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We propose a deep neural network architecture, the Encode-Manipulate-Decode

(EM∗D) net, for rapid manipulation planning on deformable objects. We demonstrate

its effectiveness on simulated cloth. The net consists of 3D convolutional encoder and

decoder modules that map cloth states to and from latent space, with a “manipulation

module” in between that learns a forward model of the cloth’s dynamics w.r.t. the

manipulation repertoire, in latent space. The manipulation module’s architecture is

specialized for its role as a forward model, iteratively modifying a state representation

by means of residual connections and repeated input at every layer. We train the

network to predict the post-manipulation cloth state from a pre-manipulation cloth

state and a manipulation input. By training the network end-to-end, we force the

encoder and decoder modules to learn a latent state representation that facilitates

modification by the manipulation module. We show that the network can achieve good

generalization from a training dataset of 6,000 manipulation examples. Comparative

experiments without the architectural specializations of the manipulation module show

reduced performance, confirming the benefits of our architecture. Manipulation plans are

generated by performing error back-propagation w.r.t. the manipulation inputs. Recurrent

use of the manipulation network during planning allows for generation of multi-step

plans. We show results for plans of up to three manipulations, demonstrating generally

good approximation of the goal state. Plan generation takes <2.5 s for a three-step plan

and is found to be robust to cloth self-occlusion, supporting the approach’ viability for

practical application.

Keywords: planning, neural networks, forward models, deformable objects, manipulation, machine learning

INTRODUCTION

Within the area of robotic manipulation planning, deformable objects pose a particularly tough
challenge. Manipulation changes the shape of such objects, so the common strategy of acquiring a
3D model of the object and planning w.r.t. this model is of little use. Even just predicting the object
shape that will result from a given manipulation is far from trivial. Maybe the most common type
of deformable object manipulation is cloth manipulation. Cloth exemplifies the difficulties stated
above, yet humans manipulate cloth routinely and with ease, without much thought. We seem to
acquire an intuitive sense of how cloth reacts to our manipulations. Replicating this ability in AI is
a challenge of both theoretical and practical interest.
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One point of particular theoretical interest is that our affinity
with cloth goes beyond fixed goal-based routines, yet does not fit
rule-based reasoning patterns. Despite being notoriously hard to
formalize (or even verbalize), our affinity with cloth generalizes
well to novel situations. This puts cloth manipulation into
somewhat of a gray zone, that present day AI does not yet have a
clear solution for.

Practical interest in cloth manipulation derives from the fact
that cloth is ubiquitous in our everyday lives. Many everyday
chores involve cloth manipulation in one form or another, so
efficient cloth manipulation capabilities would be an important
feature in household support robots.

Related Work in Cloth Manipulation
Much work in multi-step cloth manipulation avoids the need to
plan by assuming fixed, hand-designedmanipulation procedures.
Such procedures can be quite effective for specific tasks (Maitin-
Shepard et al., 2010; Koishihara et al., 2017; Yuba et al., 2017).
Assuming a circumscribed starting situation and fixed outcome
allows comparatively quick operationwith limited computational
cost, making this type of approach feasible for real-world
applications where the same tasks have to be performed over and
over, such as in industrial settings. However, there is no flexibility
to accommodate new goals; every new goal state requires a new,
human-provided, plan.

To flexibly realize variable goals requires an ability to plan
ahead, to foresee the outcomes of individual actions and string
actions together accordingly. This naturally leads to simulation-
based approaches. While simulation provides high flexibility in
terms of the manipulations that can be considered (Kita et al.,
2014; Li et al., 2015), application in planning faces at least two
major hurdles. The first is computational cost. Simulating a
single manipulation is computationally expensive, and planning
a sequence of manipulations generally requires consideration of
a substantial number of possibilities. This in turn makes explicit
search for manipulation sequences slow and impractical. The
second hurdle is that obtaining an accurate deformation model
of a given object is a difficult problem in itself, an issue that
gets more pressing as more complex manipulations and longer
sequences of manipulations are considered.

A promising intermediary approach works by retrieving and
modifying manipulations from a database (Lee et al., 2015). This
offers more operational flexibility than fixed procedures at a
smaller computational cost than the simulation-based approach.
However, present demonstrations of this approach still assume
a fixed goal, and whereas the cost of database retrieval and
deformation operations is less than full-fledged simulation, it is
not clear whether this approach can be made efficient enough to
perform free-form planning in real-time.

Recent years have seen increasing interest in the use of neural
networks for manipulation problems. Impressive results have
been demonstrated in grasp point detection for rigid objects
(Lenz et al., 2015), and visuomotor policy learning (Levine
et al., 2016). Given neural networks’ natural affinity for fuzzy
subject matter, they may have the potential to bring major
progress to deformable object manipulation. Neural network-
driven grasp point detection has been applied in a bed-making

task (Seita et al., 2018). Interesting results have been reported
on a dual neural network approach to cloth folding, combining
a convolutional autoencoder and a time-delay neural network
to achieve fine control over manipulation motions (Yang et al.,
2017). Whereas the goal is fixed, motion is guided by network-
generated predictions of the very near future, thus realizing
some degree of foresight. Neural network-driven prediction has
also been employed for prediction of forces exerted on human
subjects in a dressing task (Erickson et al., 2018).

Despite these advances, open-goal, multi-step
manipulation planning for deformable objects remains largely
unexplored territory.

Related Work in Model-Based Learning
There is increasing evidence from neuroscience that humans
learn, in part, by acquiring forward models (Gläscher et al.,
2010; Liljeholm et al., 2013; Lee et al., 2014). Human ability
to generalize implicit knowledge of cloth dynamics to novel
circumstances suggests that we acquire forward models of these
dynamics. Forward models are commonly used in model-based
control and planning, but in the case of cloth manipulation
planning, the use of explicit forward models (i.e., physical
simulation) is problematic due to computational cost and the
difficulty of obtaining an accurate model, as discussed above.
However, it has been demonstrated that neural networks can
be trained as forward models. Of particular relevance here is
(Wahlström et al., 2015) for the use of a neural network trained as
a forward model in latent space. The proposed model takes high-
dimensional observations (images) of a low-dimensional control
task as inputs, maps these observations into low-dimensional
latent representations (by means of PCA followed by an encoder
network), feeds these through a network functioning as a forward
model, and then maps the outputs of this network to high-
dimensional predictions of future states. This model is then used
to search for control signals that bring about a fixed goal.

Also related is (Watter et al., 2015). Here too, an encoder
network is used to map high-dimensional observations to low-
dimensional latent representations. The forward model takes the
form of linear transformations in latent space (although a non-
linear variant is considered as well). We return to these and other
related neural network studies in the discussion section. In the
context of cloth manipulation, use of a neural network as forward
model allows us to side-step the computational cost of explicit
simulation (replacing it with forward propagation through the
network), as well as the burden of acquiring an accurate model
of a given cloth item (instead, the forward model is learned
from data).

Contributions and Limitations
This paper presents a fully connectionist approach for efficient
deformable object manipulation planning, based on forward
modeling of the object’s deformation dynamics with respect to
a given manipulation repertoire. We avoid explicit simulation
and database matching/retrieval, yet realize a substantial degree
of flexibility along with fast operation time. Core of the
system is a modular neural network architecture, composed
of 3D convolutional encoder and decoder modules and a
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fully connected manipulation module. Given a start and goal
state, the network is used to search for the manipulation
sequence that produces the latter from the former, by means
of error back-propagation w.r.t. the manipulation input. We
can search for manipulation sequences of various lengths by
varying the number of recurrent propagation loops through
the manipulation module. In the present paper, we apply this
manipulation planning approach to free-form manipulation on
a (simulated) square cloth.

The main contributions of this work are as follows.

• We propose a neural network architecture for associating
manipulations with changes in cloth states, trainable on
individual manipulation examples from a comparatively
small dataset.

• We show that this network can predict cloth
manipulation outcomes.

• We show that this network can be used to generate single
and multi-step manipulation plans in seconds, by means of
back-propagation w.r.t. the manipulation inputs.

An important distinction between our system and most
existing work in cloth manipulation is that our system
is, to a large degree, task-agnostic. The task domain and
manipulation repertoire are determined by the dataset the
system is trained on. We believe this should provide a high
degree of flexibility for application to various task domains and
manipulation repertoires.

This has consequences for system evaluation as well. The
free-form manipulation task we adopt here for evaluation is
not intended to represent or resemble any particular practical
cloth manipulation task, nor was the manipulation repertoire
designed with any specific robotic platform in mind. Instead, our
experimental setup is designed to assess the system’s capabilities
on a broad domain with a basic manipulation repertoire that
could be realized on a wide variety of robotic platforms. The
motivation for this choice is two-fold.

The first motivation is that success on a broad task would
suggest that the approach is viable for a broad variety of more
specific tasks. For use in a practical, constrained application, one
would want to use a dataset that covers a domain suited to the
application, with a manipulation repertoire suited to the specific
robotic platform under consideration.

The second motivation is the long-term goal of pursuing
a generalized affinity with cloth objects. Human affinity with
cloth goes far beyond folding towels and clothes into neat
rectangles. We quickly drape a dish towel over the back of a
chair when a goal more urgent than drying the dishes presents
itself. We extract sizable bed sheets from a washing machine
without them sweeping over the floor with little effort. We
intuit what will or will not fit into a coat pocket. Much of
human cloth manipulation seems better characterized as the
flexible application of a general understanding of cloth dynamics
than as mastery of a large collection of individual micro-tasks.
Progress toward broad generalized cloth manipulation abilities
for robots requires that we try and push toward methods that
offer increasingly high degrees of generality. In the context of
this goal, the value of our results lies not in their practical

applicability, but in the fact that they represent progress toward
higher generality.

As will be clear from the above, our purpose in this work is
not to excel at any one specific example of cloth manipulation,
and practical applicability of the system as trained on our dataset
is limited at best. Also, whereas we believe that our approach
should be viable for a range of task settings more specific than
ours, we expect its applicability to highly constrained tasks
to be limited: planning ability is only meaningful on tasks
that present significant variability and require some level of
system autonomy.

TASK DESIGN

The problem of manipulation planning can be formulated
as follows: Given a state domain consisting of possible state
set S, a manipulation (action) domain consisting of possible
manipulation setM, and states sa and sb ǫ S, find a manipulation
sequence (action sequence) pab = <m0, . . . , mn−1 > withmi ǫ M
such that applying manipulation sequence pab starting in state sa
will produce state sb.

In this paper we consider the task of manipulating a square
piece of cloth from one configuration into another. We let states
represent the cloth in some stable configuration. Manipulations
are defined as triplets of real-valued 2D vectors. The first two
vectors indicate the x and y coordinates where the cloth is picked
up (grasp points below), and the third vector (displacement
vector below) indicates the horizontal movement of the grasp
points (both points are moved in parallel and by the same
distance, so one vector suffices). Figure 1 illustrates how such
manipulations are translated into actuator trajectories. Plans are
sequences of manipulations. The height to which the grasp points
are lifted is fixed.

The manipulation format is intentionally somewhat
minimalistic. Every additional dimension also adds to the
complexity of the planning process, so any aspects that can be
resolved locally are best excluded from the planning process.
In simulation, we perform manipulations by fixing the relevant
vertices of the cloth mesh to a non-colliding actuator. The
complexities of performing cloth manipulations with any given
physical actuator are not considered in the present paper.
In ongoing work, we are integrating the planning system
described here with a physical dual-armed robot platform
(Tanaka et al., 2018).

FIGURE 1 | Schematic of cloth manipulation.
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SYSTEM ARCHITECTURE

The system is composed of three modules: encoder module
E, manipulation module M, and decoder module D. E maps
(encodes) state si to its latent representation ci:

E (si) = ci. (1)

M maps latent representation ci and manipulation mi to a
prediction ĉi+1 of ci+1, the latent representation of the state si+1

that results from applying manipulationmi to si:

M (ci,mi) = ĉi+1. (2)

D maps (decodes) latent representation ci (or ĉi) to an
approximation ŝi of state si:

D (ci) = ŝi. (3)

Given a state si and a manipulationmi, D(M(E(si),mi)) computes
a prediction of the outcome si+1. Mapping to latent space before
applyingM, andmapping back to regular space afterwards, serves
two purposes. The first is dimensionality reduction. States in
our task are 16384D. Applying manipulations directly on states
of this dimensionality is computationally costly and hard (if
not impossible) to train. Modules E and D map states to more
manageable 512D latent representations. The second reason is
manipulability. Depending on how a state is represented, it
may be easier or harder to apply specific manipulations to it.
By training E, M, and D in compound fashion, the E and D
modules are forced to learn a latent representation format that
makes M’s life easy, i.e., lends itself well to application of the
manipulation repertoire.

Movement of one point of a cloth often affects the cloth’s shape
over a broad region in non-trivial but highly structured ways. For
predicting these effects, the substrate of a voxel representation
is likely far from ideal. We let E map voxel representations
to latent representations with no imposed spatial structure,
so the learning process is free to find a way of representing
the cloth’s spatial contingencies that facilitates prediction of
manipulation outcomes.

Each module is instantiated as one neural network. Encoder
E and decoder D are structured like the bottom and top halves
of a 3D convolutional autoencoder. Manipulation module M is a
modifiedmulti-layer perceptron. A concept image of the network
is shown in Figure 2. The network is implemented in TensorFlow
(Abadi et al., 2015). Network specifications are given in Table 1.

We avoid pooling, because it discards important spatial
information. The use of pooling between convolution layers
is usually motivated by the partial translation invariance and
dimensionality-reduction it affords, but in the present system the
former is detrimental and the second can as well be obtained with
strided convolution, which does not destroy spatial information.
As can be inferred from the strides andmap counts given above, E
maps 32 × 32 × 16 × 1 inputs to 1 × 1 × 1 × 512 outputs (here
the first three dimensions are spatial, the fourth is the channel
dimension), and D does the inverse. The latent representations

FIGURE 2 | Concept image of EMD network. Functionally denoted as

D(M(E(si ),mi )). See Table 1 for actual sizes.

TABLE 1 | Network architecture specifications.

3D CONVOLUTIONAL ENCODER (E)/UP-CONVOLUTIONAL DECODER (D)

Layers 6

Feature maps /

layer

1 (input), 32, 32, 64, 128, 256, 512 (output).

Order reversed in decoder.

Kernel size 3×3×3 (all layers)

Strides 2×2×1 on the first layer (E) / last layer (D)

2×2×2 on all other layers

Activation function tanh

MANIPULATION MODULE (M)

Layers 10 (5 in configuration C2)

Input layer size 512+6

Hidden layer size 512+512+6 (512+512 in configuration C0)

Output layer size 512

Activation function tanh

only have extension in the channel dimension, meaning they have
no imposed spatial structure.

Cloth state input is given in the form of a binary voxel
rasterisation of the (simulation-generated) cloth mesh, at the 32
× 32 × 16( × 1) resolution taken by E. Each voxel takes a value
of 1 if one or more vertices of the cloth mesh fall in that voxel,
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and a value of 0 otherwise. Before rasterisation, we multiply the
vertices’ z coordinates by a factor 4 to emphasize height variations
(effectively increasing resolution on the z-axis by a factor 4). This
is important to ensure that creases in the cloth (which do not have
much height but do provide important shape information) do not
get lost in rasterisation.

We scale the view-port of the voxel space so that the cloth,
shape-wise, fully fits inside it in any plausible stable shape
configuration. However, repeated manipulations can move the
cloth by a substantial distance, which would quickly take it out
of the range of the viewport. To keep the cloth always fully in
view, we introduce periodic boundary conditions on the x and y
axes. That is, we bring vertices’ x and y coordinates into the [-1,
1] range using x′ = (x+ 1) mod 2− 1 (and same for y).

Both the autoencoder (encoder and decoder module) and
the manipulation network have some uncommon features. The
convolution operations use periodic padding on the x and y
dimension to account for periodic boundary conditions on the
voxel space. A kernel size of 3 × 3 × 3 implies that for full-
size convolution we should pad each map with a border of
width 1 before applying the kernel. Instead of the usual zero-
padding, we fill the border with the content of the opposite
edges and corners of the map. Figure 3 shows an example
of a cloth extending over the edges of the voxel space, with
periodic padding applied. Periodic padding is applied at every
convolution and up-convolution throughout the encoder and
decoder modules. All connections in the encoder and decoder are
initialized with random values from the [−0.05, 0.05] range.

The manipulation network is a multi-layer perceptron with a
number of modifications. One modification is the introduction
of an aspect of Residual Learning (He et al., 2015). As can be seen
in Figure 2, the network is comprised of three vertical sections,
colored in blue, green and yellow in the figure. The blue section of
the input layer receives the encoded state representation. In each
subsequent layer, the blue section receives a copy of the activation
vector on the blue section of the preceding layer (i.e., the pink
connections in Figure 2 have fixed weights of 1.0). Activations
computed in the layer are added to the copied values. The blue

FIGURE 3 | Top-down view (voxel value means over z-axis) of a voxel

representation of a state with the cloth wrapped around the periodic

boundaries of the voxel space, with periodic padding.

section essentially serves to hold the state representation as it
is incrementally modified through the layers. Note that with all
other weights set to 0, this architecture simply passes on the
encoded state unchanged.

This style of propagation, where setting all mutable weights
to 0 results not in blank output but in pass-through behavior,
was originally proposed to facilitate the training of very deep
networks (He et al., 2015). The result is a learning style where
subsequent layers learn to make incremental improvements to
the representation as it propagates through the net. Our network
is not particularly deep (the manipulation module has just 10
layers), and our implementation differs (the residual connections
do not skip layers), but the concept of incremental modification
is applicable to our problem setting. Pre- and post-manipulation
cloth states often show some degree of resemblance. A short
displacement distance often leaves part of the cloth undisturbed.
Many movements displace the cloth in space but leave parts
of its shape intact. Hence a computation style of incremental
modification seems appropriate. In the experimental results
below, we include a variant without these residual connections
(Configuration C1) to assess the effect of their inclusion.

Neurons in the green section behave as in a regular neural
network. They serve to compute the appropriate modifications
and apply them to the state representation. This section has
no residual connectivity. Finally, the yellow section receives the
manipulation input. The manipulation input is small (6 values)
compared to the state representation in the blue section and
the activation vector in the green section (512 values each).
We offset this imbalance in two ways. Firstly, we initialize the
weights on connections from manipulation inputs to larger
values (random values from the [−0.05, 0.05] range) than the
rest of the weights in the manipulation network (random values
from the [−0.001, 0.001] range). Secondly, manipulation inputs
are provided (identically) at every layer. This avoids the need for
the network to retain the manipulation signal through numerous
layers before it can affect computation in the upper layers. We
included a variant that feeds the manipulation input only into
the first layer of the manipulation network (configuration C0), to
assess this feature’s effect on performance.

At the borders between any twomodules (i.e., on the output of
the E andMmodules), we introduce a simple discretization layer.

activationout =
round(res·activationin)

res
(4)

Here res is a system parameter controlling the grain of the
discretization, which we set to 16. This layer is not differentiable,
so during backpropagation we let the gradient pass through
unmodified, cf. (Van den Oord et al., 2017). The use of discrete
latent representations in generative models has recently been
reported on in Jang et al. (2017), Maddison et al. (2017), where
it is typically motivated by the latent variables’ correspondence
to categories. Our motivation to discretize representations is
rather different (there is no concept of categories in our task).
We will be using the manipulation module recurrently to
compute multi-step plans, which can quickly incur a build-
up of noise and diffusion in the latent representations. If we
let the latent representation be discrete, it can be denoised
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FIGURE 4 | (A) Network setup for generating a 3-step plan. This composition

can be denoted as D(M(M(M(E(s0),m0),m1),m2)), or EM
3D for short.

Multi-step manipulation planning is done by back-propagation through such

recurrent applications of the manipulation network. The cyan arrows represent

the back-propagating error signal. (B) Network setup after speed optimization.

By precomputing latent encodings of sa and sb, plan search can be run

entirely in latent space, avoiding repeated (and comparatively expensive)

propagations through the encoder and decoder modules.

by means of rediscretisation. Specifically, if the magnitude
of the noise on a given representation falls below 0.5/res,
then equation (4) will return the representation perfectly
denoised. Theoretically, as long as the error incurred in a
single pass through the manipulation network falls below this
threshold, predictions would not lose accuracy as the number
of passes through the network increases. Conversely, without
discretization, any error larger than zero would carry through to
the next pass, leading to degradation of prediction quality as the
number of passes increases. Hence in theory, the discretization
layer may improve multi-step prediction and planning ability.
Of course, setting res too low will harm the expressiveness
of the latent representation, as it reduces the number of
possible latent representations. We included a non-discretizing
variant in our experiments (configuration C3), to assess the
effect on performance.

PLANNING ALGORITHM

The network as discussed so far computes predictions of
manipulation outcomes, but its actual purpose here is plan
generation. Here we discuss how the net is used to generatemulti-
step manipulation plans, and how planning and manipulation
execution are interleaved in operation.

Algorithm 1 Plan generation.

1 n = plan length
2 sizec = size of latent representation
3 n_parallel_instances= 10
4 max_iterations= 100
5 sa = current cloth state
6 sb = target cloth state
7 mab = n×6 array initialized with
8 a random n-step plan
9 c0 = E(sa)
10 cb = E(sb)
11 r = n×6 array of update rates,
12 initialized to 0.1
13 instance_best=[1.0]∗n_parallel_instances1

14 steps_stagnant= [0] ∗ n_parallel_instances
15 for iiteration ∈ 0, . . ., max_iterations:
16 foriinstance ∈0, . . .,n_parallel_instances:
17 for step ∈ 1, . . ., n:
18 cstep = M (cstep-1, mab[step-1])
19 loss= (Cb − Cn)2 / sizec
20 if loss < instance_best[iinstance]:
21 instance_best[iinstance] = loss
22 steps_stagnant[iinstance] = 0
23 else:
24 steps_stagnant[iinstance] += 1
25 g = n×6 array of gradients for
26 manipulation inputs w.r.t. loss
27 update r according to iRprop-
28 mab += r · g
29 if minimum(steps_stagnant) ==

30 early_stopping_criterion:
31 break
32 return mab

1The (Python) syntax [v] * n initialises a list of length n with value v.

Plan Generation
By applying themanipulation network recurrently for n times, we
can predict the outcome of an n-step plan. We refer to a net with
n recurrent passes through the manipulation module as EMnD,
and to these nets in general as EM∗D nets. By means of iterated
backpropagation w.r.t. the manipulation inputs, these nets can
be used to generate multi-step manipulation plans. Figure 4A
illustrates the concept for n= 3 (the maximum considered in the
present work). This generation process can be further optimized
for speed by precomputing latent representations of the start and
end state and running the iterative plan generation process in
latent space entirely. Figure 4B illustrates this optimization. Note
that the encoder is used twice while the decoder is not used.
Algorithm 1 specifies the procedure for generating a plan mab

for transforming state sa into state sb.
Although the optimized variant has a substantial speed

advantage, its viability was found to depend on the loss functions
used for training, so for some experiments belowwe report scores
for both variants. An earlier report on this work (Arnold and
Yamazaki, 2017) also employed the non-optimized variant.
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Manipulation input values are adjusted by means of the
iRprop- variant (Igel and Hüsken, 2000) of the Rprop update
scheme (Riedmiller and Braun, 1992). Rprop was proposed as
an update rule for neural network training. The distinguishing
feature of Rprop and its variants is that a separate learning rate ηi
is kept for each variable vi to be optimized. Typically, the variables
are neural network connection weights, but in the present case
the object of optimization is the manipulation input, so we keep
one learning rate for each variable in mab. The learning rate
is updated every iteration of the optimization process, on basis
of the sign of the error gradient at its variable. When the sign
of the gradient is unchanged w.r.t. the previous iteration, the
learning rate is multiplied by η+, and the variable is updated
by -η times the sign of the gradient. When the sign of the
gradient has flipped, different variants of the Rprop algorithm
operate in subtly different ways. The iRprop- variant multiplies
the learning rate by η−, leaves the variable’s value unchanged,
and blocks change of the learning rate at the subsequent iteration.
Learning rates are clipped to the range [1min, 1max]. Rprop and
its variants are robust against a broad range of initializations of
the learning rates, and can quickly zoom in on solutions, even
on error functions with small gradients, as only the sign of the
gradient is used. A drawback is the need for individual learning
rates for each variable, but in our use case the number of variables
to be optimized is small (6n). We found values of 1.5 for η+

and 0.33 for η- to perform well in our setup. Learning rates are
initialized to 0.1 and the learning rate bounds 1min, 1max were
set to 10−10 and 0.1.

We set the number of search instances (n_parallel_instances
in Algorithm 1) to 10, and let the instances run in parallel on
GPU (i.e., the for loop at line 16 is parallelized). Each instance
is started from a different random initialization. Search is cut
short if all search instances are stagnant for a set number of
iterations (early_stopping_criterion, set to 25 here). We observed
that in practice, most runs run for the full number of iterations
(max_iterations, set to 100 here), although improvement during
the latter half of the search tends to be marginal. We adopt the
plan with the lowest remaining loss value as the final result,
and obtain its expected outcome state by forward propagation
through EMnD.

Closed-Loop Planning
Here we describe the procedure for assessing the system’s
planning performance, used to generate the results in the next
section. We adopted a “closed-loop” procedure that interleaves
planning and execution steps (Algorithm 2). The execution
step here refers to performance of the first step of the
generated manipulation plan. In our test setup, this means
that we send the manipulation instruction to the simulator,
which then executes the manipulation and returns the resulting
cloth state. Interleaving planning and execution ensures that
small errors do not build up over multiple manipulations, and
affords some degree of correction when outcomes are not as
expected. Alternatively, faster but less accurate performance
can be achieved by “open-loop” operation: planning just once
and performing the obtained sequence “blindly” (i.e., without
observing and re-planning w.r.t. the intermediate results).

Algorithm 2 Closed-loop planning.

1 n= sequence length
2 sa = initial state of the sequence
3 sb = final state of the sequence
4 while n> θ do
5 <m0, . . ., mn> = generate plan of length n
6 sa = result of performing m0 on sa
7 n −= 1

DATA GENERATION

We generate states using the cloth simulation functionality of
the Blender 3D editor (Blender, 2017) (version 2.77a). The cloth
is represented by an 80 × 80 mesh with the cloth modifier
enabled. The mesh measures 1.4 × 1.4 in Blender’s spatial units,
spanning from [−0.7, −0.7, 0.03] to [0.7, 0.7, 0.03] in its initial
configuration. In the conversion between Blender data and neural
network input, the neural network’s input space corresponds to a
viewport of size 2× 2× 0.25 in Blender units. The clothmesh has
no explicit thickness, but we let collision detectionmaintain some
minimal distance between vertices, as well as between vertices
and the virtual desk surface (a plane at z = 0), so that the cloth
behaves as if it has some thickness.

Each sequence starts with the cloth laid out as a square
on a flat surface (representing e.g., a table), with the axes of
the cloth aligned with the x and y axes of the coordinate
system. Then randomly generated manipulations are performed
one by one, while we store the resulting cloth state to the
dataset after each individual manipulation. Two-handed and
one-handed manipulations are generated, with equal probability.
Zero-handed examples (i.e., failures to manipulate) need not be
generated at this stage; such examples can be generated on the fly
during training from successful examples (we return to this point
below). One issue that requires consideration when generating
examples is the range from which to pick the manipulation
coordinates. Covering the entire space the cloth can reach over 3
manipulations is inefficient, and will grow increasingly inefficient
as we consider longer sequences. We constrain the range for
manipulation coordinates by shifting the coordinate system along
the displacement vector of each manipulation. This way the cloth
always remains near the origin.

Random grasp points are found by randomly selecting cloth
vertices, and values for the displacement vector are randomly
picked from the [−1.4, 1.4] range. To manipulate the cloth, we
pin the vertex or vertices selected as grasp point(s) to an invisible
actuator object (an “empty” in Blender terminology), and assign
the relevant movement trajectory to this actuator.

During manipulation, movement speed of the actuators is
fixed to 0.02 Blender units per frame in horizontal and vertical
direction (independently). The lifting height is set to 0.15
Blender units. Horizontal and vertical actuator movement starts
simultaneously. Vertical movement is stopped once the lifting
height is reached. A snapshot of a manipulation in progress
is shown in Figure 5. Once the movement is completed, the
actuator releases the cloth, and the simulation is left to run for
16 additional frames to allow the cloth to fall down and settle.

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2019 | Volume 13 | Article 22

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Arnold and Yamazaki Manipulation Planning by EM∗D Net

FIGURE 5 | Snapshot from a cloth manipulation in progress in simulation. The

pink squares show the points where the cloth is pinned to the (invisible)

actuators. Cloth mesh resolution is 80 × 80.

TABLE 2 | Cloth simulation parameter settings.

Material settings

Mass 1.0

Structural stiffness 10.0

Bending stiffness 50.0

Damping

Spring damping 50.0

Air damping 0.0

Velocity damping 1.0

Collision settings

Collision distance 0.015

Self-collision distance 1.0

For interpretation of these values we refer to the Blender documentation (www.blender.

org).

We generate 2,900 sequences of length 3, for a total of 8,700
manipulation examples. Sequences are stored as 7-tuples of the
form <s0, m0, s1, m1, s2, m2, s3 >. We designate 2,000 sequences
as training data, 600 as test data, and 300 as validation data. The
simulation parameters defining the cloth behavior are given in
Table 2. Settings not pertaining to cloth specifically were left at
their default values.

Whereas all manipulation sequences in the dataset start
from the initial, fully spread state, the prediction and planning
capabilities of the system are not constrained to starting from this
state. In our evaluation experiments below, we assess prediction
and planning abilities starting from any non-final state within
the sequences.

It should be noted that this data generation procedure limits
the scope of the dataset to cloth states that are accessible from
the initial spread out state within a few manipulations from the
manipulation repertoire under consideration. As such the dataset
does not represent a uniform sampling of the space of possible
cloth configurations. Uniform sampling of this space is by itself
far from trivial, and we have not pursued it here. Whereas by
no means exhaustive, the dataset does present a broad variety of

starting states. State variation is further enriched bymeans of data
augmentation, as explained below.

Data Augmentation
Data augmentation is performed during training by applying
random rotation (rotating all cloth mesh vertices around the
origin by a random angle between 0 and 360), mirroring,
and grasp point swapping. A grasp point swap changes which
grasp point’s coordinates go into which pair of coordinate
input neurons. The order of the grasp points is immaterial,
so the outcome state remains the same. The data is further
augmented with failure-to-grasp examples. Training on failure-
to-grasp examples is necessary, since many valid manipulation
inputs have neither grasp point lying on the cloth. However, there
is no need to explicitly generate such examples. In case of a failure
to grasp, the cloth remains in the same state, so we can generate
failure-examples simply by picking existing examples, replacing
the grasp points with random points falling outside the cloth, and
replacing the result states with copies of the initial states. We let
every batch (16 examples) contain two such failure cases. In these
examples we do not shift the coordinate system along with the
displacement vector.

Rotational data augmentation in particular proved essential
to make training work on the relatively small dataset used here.
Without it, training quickly overfit on the training data and never
achieved adequate performance on the test set.

The Role of Simulation
Although in this paper we use explicit simulation to generate
data, this simulation is not an integral part of the system as it
is in simulation-based planning. Simulation data is used here
because it is easy to generate, but given a similar data set of real-
world data the system could be trained and used without any
explicit simulation. This fact that an accurate simulation model
of the object is no requirement for this system is an important
feature, as it is often difficult in practice to obtain accurate
simulationmodels of cloth items and discrepancy betweenmodel
and reality can substantially degrade performance of simulation-
based systems. Note that our simulated cloth is not a stand-in for
the real planning subject; the simulated cloth itself is the subject.

In consideration of the costs of real-world data generation,
we kept the size of the simulation dataset modest, to ensure that
the system can be trained effectively on realistically generatable
amounts of real-world data. A system for automated data
generation on robot hardware is currently under development
(Tanaka et al., 2018).

TRAINING

We train the network on our Blender-generated dataset. Recall
that the purpose of training here is not to teach the net to
plan, but to let it acquire a forward model of the cloth’s
dynamics w.r.t. the manipulation repertoire. Hence whereas
we generated sequences of length 3, the training process uses
individual manipulation examples. Each 7-tuple <s0, m0, s1,
m1, s2, m2, s3> provides 3 training examples of the form <si,
mi, si+1>. The net is trained on 1,250,000 batches of 16 such
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manipulations each. Batches are composed randomly, but with
some weighing of the manipulation steps. As all sequences start
from the same default state, there is less cloth shape variation
over the first-of-sequence manipulations in the dataset than over
the third-of-sequence manipulations. The later cloth shapes in a
manipulation sequences are also taller (i.e., have more vertices
with higher z-coordinates) on average, as repeated manipulation
often produces shapes in which the cloth is folded over itself. To
counter-balance this bias in shape variation across steps we pick
the first, second and third manipulation step with probabilities of
1/7, 2/7, and 4/7, respectively.

Loss Functions
We use two loss functions, which we denote as losss and lossc.
Losss is the mean squared error between network output, i.e.,
D(M(E(s0),m0)) and the (voxel representation of) the actual
outcome, i.e., s1.

losss =
∑

(D(M(E(si),mi))−si+1)
2

sizes
(5)

Here sizes is the size (in voxels) of the state representation. The
second loss function, lossc, is introduced to enforce consistency
of state encoding format between the input and output layers of
the manipulation module.

lossc =
∑

(M(E(si),mi)−E(si+1))
2

sizec
(6)

Where sizec is the size of a latent representation (512 with our
settings). Lossc serves to enable multi-step planning. Multi-step
planning involves recurrent use of the manipulation module.
For recurrent application to make sense, the input and output
of the manipulation module must be in the same encoding
format, i.e., the latent representation of a given cloth state
should not differ (much) depending on whether it is read
at the input or output of the manipulation module. When
the encoding format is inconsistent, looping the manipulation
module’s output back into its input will not produce a meaningful
subsequent output. Hence, consistency of representation format
between the manipulation network’s input and output must be
enforced explicitly. However, we do not want to impose any
format in particular; finding a suitable encoding is up to the
learning process.

To achieve this we compare two differently obtained
encodings of s1. The first is simply ĉ1 as above, i.e., M(E(s0),m0).
The second is obtained by application of the encoder directly on
s1, i.e. E(s1). Lossc quantifies encoding inconsistency as the mean
squared error over these two encodings of s1. Regardless of how
the encoder module encodes states, this loss will be low if the
manipulation module preserves the encoding format between its
input and output. A functionally similar loss term was used in
Watter et al. (2015).

There is overlap in function between the two loss terms.
Minimizing losss trains the net to compress states into an
easily manipulable format and to apply manipulations, whereas
lossc trains the net to keep the encoding consistent over the
course of manipulation application and to apply manipulations
in this encoding.

It proved difficult to balance the losses effectively. Losss
and lossc derive from different representation formats, and do
not necessarily decrease in tandem over the training process.
Balancing them with fixed weight parameters will often have one
dominate the other. We resolved this issue as follows: instead of
combining the losses into a compound loss function, we compute
the gradients for both losses separately, and then combine the
gradients on a per-weight basis by averaging over their signs. As
only the signs of the gradients are used, the resulting update rule
can be considered a variant of the Manhattan update rule. With
combining gradients, the update rule takes the following form:

1wi = 0.5·η·
[

sign
(

gsi
)

+ sign
(

gci
)]

(7)

Where 1wi is the change in weight for connection i, η is the
learning rate, and gsi and gci are the gradients for connection
i w.r.t. losss and lossc, respectively. Using this rule, weights
are updated by η in the direction of the sign of the gradients
when the gradients agree in sign. If the signs oppose, they
cancel out, and the weight is not updated. This update rule
is used on the weights of the manipulation module only. No
gradients for the decoder module can be derived from lossc,
and whereas gradients for the encoder module can be derived
they may actually be harmful: with respect to the encoder,
lossc would favor trivial encodings that map every state to the
same representation, for this maximizes encoding consistency
and makes manipulation application trivial. Restricting lossc to
the manipulation module bars this dead-end solution. For the
encoder and decoder modules we use the Manhattan update rule
on the gradients derived from losss only:

1wi = η·sign
(

gsi
)

(8)

Learning rate η is initialized to 5·10−5, and reduced dynamically
(see Learning rate adjustment and overfitting counter-measures).

Use of the Manhattan update rule is unusual. In general, it
is by no means the fastest weight update rule. However, our
network proved hard to train with the more common update
rules. We expect that this problem is related to the strong zero-
bias in our data (zeros outnumber ones by a large margin in the
voxel representations of all cloth states). Experiments with more
advanced rules invariably saw the net devolve into producing
all-zero outputs (a fine first approximation, but hard to escape
from). We never observed this problem with the Manhattan
update rule. Additionally, the Manhattan update rule affords the
easy combination of dissimilar losses shown in equation (7),
and circumvents the vanishing gradient problem, both without
additional hyperparameters to tune.

Since the use of the Manhattan rule is atypical, we include
results for a configuration using standard Stochastic Gradient
Descent (SGD) (configuration C7). Losss and lossc are combined
by simple summing. Using a modestly high initial learning rate
of 5·10−3, training first converges upon the all-zero solution
mentioned above and temporarily stagnates there, but eventually
escapes and achieves some level of prediction ability.
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Alternative Encoding
Consistency Enforcement
An alternative training scheme combines losss with a loss
computed over si and D(E(si)), i.e., the typical autoencoder loss.
Wahlström et al. (2015) adopt a loss term to this effect. To
compare these variants, we define a reconstruction loss as follows:

lossr =
∑

(D(E(si))−si)
2+

∑

(D(E(si+1))−si+1)
2

2·sizes
(9)

For convenience, we let lossr combine pre- and post-
manipulation states (as our training examples provide both).
Our experiments below include a configuration (configuration
C6) that replaces lossc with lossr (combined with losss in the
same manner as lossc). This configuration, too, is trained with
the Manhattan update rule.

Learning Rate Adjustment and
Overfitting Counter-Measures
To appropriately adjust the learning rate as the net trains,
and to avoid overfitting, we use a validation set of 900
examples (300 sequences). Every 10,000 batches, we evaluate
prediction performance (i.e., losss) on the entire validation set.
When validation set performance has not increased for 5 such
evaluations in a row (i.e., over 50,000 batches) at the same
learning rate, the learning rate is reduced by a factor 2. To
avoid overfitting on the training data, we store a copy of the
net whenever the validation score is improved, and perform
all performance assessments below on these “validation-best”
networks. This strategy can be considered a simple variant of
early stopping (Morgan and Bourlard, 1990; Prechelt, 2012). This
learning rate adjustment scheme was applied identically in all
system configurations.

RESULTS—OUTCOME PREDICTION

Once trained, the network can fairly well predict the result of
applying a givenmanipulation to a given cloth state.Table 3 gives
results over the test (top panel) and training (bottom panel) sets
for all experiments, and Figure 6 shows representative example
results for configurations C4, C5, and C6. For generating these
scores, all data augmentation types were enabled except for the
failure-to-grasp augmentation (including this would artificially
improve the scores). The binary scores are computed by rounding
the values of all voxels to the nearest binary value, then taking the
absolute difference w.r.t. the target state and dividing by the total
number of voxels (16384).

We also include D(E(si)) and D(E(si+1)), i.e., the result
of encoding and then directly decoding the initial state and
goal state. Note however that except for configuration C6,
these pathways are not trained directly. In general, the pre-
manipulation state (si) is reconstructed more accurately than
post-manipulation state (si+1). This is unsurprising: si ǫ {s0, s1, s2}
whereas si+1 ǫ {s1, s2, s3}, and in general states occurring later in
a sequence will have more complex shapes. In particular, s0 is the
same initial state in every sequence (albeit rotated by a random
angle). Being simple and common, it is generally reconstructed

with very high accuracy. This state never occurs in theD(E(si+1))
and D(M(E(si),mi) targets.

We trained a total of 8 system configurations. Configuration
C4 is the default configuration discussed so far. Configuration
C0 feeds the manipulation input only at the first layer of the
manipulation network, to assess the effect of feeding it anew at
every layer. Configuration C1 drops the residual connectivity in
the manipulation module, to assess the effect of this connectivity
on performance. Configuration C2 reduces the number of layers
in the manipulation module from 10 to 5, to assess whether
10 layers is overkill for this task. Configuration C3 drops
the discretization layers, meaning latent representations are
continuous. Configuration C5 and C6 are included to investigate
the role of encoding consistency enforcement. Configuration C5
drops lossc, whereas configuration C6 features an alternative
consistency enforcement scheme that replaces lossc with lossr
(see section Alternative Encoding Consistency Enforcement).
Lastly, configuration C7 replaces the Manhattan update rule with
regular SGD as discussed above.

We compare the various configurations to our base
configuration C4. Looking at the scores in Table 3 we observe
that C4 outperforms C0, C1, and C2 on both test and training
data, indicating that feeding the manipulation input at all layers
of the manipulation network and the inclusion of residual
connections is beneficial, and (at a rough granularity) that
the depth of the manipulation module is warranted. C4 is
also seen to outperform C3 on both sets, but the difference is
marginal at best, suggesting the contribution of discretization
was limited.

Despite high prediction accuracy (exceeding C4 on the
training set), configuration C5 produces by far the worst
direct reconstructions. High prediction accuracy despite dismal
reconstruction may seem contradictory at first glance. In
a standard autoencoder, low-quality reconstruction would
strongly imply low-quality latent representations, and it is
hard to see how accurate prediction could be achieved
with low-quality latent representations. However, the low
reconstruction quality observed here is no indication of
poor latent representation quality, but of inconsistency of
representation format between the representations produced
by the encoder and the manipulation network. The decoder
can only meaningfully decode representations produced by
the latter, hence prediction succeeds but reconstruction fails.
This result indicates that the consistency of representation
format achieved by the default configuration (evidenced
by the combination of high prediction accuracy and high
reconstruction accuracy) is indeed due to the inclusion of lossc,
Configuration C6 excels in reconstruction, exceeding all other
configurations on both the test and training set. This is to
be expected, as it is the only configuration explicitly trained
to reconstruct. Overall, prediction ability is close between C3,
C4, C5, and C6. Configuration C7 falls short of all other
configurations in terms of prediction ability, and short of all
other configurations except C5 in terms of reconstruction ability,
showing that our variant of the Manhattan update rule was more
effective for training this particular network architecture than
standard SGD.
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TABLE 3 | Prediction results on test and training data.

Configuration Error Measure D(E(si )) D(E(si+1)) D(M(E(si ),mi ))

TEST SET

C0 Single input MSE 0.00567 (0.0043) 0.00852 (0.0026) 0.0114 (0.0045)

binary 0.00781 (0.0062) 0.0119 (0.0038) 0.0158 (0.0060)

C1 No residual connectivity MSE 0.00724 (0.0055) 0.0107 (0.0030) 0.0120 (0.0044)

binary 0.00990 (0.0078) 0.0148 (0.0044) 0.0165 (0.0058)

C2 Shallow M MSE 0.00633 (0.0046) 0.00939 (0.0027) 0.0122 (0.0045)

binary 0.00869 (0.0067) 0.0130 (0.0040) 0.0167 (0.0060)

C3 Continuous MSE 0.00537 (0.0042) 0.00812 (0.0026) 0.0109 (0.0045)

binary 0.00741 (0.0061) 0.0113 (0.0038) 0.0150 (0.0059)

C4 Default MSE 0.00522 (0.0041) 0.00790 (0.0025) 0.0107 (0.0047)

binary 0.00722 (0.0059) 0.0110 (0.0037) 0.0148 (0.0060)

C5 Losss only MSE 0.0272 (0.0058) 0.0311 (0.0044) 0.0108 (0.0049)

binary 0.0384 (0.0035) 0.0386 (0.0040) 0.0149 (0.0062)

C6 Losss & lossr MSE 0.00151 (0.0014) 0.00245 (0.0011) 0.0110 (0.0047)

binary 0.00204 (0.0019) 0.00335 (0.0015) 0.0151 (0.0060)

C7 SGD MSE 0.0153 (0.0050) 0.0185 (0.0045) 0.0191 (0.0051)

binary 0.0194 (0.0077) 0.0245 (0.0060) 0.0249 (0.0070)

TRAINING SET

C0 Single input MSE 0.00562 (0.0043) 0.00843 (0.0027) 0.0110 (0.0042)

binary 0.00772 (0.0062) 0.0117 (0.0039) 0.0152 (0.0056)

C1 No residual connectivity MSE 0.00719 (0.0055) 0.0107 (0.0032) 0.0117 (0.0041)

binary 0.00983 (0.0078) 0.0147 (0.0046) 0.0160 (0.0055)

C2 Shallow M MSE 0.00629 (0.0047) 0.00931 (0.0028) 0.0120 (0.0045)

binary 0.00860 (0.0067) 0.0129 (0.0041) 0.0164 (0.0060)

C3 Continuous MSE 0.00531 (0.0042) 0.00802 (0.0026) 0.0101 (0.0038)

binary 0.00733 (0.0060) 0.0112 (0.0038) 0.0140 (0.0051)

C4 Default MSE 0.00515 (0.0041) 0.00781 (0.0026) 0.00982 (0.0039)

binary 0.00711 (0.0059) 0.0109 (0.0038) 0.0136 (0.0052)

C5 Losss only MSE 0.0271 (0.0057) 0.0309 (0.0043) 0.00979 (0.0039)

binary 0.0385 (0.0036) 0.0386 (0.0040) 0.0135 (0.0051)

C6 Losss & lossr MSE 0.00146 (0.0014) 0.00239 (0.0011) 0.0101 (0.0039)

binary 0.00198 (0.0019) 0.00327 (0.0015) 0.0138 (0.0052)

C7 SGD MSE 0.0152 (0.0049) 0.0184 (0.0046) 0.0191 (0.0052)

binary 0.0192 (0.0077) 0.0244 (0.0061) 0.0249 (0.0072)

Mean squared and binary error scores, for reconstruction, D(E(si )) and D(E(si+1 )), and outcome prediction, D(M(E(si ),mi )), for test (top panel) and training (bottom panel) datasets, under

various system configurations. Standard deviations in brackets. Best scores for each item bolded.

Looking at Figure 6A we can observe that configuration
C4 produces appropriate (though moderately diffuse)
reconstructions and predictions of the target states. Incidental
prediction failures are observed on examples with one or both
grasp points lying very close to the edge of the cloth. The
cloth’s edges correspond to sharp discontinuities in the relation
between manipulation inputs and outcomes: grasping the cloth
right at its edge produces a very different outcome from failing
to grasp the cloth by a millimeter. The observed failures can
often be understood as mistaking one of these situations for
the other.

Figure 6B shows reconstructions and predictions from
configuration C5. The “reconstructions” here bear no discernible
resemblance to the targets at all. We initially thought that even

in absence of lossc, the residual connectivity of the manipulation
module may produce some degree of encoding consistency,
but the outcomes do not support this notion. Nonetheless,
prediction accuracy is high. Figure 6C shows reconstructions
and predictions from configuration C6. Here too, prediction is
close to configuration C4, whereas reconstruction is by far the
most accurate across all configurations.

Figure 6D shows prediction results w.r.t. two common folds:
folding in half along one of the cloth’s axes, and folding in half
along a diagonal. The results are centered in view for ease of
interpretation. These examples were generated for purpose of
illustration, and are not part of the dataset. We observe that
prediction quality on these examples is in line with prediction on
the random examples in the test set.
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FIGURE 6 | Reconstructions and predictions generated by various

configurations. Each row corresponds to one result, showing (from left to

right): start states si , their reconstructions D(E(si )), manipulation outcomes

si+1, their reconstructions D(E(si+1)), and outcome prediction results

D(M(E(si ),mi )). Along with each generated state is shown a direct visualization

of its encoding (512 real values, shown as blue tones) and its MSE. All

examples are from the test set. (A) Results for configuration C4. The last

example in panel a shows a typical failure case (the net mistakes a grasp point

right on the cloth edge for a miss, and consequently predicts no change of

shape). (B) Results for configuration C5. Training without lossc produces

(Continued)

FIGURE 6 | accurate predictions, but the “reconstructions” show no obvious

resemblance to their targets. (C) Results for configuration C6. Training with

lossr instead of lossc produces highly accurate reconstruction, and prediction

accuracy similar to configurations C3, C4, and C5. (D) Prediction results for

two common manipulations: folding in two along one of the cloth’s axes, and

folding in two along a diagonal. For ease of interpretation, we manually

centered the outcomes for these examples (centered outcomes are marked

with a letter c in their lower right corner). (E) Legend explaining the figure

format.

RESULTS—PLANNING

Next we assess the system’s planning performance. From a
manipulation sequence of length 3, represented as a 7-tuple
<s0, m0, s1, m1, s2, m2, s3>, we can extract a total of six
subsequences <si, mi, . . . , si+n>: (n,i) ǫ [(1,0), (1,1), (1,2),
(2,0), (2,1), (3,0)]. Note that subsequences (n,i) for which i = 0
start from the fully spread state, whereas subsequences for
which i > 0 start from states generated by application of i
random manipulations. For n = 3 the only subsequence is the
full sequence, and consequently planning for 3 steps always
starts at the fully spread state. As in training and prediction
evaluation, random rotation and mirroring is applied. For
planning we apply rotation and mirroring identically to each
state and manipulation in a sequence, in order to maintain
sequence coherence. The other data augmentation operators are
not applicable for planning.

For each sub-sequence we run the system on 100 examples,
following the closed-loop planning procedure detailed in section
Closed-Loop Planning. Table 4 shows the scores obtained by
configurations C3, C4, C5, and C6 for both test (top panel)
and training (bottom panel) datasets (C0, C1, C2, and C7 were
excluded as they evidently fell short in prediction ability). Scores
represent the mean absolute errors between the goal state and the
state actually obtained by performing the planned manipulations
in simulation, both in voxel representation (since both are binary
representations, this is identical to the MSE). Medians were
included because the presence of occasional failures sometimes
skews the mean upward. As is to be expected, there is some falloff
in accuracy as plans get longer, but recognizable approximations
of the goal state are obtained for all plan lengths tested here.
What performance gap there is between training and test data
appears to be below the noise level of this assessment, suggesting
that the net did not overfit substantially and generalizes well to
unseen data.

Configuration C4 succeeds in both single and multi-step
planning. Figure 7 shows representative examples of plans and
outcomes. Figure 8 shows a few iterations of the generation
process of a 3-step plan. On a single NVIDIA GTX1080 GPU,
plan generation took <2.5 s on average. Plan generation times
per plan length are given in Table 5. Figure 9 shows plans and
outcomes obtained for a small number of common folds. The
goal states here are not part of the dataset, but were modeled
manually in simulation for the purpose of illustration. We
observe that the trained network is capable of generating sensible
plans that produce adequate approximations of these goal states.
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TABLE 4 | Planning results for test and training data.

Test set Sequence

Configuration 1-0 1-1 1-2 2-0 2-1 3-0

C3 Continuous µ 0.0134 0.0166 0.0181 0.0210 0.0254 0.0243

σ 0.0063 0.0069 0.0099 0.0066 0.011 0.0083

M 0.0130 0.0174 0.0170 0.0210 0.0237 0.0224

C4 Default µ 0.0130 0.0153 0.0177 0.0206 0.0250 0.0236

σ 0.0080 0.0064 0.010 0.0063 0.0082 0.0063

M 0.0123 0.0151 0.0163 0.0206 0.0232 0.0226

C5 Losss only µ 0.0401 0.0439 0.0430 0.0512 0.0519 0.0557

σ (0.019) (0.016) (0.018) 0.013 0.012 0.011

M 0.0406 0.0442 0.0438 0.0513 0.0518 0.0561

C5* Losss only µ 0.0128 0.0167 0.0183 0.0335 0.0374 0.0385

σ 0.0065 0.0070 0.011 0.012 0.016 0.015

M 0.0127 0.0162 0.0156 0.0312 0.0316 0.0330

C6 Losss and lossr µ 0.0346 0.0403 0.0397 0.0438 0.0460 0.0468

σ 0.018 0.016 0.017 0.015 0.012 0.013

M 0.0364 0.0378 0.0385 0.0447 0.0437 0.0466

C6* Losss and lossr µ 0.0131 0.0175 0.0180 0.0244 0.0277 0.0292

σ 0.0067 0.0095 0.010 0.0090 0.012 0.0093

M 0.0125 0.0161 0.0168 0.0233 0.0251 0.0272

Training set Sequence

Configuration 1-0 1-1 1-2 2-0 2-1 3-0

C3 Continuous µ 0.0135 0.0156 0.0177 0.0212 0.0221 0.0238

σ 0.0073 0.0055 0.012 0.0068 0.0081 0.0072

M 0.0123 0.0150 0.0158 0.0213 0.0205 0.0229

C4 Default µ 0.0124 0.0154 0.0158 0.0217 0.0201 0.0248

σ 0.0060 0.0073 0.0086 0.0078 0.0076 0.0088

M 0.0123 0.0148 0.0143 0.0211 0.0197 0.0240

C5 Losss only µ 0.0405 0.0466 0.0440 0.0505 0.0511 0.0535

σ 0.017 0.015 0.018 0.014 0.014 0.012

M 0.0412 0.0468 0.0450 0.0522 0.0528 0.0553

C5* Losss only µ 0.0117 0.0165 0.0154 0.0308 0.0328 0.0360

σ 0.0058 0.0094 0.074 0.012 0.015 0.014

M 0.0107 0.0142 0.0145 0.0281 0.0282 0.0311

C6 Losss and lossr µ 0.0344 0.0414 0.0380 0.0432 0.0448 0.0474

σ 0.016 0.017 0.018 0.015 0.014 0.012

M 0.0349 0.0410 0.0384 0.0419 0.0438 0.0463

C6* Losss and lossr µ 0.0129 0.0163 0.0157 0.0229 0.0268 0.0288

σ 0.0066 0.0083 0.010 0.0080 0.011 0.011

M 0.0132 0.0144 0.0142 0.0225 0.0240 0.0262

Average (µ), standard deviation (σ ), and median (M) of binary errors for each type of subsequence, for the test (top panel) and training (bottom panel) datasets. For subsequence types,

n-i indicates a subsequence of length n, starting at manipulation i of the source sequence. Each score is an average over 100 examples from the relevant set. Example sets used for

different subsequence types are non-overlapping. Best scores (per subsequence type) in bold. Results with a * mark in the configuration column were obtained using an alternative

planning algorithm (see text).

Plan generation with configuration C5 fails when we use the
algorithm given in section Planning Algorithm. However, this
is in part a consequence of speed optimization (see Figure 4B).
The planning process aims to reduce the loss between latent
representations of the goal state and the expected outcome for
the manipulation input. Comparing the two only makes sense
if there is sufficient encoding consistency between the two.

Configuration C5 does not enforce consistency during training,
so failure here is not unexpected. To perform planning with
C5, we can follow the strategy given in Figure 4A, using the
loss between the voxel representations of the goal state and the
expected outcome for the manipulation input. This strategy is
slower (taking roughly twice as long), as we need to run the
decoder every time the manipulation inputs are updated, but
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FIGURE 7 | (A–C) Representative 1, 2, and 3-step manipulation results, respectively, for the default configuration (C4). Manipulations and intermediate states of the

original sequence (top row in each example) shown for reference only; the net sees the start and goal states only. Framed states are voxelisations of actual (i.e.,

simulation-generated) states, non-framed states are network-generated predictions. Numbers above states indicate MSE loss w.r.t. the goal state. Note that

manipulation trajectories can wrap around the edges of the viewport, and that the camera shifts along with the manipulation trajectory. (D) Legend explaining the

figure format.

otherwise similarly effective. Results for C5 obtained with this
alternative planning strategy are given in Table 4 as C5∗.

Configuration C6 had encoding consistency enforced via lossr
and indeed fares better than C5, but still falls short of C3 and C4
by a large margin on both test and training data. Assuming that
lossr was not quite effective for this purpose, we ran C6 with the
alternative planning scheme as well, and give the results as C6∗.

The alternative planning scheme brings C5∗ scores for 1-
step plans up to par with C4, with C5∗ doing slightly better

on the training set and C4 doing slightly better on the test set
(repeating the pattern seen for prediction). However, scores for
multi-step planning remain poor. This is to be expected: without
an encoding consistency enforcing loss, we obtain an M module
that predicts the results of individual steps accurately, but cannot
read its own output. This makes it unfit for recurrent application,
leading to failure in multi-step planning.

The alternative planning scheme brings C6∗ scores for 1-step
plans close to C4 as well for both test and training data. Scores
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FIGURE 8 | Iterations 1, 10, 50, and 100 from the generation process for a

3-step plan. Each panel shows the task, the best plan up to the iteration, and

the current plan in each of the 10 parallel search instances. Numbers to the

right of a plan indicate its residual error w.r.t. the goal state. We see the search

instances quickly converging on a variety of plans for approximating the

target outcome.

TABLE 5 | Mean plan generation times per plan length.

Plan length

Configuration 1 2 3

C3 continuous 1.85s (0.039) 2.06s (0.047) 2.27s (0.041)

C4 default 1.90s (0.050) 2.10s (0.070) 2.30s (0.52)

C5* losss only 4.33s (0.082) 4.51s (0.10) 4.65s (0.066)

C6* losss and lossr 4.29s (0.067) 4.49s (0.083) 4.65s (0.068)

Times in seconds. All times measured over the test set. Numbers in brackets are standard

deviations. Results marked with a * used an alternative planning scheme (see text).

for multi-step plans are improved too, but fall short of C4. This
again suggests that lossr did not enforce encoding consistency
as effectively as lossc. We hypothesize as follows: configuration
C6 trains to minimize losss and lossr. When both are near zero,
this implies that D can decode latent representation c of a given
state s into an approximation of s, regardless whether c was
produced by E orM. This suggests encoding consistency between
E and M, but does not guarantee it: D may be decoding different
latent representations into similar state approximations. Lossc
on the other hand, directly and specifically enforces encoding
consistency with no such wiggling room.

Whereas C4 outperforms C3 by a slight margin on most
sequences in the test set, the scores are again very close, indicating
that the effect of the discretization layers was marginal at best. As
seen in Table 5, plan generation with C3 was faster by a similarly
diminutive margin.

It bears emphasizing why back-propagation (BP) can arrive
at good solutions within 2.5 s. During plan generation, we only
search for input values, not connection weights. The number of
input values for a plan of length n is 6n, so BP for generating
a plan of a few steps has vastly fewer variables to optimize than
BP in the training process has. Furthermore, planning does not
work on batches of examples; only one input state and one output
state need to be considered (in our implementation the batch
dimension is instead used to run multiple search instances in
parallel). The small scale of the problem allows us to zoom in on
solutions quickly with aggressive use of iRprop-.

The plan generation process need not be implemented with
BP. In preliminary experimentation, we found plan generation
by means of a genetic algorithm to be viable as well (the trained
network then serves as the evaluation function for solutions
generated by the genetic algorithm). However, the fact that the
BP machinery is already present in the system for training makes
the BP approach particularly convenient to implement.

It is worth noting the planning process we employ is not
deterministic. Where multiple solutions exist, different runs of
the search process (and different search instances in parallel
search, as seen in Figure 8) can produce different solutions.

SELF-OCCLUSION

So far, we have considered the case where the cloth shape is fully
visible (albeit at low resolution) to the network. Full visibility
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FIGURE 9 | Manipulation plans and outcomes obtained for four hand-crafted goal states. See Figure 7D for the figure format. For examples that wrap around the

view border (first two examples), we include manually centered views of the goal, prediction, and result states. Centered states are marked with a letter c in their lower

right corner.

would be hard to achieve in a physical implementation on robotic
hardware. To be applicable in a physical setup, the system must
be able to handle self-occlusion. In this section we evaluate the
performance impact of self-occlusion.We assume to have a single
top-down view of the cloth, recorded using a depth camera. To
replicate this view limitation on simulation data, we occlude all
voxels below the top-most 1-voxel in each z-column of the voxel
space. Occluded voxels are given the value 1, same as known-
occupied voxels. We evaluate the impact of occlusion by training
the default configuration from scratch with occlusion enabled
and all other settings unchanged. All states presented to the
network, in training, prediction, and planning, are given with
occlusion applied. Consequently, predictions are also generated
with occlusion present.

Since the state representation differs from the preceding
experiments, prediction results cannot be compared
straightforwardly to results obtained without occlusion.
However, planning performance can be evaluated as before,
since it involves comparison of actual states only. As before,
we compute the binary error scores over non-occluded voxel
representations of the outcome and goal state. Table 6 shows
the results for the occlusion experiment, for both test and
training data. Comparing these results to the results obtained
by configuration C4 without occlusion (Table 4), we observe
that the performance impact of occlusion is small. The use of
incomplete state representations carries a risk of inducing more
overfitting, but we do not observe a widening of the gap between
training and test scores. These results indicates that even with
the occlusion incurred by a single static top-down view, the cloth
state representation generally still provides sufficient information
to allow effective planning.

DISCUSSION

The EM∗D network functions as a forward model that is
differentiable, and therefor searchable, w.r.t. the manipulation
repertoire it is trained on. Given an economically defined

TABLE 6 | Planning results with self-occlusion.

Occlusion Sequence

1-0 1-1 1-2 2-0 2-1 3-0

Test set µ 0.0136 0.0162 0.0187 0.0210 0.0249 0.0252

σ 0.0068 0.0073 0.010 0.0068 0.010 0.0089

M 0.0141 0.0160 0.0173 0.0218 0.0230 0.0229

Training set µ 0.0131 0.0165 0.0171 0.0213 0.0230 0.0236

σ 0.0066 0.0061 0.0081 0.0062 0.0088 0.0070

M 0.0127 0.0160 0.0164 0.0220 0.0221 0.0225

Average (µ), standard deviation (σ ), and median (M) of binary errors for each type of

subsequence, for the test (top) and training (bottom) datasets. For subsequence types,

n-i indicates a subsequence of length n, starting at manipulation i of the source sequence.

Each score is an average over 100 examples from the relevant set. Example sets used for

different subsequence types are non-overlapping.

manipulation repertoire, planning is not a high-dimensional
problem. In the present work, planning a manipulation sequence
of length n is reduced to gradient descent search in a 6n-
dimensional space.

The task of multi-step cloth folding could also be cast as a
model-free reinforcement learning (RL) problem, so it is worth
noting the merits afforded by each approach. First off, while both
approaches generate goal-directed behavior, ours generates such
behavior in the form of explicit plans. There is a large conceptual
difference between learning to pursue a given goal state, and
learning the deformation and movement characteristics of a
given task environment. This has practical consequences for
the training procedure. The former requires evaluation of
manipulation outputs during training (which for our task would
be computationally very costly). The latter, as demonstrated here,
allows training from a static database of examples. Furthermore,
as this style of training is goal-agnostic, the goal state for planning
can be set freely, and the planning process can be constrained
using additional loss terms without having to retrain the net
(which is presently proving useful in integrating the system
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with a physical robot platform with a limited range of motion).
The cost of these merits is that the planning process is slow
(taking seconds) compared to the action-generation time cost of
model-free RL systems.

We found that the system emphasizes overall shape (what
we might call the 3D silhouette of the cloth) over the details
of how that shape is realized. For example, given as target a
cloth folded neatly in two, the system will produce a plan that
produces the same rectangular shape, but not necessarily with
the fold on the same side. This is to be expected (as the loss
used in plan generation quantifies the difference between voxel
representations), but not ideal. Marking or patterning of the
cloth (e.g., adding an additional color channel to distinguish
the cloth’s hem) can likely improve this issue, but would also
constrain the applicability of the system to cloths adhering to the
marking scheme.

A related issue is that predictions are rather diffuse.
Some degree of diffusion is theoretically appropriate. The
voxelisation introduces some ambiguity with respect to the
cloth mesh. Predictions from a network trained to perfection
would be distributions over the manipulation outcomes for
all the mesh configurations that would produce the given
input voxel representation. This diffusion could be reduced
(though not eliminated) by simply using higher resolution voxel
representations, at the cost of slower training and operation.
However, there are also some unwanted sources of blur affecting
the results presented here. One is that autoencoders tend
to replicate low-frequency features better than high-frequency
features. This is a well-known problem (Snell et al., 2015).
Low-frequency features generally have a bigger impact on the
loss function, causing them to dominate the training process.
However, the fact that the reconstruction results of configuration
C6 show only limited diffusion suggests that the root cause of
the blur in our prediction results is not just due to an emphasis
on low-frequency features. Further supporting a different root
cause, we experimented with 3D SSIM (Snell et al., 2015) loss
functions in hopes of improving prediction clarity, but did
not obtain notable improvements over the MSE loss used in
the experiments here. Adversarial training (Goodfellow et al.,
2014) has been shown capable of improving the quality of
generated images. It is imaginable that sharper predictions could
be obtained with an adversarial approach, but it is not a given that
this would contribute to better multi-step planning. Sharpness
only contributes to planning performance insofar it reflects
increased prediction accuracy, whereas the sharpness obtained
by adversarial training is obtained by the objective of reducing
distinguishability between real and generated states. Also,
introducing a discriminator net would substantially complicate
the system. A third factor is the somewhat stochastic nature of
the data itself, caused by limitations of the cloth simulation. The
simulated cloth generally does not stabilize entirely. After the
grasp is released and the cloth has settled into a folded state,
it continues to jitter slightly, which slowly changes the cloth
shape (left to run for a long time, this jittering can even cause
the cloth to unfold entirely). Our data generation procedure
stops the simulation 16 frames after the grasp is released,
which includes variable amounts of such jitter. This introduces

a source of noise, which is likely reflected in the predictions.
Adoption of a more stable cloth simulation algorithm should
resolve this issue. However, the system is developed with
the aim of operating on real cloth, which introduces a
different set of noise sources, so exact predictions will likely
remain hard to obtain.

Perhaps somewhat counter-intuitively, we see that
manipulation outcomes often resemble the goal state more
closely than their predictions do. Evidently the planning process
is robust to some level of blur. This can be understood as follows.
What is required for planning to function is that the prediction’s
match w.r.t. the goal state should improve (i.e., planning loss
should decrease) as the manipulation input approaches the
correct action. Differently put, prediction ability does not need to
produce the goal state, it only needs to provide predictions that
are good enough to identify the goal state among other possible
outcomes. This permits a fair level of noise and blur.

Next, we position our approach among related work in
generative models, control, and planning. The EM∗D net
could be considered a relative of transforming autoencoders
(Hinton et al., 2011) and variational autoencoders (Kingma
and Welling, 2014; Rezende et al., 2014). Whereas typical
autoencoders are mainly used for compression and feature
extraction, transforming and variational autoencoders are used
to generate novel outputs. Dosovitskiy et al. (2014) introduced
techniques to make individual values in an autoencoder’s latent
encoding control specific features of the representation, and
demonstrated how this can be used to change specific features
(e.g., color, view angle) in a controlled manner. The EM∗D net,
too, compresses and modifies representations in a controlled
manner, although not by changing specific features or view angles
but by applying specific manipulations.

As noted in the introduction, the use of neural networks
as forward models can also be found in research on model-
based control. Wahlström et al. (2015), Watter et al. (2015)
similarly use neural networks to map states into a latent space,
in which a variety of control problems is then solved. Both
studies map high-dimensional states (images) into latent space
using encoder networks, and then solve control problems in
latent space. A first point to note is that whereas both these
studies solve control tasks, we focused on a planning task.
This is fundamentally a difference in the size of the time-
step: our step units are full manipulations (representing large
jumps in state-space), whereas the control studies consider
smaller and more granular transitions. For convenience, we
will use the term “actions” here to refer to the object of
inference (i.e., control signals in the control studies, and
manipulation plans in the present work). Both (Wahlström
et al., 2015) and (Watter et al., 2015) employ high-dimensional
observations (images) of low-dimensional tasks (2D in the
former, 2D to 6D in the latter). Both systems successfully
reduce these observations back to low dimensionality. However,
neither compresses state representations beyond the original task
dimensionality. The present work employs high-dimensional
observations of an intrinsically high-dimensional task. The actual
state dimensionality is, strictly speaking, 19200D (x, y and
z coordinates for 80 × 80 cloth vertices). Observations are
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16384D voxel representations, which the encoder compresses
into 512D latent representations. The encoder’s task here is
not to recover or approach the task’s actual dimensionality;
the actual dimensionality is too large to plan on effectively.
Rather, the encoder must learn a manifold of low-dimensional
representations of a high-dimensional state space, that also allows
for easy manipulability. Our work shows that the concept of
action inference in latent space can be applied effectively under
the demanding conditions of intrinsically high-dimensional real-
world problems.

In terms of action inference (Watter et al., 2015) stay
close to the variational auto-encoder paradigm. Transitions
are performed by means of linear transformations in latent
space. This is effective for small time-steps in low-dimensional
control problems and has advantages in terms of solution search,
but it is not clear how well imposed linearity would play in
inherently high-dimensional problems with large time-steps,
such as treated here. Our approach is close to Wahlström
et al. (2015), combining non-linear latent state transformations
with backpropagation-based solution search. The concept of
planning by means of back-propagation has also been discussed
and demonstrated in Henaff et al. (2017), with the purpose of
extending this approach to discrete state and action spaces. A
shallow recurrent neural network architecture was used there,
and no mapping to latent spaces was employed. In a wider
scope, planning by means of back-propagation is a special
case of planning by means of gradient descent, which has a
history outside the context of neural networks. The present work
shows that this concept is effective on moderately deep neural
architectures and in combination with manifold learning.

Sergeant et al. (2015) propose an interesting autoencoder-
like architecture for control of a mobile robot which generates
control signals along with a reconstruction of the robot’s
sensor input (laser range scan measurements). Sensor input is
associated with control signals using a mix of supervised and
unsupervised learning. This approach, too, targets control, and
is not applicable for planning as-is, as it does not accommodate
variable goal states.

Another closely related work is (Finn et al., 2016). This
work combined autoencoders with RL to accomplish a variety
of robotic manipulation tasks, including some on deformable
objects. Here too the role of the autoencoder is to extract compact
representations suitable for driving control, but in contrast to
other work, the autoencoder’s architecture is designed specifically
to extract feature points that indicate the locations of objects
in the scene. The cost function used in the RL process bears
notable resemblance to our lossc: the encoder is applied to obtain
the latent representation of the goal state, which can then be
compared to the latent representation of the current state to
compute the cost. However, the use of RL requires that the goal
state be set at training time. Consequently the trained system does
not accommodate goal variability.

Koganti et al. (2017) also employ automatically acquired
low-dimensional latent representations of cloth states, but in
contrast to the autoencoder-based architectures above a Bayesian
Gaussian Process Latent Variable Model (BGPLVM) is used.
After training on motion capture and depth sensor data, the

latent variable model is used to map noisy and high-dimensional
depth sensor readings to cloth configurations in a task-specific,
low-dimensional manifold. This approach was demonstrated
on a dressing assistance task. This example illustrates the
effectiveness of aggressive dimensionality reduction and
manifold learning for cloth manipulation.

Finally, Erickson et al. (2018) presents a conceptually close
example of Model Predictive Control (MPC) applied in cloth
manipulation (a dressing assistance task). The forward model
employed here operates in the haptic domain instead of the
visuospatial domain, predicting the forces an action would
exert (indirectly, through the clothing item) on the subject
being dressed. No mapping to a latent space is performed (as
cloth shape is not explicitly represented high dimensionality
is less of a hurdle), and the task is again one of control
rather than planning, but the approach is close to ours in its
use of a recurrent neural network architecture for prediction,
and its goal-agnostic training procedure. Like in our approach,
the latter allows for goal definition at run-time, and hence
the approach can in principle accommodate goal variability
without retraining.

When training a forward model with the intent to use
it recurrently, encoding consistency is crucial. Our results
demonstrate that training with a loss computed over the
encoding-prediction pathway (lossc) results in better planning
ability than training with a loss computed over the encoding-
decoding pathway (lossr).

Our network architecture is specialized for the purpose of
modeling state transformations. It consists of a section of neurons
designated to hold the state representation (passed on via
residual connections), a section of regular neurons, and repeated
action input at every layer. Our results demonstrate that this
architecture is beneficial for modeling cloth’s forward dynamics
in latent space. As the reasoning behind this architecture
is not specific to cloth manipulation, its benefits potentially
extend to other task domains as well, although this remains to
be investigated.

With the eye on future practical application, it is important to
consider how goal state representations could be set. Although
we have not focused on this aspect yet, we can outline a few ways
forward. A cloth item already in the goal state could be used to
specify the goal state. This would be practical when folding a
number of items when at least one similar item already in the
intended goal configuration can be observed. Targets could also
be acquired by having a human user produce the goal state once
and storing it for later recall. Either approach could build up a
database of goal states on the side for quick selection of a suitable
goal state at a later time (either by the user or by a high-level
planning process).

Higher flexibility could be obtained by relaxing the definition
of a “goal state.” There is no need for the goal state to be
a literal cloth state. The planning process tries to maximize
the similarity between the expected outcome and the goal.
Preliminary experiments suggest that it is possible to set the goal
as (a voxel representation of) the space we want to fit a given
cloth item into. This allows us to consider scenarios like the
following: A household robot is tasked with tidying up a room. A
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high-level planning process decides to store some scattered cloth
items in a closet drawer. The drawer’s internal sizes are estimated
and passed to the cloth manipulation planning system for use
as goal state. The manipulation planning system then returns a
suitable manipulation sequence, allowing the robot to achieve its
high-level goal.

FUTURE WORK

A limitation of the current system is that we need to set
the length of the sequence to plan, which in practice will
generally be unknown. Along with the manipulation plan,
the system outputs the plan’s expected loss w.r.t. the target
state, providing a natural quality assessment of the plan.
This can be used to automatically search for the appropriate
sequence length sequentially. Alternatively, it may be possible
to search over variable plan lengths simultaneously. One could
use an appropriately defined loss over the sequence of latent
representations generated by the propagation loops through the
manipulation module (with a small penalty term for plan length).
Implementation and evaluation of such procedures remains as
future work.

Related to the above, dynamic plan length adjustment during
operation could be exploited for failure recovery. Discrepancy
between predicted and observed outcome can be used to infer
failure. For example, in the case of a failure to grasp, one
will want to add one step in order to allow a retry of the
failed manipulation.

Another avenue for improvement is expansion of the
manipulation repertoire. In particular, the present manipulation
format enforces that both grasp points are moved by the
same displacement vector. This restriction should be relaxed,
as there are common manipulations in manual cloth folding
that involve different movement vectors for different grasping
points. However, allowing diverging trajectories for the grasp
points also introduces manipulations into the repertoire that
would pull the cloth apart, so this expansion requires some
careful consideration.

Concurrent to further development of the planning system,
we are integrating the system with a dual-armed robot. Initial
results are reported in Tanaka et al. (2018). The system as
discussed in the present paper assumes certain idealizations that
do not carry over to real-world application. One difference to
account for is the assumption of an infinite desk and point-
sized non-colliding actuators with infinite range of motion. The
constraints imposed by a finite desk and real robot hands can
be accounted for with constraints on the planning process in
the form of additional loss terms, but work remains in defining
these loss terms efficiently and balancing them with the main
planning loss.

CONCLUSIONS

We proposed the EM∗D neural network architecture
for generating multi-step cloth manipulation plans, and
experimentally demonstrated its viability on simulated cloth.

This approach to manipulation planning combines flexibility
(variable start and goal states) speed (plans are generated
in seconds), and robustness to cloth self-occlusion, core
prerequisites for practical application in household robotics.
Future work will focus on accuracy improvement, expansion
of the manipulation repertoire, and continued integration with
robotic hardware.
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