub-controller
The obstacle-avoiding sub-controller functions very similarly to
the goal-approaching sub-controller. Its topology is shown in

Figure 5B. It differs from the goal-approaching controller in two
aspects, the first being the inputs fed into it. The input layer
consists of six input neurons, each responsible for encoding
one sensor reading. A sensor reading si is between 0 and 1,
representing how many meters away the detected obstacle is
located. Since a higher value represents a faraway obstacle and
lower value for a close obstacle to the robot, s̄i = 1 − si is fed
into the network in order to ensure a network activity that is
higher the closer an obstacle is. The output angles of the two
motor neurons are as well calculated by (20) with αmin,OA = 20◦,
αmax,OA = 100◦, and the same ymax = 5.

The neuron directly connected to the input layer evaluates
whether an obstacle has to be avoided not; this is the case if its
output is yobst > 5.

6. RESULTS AND DISCUSSION

We demonstrate the capabilities and efficiencies of our proposed
end-to-end learning of spiking neural network based on
supervised R-STDP by performing a target-reaching vehicle.
Within V-REP, we first present our different scenarios for goal-
approaching and obstacle-avoiding tasks. We then give and
analyze the training performances of our SNN-based controllers
in terms of training accuracy and errors. Finally, a group of
overall target-reaching tasks are conducted in unknown scenarios
to examine our proposed algorithms. The core concept of these
tasks is to demonstrate a promising training method for SNN
with a general-purpose and easy-to-use way.

6.1. Testing Environments
The environments used for testing the performance of
the GA and OA controllers as well as the overall TR controller as
a whole are presented in Figure 6. For the goal-approaching sub-
controller, a target is represented by a red platform and placed
in an open environment without obstacles (see Figure 6A). This
allows for testing the ability of the robot to reach the target from
different orientations without having to worry about colliding
with an obstacle. For the obstacle-avoiding sub-controller, the
mobile robot is driving around with the potential to collide with
multiple obstacles, as shown in Figure 6B. Besides, the obstacles
with different shapes and sizes (e.g., the thin pillars) have never

FIGURE 5 | (A) Network topology of the GA sub-SNN. (B) Network topology of the OA sub-SNN.
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been encountered before by the robot in the training scene
(see Figure 2B). This is critical for verifying its ability to react
correctly even to unknown stimulus. To test the performance of
the target-reaching control structure as a whole, the target from
the goal-approaching sub-controller scene is simply added in the
obstacle-avoiding testing environment (Figure 6C).

The SNN models and the learning rule presented in section
3 are used to train the goal-approaching and obstacle-avoiding
sub-controllers to mimic the output values for certain input
vectors, both provided by their respective datasets. All controllers
are trained for 100 episodes, where one episode consists of a
set of 500 input-output pairs. The training accuracy denotes
how often the sub-controllers chose the right turn (left or
right), while the error represents the deviation from the desired
output value.

6.2. Goal-Approaching Sub-controller
6.2.1. Training Details

Figure 7A shows the development of the accuracy and Figure 7B
shows the average error of the goal-approaching sub-controller
over the course of training. As can be seen, the accuracy quickly
rises to a value of over 90% and then slowly keeps rising during
the training process. The training terminates with a final accuracy
of 96.2%. It should be noted that, after approximately 70 training
episodes, the accuracy stagnates at values between 94.8 and

96.6%. Similar to the accuracy, the average error per episode
falls to a value below 15% after only four training episodes
and gradually reduces to an error of 10.24%. While it can be
expected to continue to fall for more episodes, the error usually
stagnates at a value of 10 ± 0.5%. The learning rates are set
by trial and error for both sub-controllers. Generally speaking,
the learning rates that are too low result in a much slower
increase in accuracy, while the error rates even stagnate at values
much worse than when choosing close-to-optimal learning rates.
Meanwhile conversely, the accuracy and average error usually
fluctuate before stagnating at a value far from the optimum.

The special neurons of each controller are trained separately
by using the same learning rule to make their output approach
the threshold value yth for edge cases repeatedly until the average
deviation falls under a certain level. For the target neuron (TN)
the maximum deviation is set to 0.25 and the two edge cases are:

gy,neg = 0.15, gx,neg = 0, gy,pos = 0;

gy,neg = 0, gx,neg = 0, gy,pos = 0.15.
(21)

Since |gy| = 0.15 results in a desired output angle of
approximately 8.6◦, an angle close to this value will be interpreted
as facing the target. Any other goal vector Eg that does not fall
between these two edge cases (−0.15 ≤ gy ≤ 0.15) means the
robot is not facing the target. And consequently, the higher input

FIGURE 6 | Simulation scenes used for testing the goal-approaching sub-controller. In each scenario, the red disc represents the goal position and the gray objects

are the obstacles. (A), the obstacle-avoiding sub-controller (B), and the target-reaching controller (C).

FIGURE 7 | Development of the accuracy (blue graph in A) and average error (purple graph in B) of the goal-approaching sub-controller over the training episodes for

A+ = 0.4, A− = 0.42, ηmax = 0.2, and ηmin = 0.05.
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value |gy| will apparently cause the output to cross the threshold
value yth. The learning parameters of the special neurons are
set to the same values as for their respective sub-controllers,
with the exception of A+ = 0.1, allowing for overall smaller
weight changes. As can be seen in Figure 8, it reaches an average
deviation of 0.248 after approximately 340 episodes, where in one
episode the edge cases are fed into the SNN five times.

6.2.2. Performance

The trajectories of the robot controlled by the goal-approaching
sub-controller for different initial positions and orientations can
be seen in Figure 9. The radius of the target area is set to 0.3
m in all tests. It can be observed that the robot manages to
quickly turn toward the goal and reach the target area for all the
initial orientations.

However, a problem arises while testing. When setting the
radius of the target area to a sufficiently small value such as 0.1
m, the Pioneer robot drives toward the target and then, instead
of moving closer to it, starts driving around the target area in
circles (Figure 10A). This happens because the goal-approaching
controller causes the Pioneer robot to turn toward the target,

FIGURE 8 | Development of the target neuron’s average deviation from yth,TN
for A+ = 0.1, A− = 0.105, ηmax = 0.2, and ηmin = 0.05 . The dashed red line

represents the maximum deviation of 0.25 that had to be surpassed. The

shaded region indicates the average absolute error of each episode. To show

the variation trend in a clear way, the solid blue line means the moving mean

value of the averaged absolute error over the episode.

but the consistent average velocity prevents it from moving
closer to the target center. However, this could be easily fixed
by lowering the mean velocity when getting close to the target
center ( d < 1 m):

vforward =

{

vinit × d , if d < 1,

vinit , else
(22)

where vinit is the initial forward velocity when starting the
simulation. d is the distance between the robot and the target
defined in (18). Figure 10B shows the trajectory of the robot with
the improvement under the same situation.

6.3. Obstacle-Avoiding Sub-controller
6.3.1. Training Details

For avoiding obstacles, the learning parameters are set to
ηmax = 0.09, ηmin = 0.02, and A+ = 0.4. The learning process
can be seen in Figure 11. Similar to the goal-approaching sub-
controller, the accuracy quickly rises to over 90% and continues
to increase before it stagnates at around 97.6%. The average error
however falls much faster, reaching a value of approximately
10.5% after 30 episodes and stagnating around that rate. The
accuracy after the final episode amounts to 97.6%, while the
average error rate is 10.5%.

The obstacle neuron undergoes the same training procedure
as the target-facing neuron. The development of the average
deviation per training episode can be seen in Figure 12. The
maximum deviation is set to 0.3 and it is surpassed after
approximately 580 episodes. For the obstacle neuron, the edge
cases are the six sensor readings from (15), while every other
sensor reading is set to 1 (not detecting anything). Since the input
neurons exhibit spikes even when not detecting anything, the
case where no sensor detects anything is also included in the edge
cases. For this case, however, instead of approximating the value
yth,ON , it is trained to assume a value lower than yth,ON/2 to make
sure the unconditioned firing does not cause the neuron to fire
too early, resulting in falsely detecting an obstacle.

6.3.2. Performance

Figure 13 shows the robot’s trajectory controlled by the obstacle-
avoiding sub-controller. It manages to efficiently avoid obstacles
while moving around the scene. However, there is one rarely
encountered case where it fails. This can also be imputed to
the consistent mean velocity of the robot. When directly driving

FIGURE 9 | The P3-DX’s trajectories controlled by the trained goal-approaching sub-controller for different goal positions and a target radius rtarget = 0.3m.
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FIGURE 10 | (A) The Pioneer robot drives in circles around the target center. (B) By reducing the forward velocity according to 22, the pioneer manages to reach the

target area.

FIGURE 11 | Development of the accuracy (A. blue graph) and average error (B. purple graph) of the obstacle-avoiding sub-controller over the training episodes for

A+ = 0.4, A− = 0.42, ηmax = 0.09, and ηmin = 0.02.

FIGURE 12 | Development of the obstacle neuron’s average deviation from

yth,TN for A+ = 0.1, A− = 0.105, ηmax = 0.2, and ηmin = 0.05. The dashed

red line represents the maximum deviation of 0.3 that had to be surpassed.

toward a corner, it detects the obstacle too late, such that there
is not enough space for taking a turn in any direction, which
in turn leads to collision with an obstacle. This is illustrated in
Figure 14A. This could be solved however in a similar fashion

to the goal-approaching sub-controller by simply relating the
default forward velocity to the sensor readings causing a decrease
when getting close to an obstacle:

vforward = vinit ×

6
∑

i=1

si ×
1

6
, (23)

This adjustment results in the robot needing much less space
for a turning maneuver and therefore allowing for a smoother
trajectory when avoiding obstacles. The resulting path solving
this problem is shown in Figure 14B.

6.4. Overall Performance
Combining the two sub-controllers, the target-reaching
controller exhibits successful goal approaching behavior while
avoiding obstacles in its path. Figure 15 shows the path of the
Pioneer robot controlled by the target-reaching controller for
different scenarios. In Figure 15A, it maneuvers through a pool
of obstacles and quickly reaches the target area. Figure 15B
shows the trajectory for the case when there is not enough space
to turn to the target. The robot then follows the path until there
is enough room for a turning maneuver, and then directly drives
toward the target. In Scenario C, the target is behind the Pioneer
P3-DX, separated by a wall. In the beginning, the robot tries to
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FIGURE 13 | Trajectories of the robot controlled by the obstacle-avoiding sub-controller for two different starting positions. (A) First start position. (B) Second start

position.

FIGURE 14 | (A) The robot fails to avoid the obstacle. (B) The robot

successfully avoids the obstacle when adjusting its forward velocity according

to 23.

make a right turn before detecting a wall. It then moves away
from it and turns left to face the target. After moving around
the wall behind which the goal is located, i terminates in the
target area. Figure 15D shows its behavior when the target is
located behind a big concave-shaped obstacle. It avoids it with
a left turn and then turns 180◦ to maneuver around it and
finally reach the target. As can be observed, the robot manages
to quickly reach the target in every scenario while avoiding all
obstacles in its path.

The previous results and performances show that the target-

reaching controller as well as the embedded sub-controllers
exhibit the desired behavior after being trained with the proposed
learning rule. While the accuracy of both sub-controllers rises to
a value higher than 95%, the error rates stagnate at approximately
10%. This is because the amount of spike times is limited in

each simulated step size (dt = 1.0 ms), only allowing for
so much precision. This is due to the relatively high step size
(dt = 1.0 ms) of the simulated SNNs and therefore limited
amount of spike times, only allowing for so much precision.
This however increases the speed of the simulation, resulting in
more updates per second. A higher precision could be achieved
by lowering the step size, given the computation speed is not
an issue. Moreover, considering that the target output angles
provided by the dataset used to train the obstacle-avoiding
sub-controller are meant as points of reference and are at a
minimum 20◦ apart from each other, in theory an average error
of 10◦ is appropriate and acceptable for outputting all angles
between−90◦ and+90◦.

Even though the controllers and special neurons have to be
trained to behave differently, the same learning rule could lead to
successful results. Apart from this network being able to be used
to train two sub-controllers with multiple outputs on different
tasks, it is also shown that the backpropagation of the rewards
works well and can be easily assigned to each side’s synaptic
connections, effectively resulting in the training of two different
SNNs on a one-dimensional output. This underlines the ability
of this proposed approach to effectively train a network on two
different outputs at the same time, yielding similar results to a
network trained for a single output.

The problems encountered while testing the performance
of the sub-controllers can all be accounted for the forward
velocity and therefore could be easily solved. However, the target-
reaching controller does have its flaws. First, a drawback of this
training procedure is the need for a dataset or reference controller
providing the SNNs with a desired optimum output value to
calculate the reward. In neurology, however, the learning rule
only needs some kind of mechanism determining whether the
SNNs outputs are too high or too low. The second limitation
with the controller can be observed in Figure 15D. Even though
the obstacle avoiding and goal approaching work well on their
own, the target-reaching controller does not coalesce the different
sub-controller’s outputs and exclusively either avoids obstacles
or approaches the target. This is because the obstacle-avoiding
controller is meant to choose the smaller angle between the two
output angles for more efficient turning. However, under some
circumstance, the larger turning angle leads closer to the target.
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FIGURE 15 | The trajectories of the P3-DX controlled by the TR-Controller for different starting and target positions for a target radius of 0.3m. (A) The first start

position. (B) The second start position. (C) The third start position. (D) The fourth start position.

Therefore, the robot takes some unnecessary steps to reach the
final target.

7. DISCUSSIONS AND LIMITATIONS

This paper presented an approach for fast building an SNN-
based controller for performing robotic implementations. Our
approach first used a model-based control method to shape
a desired behavior of the robot as a dataset and then use it
to train an SNN based on supervised learning. We presented
a robot navigation task as a case study to demonstrate our
proposed approach. Specifically, we have demonstrated that pre-
acquired knowledge can be used for training an SNN with
R-STDP synapses to achieve desired functions. We have also
demonstrated that the reward can be assigned properly to all the
synapses in an SNN constructed with hidden layer. Finally, our
proposed method has been demonstrated on a simulated robot
navigation task. The SNN-based controller can quickly assemble
the knowledge from the dataset and exhibit adaptiveness in
unknown environment.

It is worth noting that, we do not claim the dataset of our
approach can be used for different tasks without modifications.
The motivation of our approach is to present an alternative
to train SNNs quickly for practical implementations, where we
expect that SNN-based controllers can exhibit their advantages
on neuromorphic hardware. Our approach also requires a
pre-acquired dataset to train the SNNs off-line based on
the supervised learning framework. However, this problem is
expected to be solved when the network equips memory-like
functions to store its knowledge and train itself at the same time
or afterwards.

8. CONCLUSION AND FUTURE WORK

Teaching a brain-inspired spiking neural network in a general
and easy way is not simple.We tackled this problem by proposing
an end-to-end learning rule based on the supervised R-STDP rule
and used it for training two SNNs for an autonomous target-
tracking implementation. By simply changing the inputs fed into
the network and slightly changing the way that the reward was
assigned to the output neurons, two SNNs were trained to learn
to exhibit the desired behavior successfully and the robot was able
to reach a previously set target area while avoiding obstacles.

Our study not only offers a general-purpose training
framework for SNNs with multiple outputs and hidden layers
but also indicates that how the reward can be properly back-
propagated through them.

Together with this, the basic idea of this learning rule also
allows for potentially greatly increasing the energy efficiency of
SNNs by making them able to learn with and operate on very few
and even single spikes per time window.

For future work, we will transfer our approach on real-
life robot tasks, which runs a neuromorphic hardware. Thus,
we can evaluate the effectiveness of our approach for fast
building an applicable SNN-based controller for mobile robot
implementations. Although our study proved to work well for
networks with one hidden layer and two output neurons, it has
yet to be thoroughly tested on how more output neurons affect
training and how it performs when increasing the amount of
hidden layers in the network. The insights gained could help
to further improve this concept up to the point of creating
a general-purpose and easy-to-use spiking neural network
design for training and energy-efficient control of autonomous
mobile robots.
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APPENDIX

In Tables A1, A2, syn1 denotes the synapse connecting the input to the hidden layer, syn2 denotes the synapse connecting the hidden
to the output layer.

TABLE A1 | Training parameters of the goal-approaching controller.

Goal-approaching Number of training 100

Episodes

Number of test labeled 500

Data per episode

Syn1 initial weights

Inhibitory (20%) −4± 1

Excitatory (80%) 21.5± 3.5

Syn2 initial weights

Inhibitory (20%) −2.5± 0.5

Excitatory (80%) 4± 1

Max. learning rate ηmax = 0.2

Min. learning rate ηmin = 0.05

Amplitude of weight change A+ = 0.4

for facilitation

Time window size for τ+ = 10ms

faciliation

Amplitude of weight change A− = 1.05A+ = 0.42

for depression

Time window size for τ+ = 10ms

depression

Maximum weight wmax = 50

Minimum weight −wmax/2 = −25

Eligibility trace c1 = 1/wmax = 0.02

constants c2 = 1

Maximum output ymax = 5

Target-facing neuron Initial weights 15

Max. learning rate ηmax = 0.2

Min. learning rate ηmin = 0.05

Amplitude of weight change A+ = 0.1

for facilitation

Time window size for τ+ = 10ms

faciliation

Amplitude of weight change A− = 1.05A+ = 0.105

for depression

Time window size for τ+ = 10ms

depression

Maximum weight wmax = 50

Minimum weight −wmax/2 = −25

Eligibility trace c1 = 1/wmax = 0.02

constants c2 = 1

Maximum output ymax = 5

TABLE A2 | Training parameters of the obstacle-avoiding controller.

Obstacle-avoidance Number of training 100

episodes

Number of test labeled 500

data per episode

Syn1 initial weights

inhibitory (20%) −3.125± 0.625

excitatory (80%) 6.25± 1.25

Syn2 initial weights

inhibitory (20%) −0.625± 0.625

excitatory (80%) 3.75± 1.25

Max. learning rate ηmax = 0.09

Min. learning rate ηmin = 0.02

Amplitude of weight change A+ = 0.4

for facilitation

Time window size for τ+ = 10ms

faciliation

Amplitude of weight change A− = 1.05A+ = 0.42

for depression

Time window size for τ+ = 10ms

depression

Maximum weight wmax = 50

Minimum weight −wmax/2 = −25

Eligibility trace c1 = 1/wmax = 0.02

constants c2 = 1

Maximum output ymax = 5

Obstacle neuron Initial weights 6.5± 0.5

Max. learning rate ηmax = 0.09

Min. learning rate ηmin = 0.02

Amplitude of weight change A+ = 0.1

for facilitation

Time window size for τ+ = 10ms

faciliation

Amplitude of weight change A− = 1.05A+ = 0.105

for depression

Time window size for τ+ = 10ms

depression

Maximum weight wmax = 50

Minimum weight −wmax/2 = −25

Eligibility trace c1 = 1/wmax = 0.02

constants c2 = 1

Maximum output ymax = 5
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