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1. INTRODUCTION

Large-scale public datasets are vital for algorithm development in the computer vision field. Thanks
to the availability of advanced sensors such as cameras, Lidar and Kinect, massive well-designed
datasets created by researchers are free to the scientific and academic world. ImageNet (Deng et al.,
2009) is one of the most representative examples which is widely used for image recognition tasks
in computer vision. UCF 101 (Soomro et al., 2012) is another large-scale dataset used for human
action recognition. However, both of the above datasets provide only the appearance information
of objects in the scene. With the limited information provided by RGB images, it is extremely
difficult to solve certain problems such as the partition of the foreground and background which
have similar colors and textures. With the release of the low-cost Kinect sensor in 2010, acquisition
of RGB and depth data became cheaper and easier. Not surprisingly, increasing RGB-D datasets,
recorded by the Kinect sensor and dedicated to a wide range of applications, have become available
(Cai et al., 2017). We see the same trend, the KITTI dataset (Geiger et al., 2013), starting to
occur in the autonomous driving community due to the availability of the Velodyne HDL-64E
rotating 3D laser scanner. It is clear that the advent of new sensors always brings opportunities
for new dataset development. In this data report, we introduce three new neuromorphic vision
datasets recorded by a novel neuromorphic vision sensor named Dynamic Vision Sensors (DVS)
(Lichtsteiner et al., 2008).

DVS is a novel type of neuromorphic-based vision sensor, developed by Lichtsteiner et al. (2008).
The sensor records event streams as a sequence of tuples [t, x, y, p], where t is the timestamp
of the event, (x, y) is the pixel coordinates of the event in 2D space and p is the polarity of
the event indicating the brightness change. Compared to the conventional frame-based cameras,
neuromorphic vision sensors are frameless which take a radically different approach, doing away
with images completely. It properly addresses the universal drawbacks of conventional frame-based
cameras, such as data redundancy, high latency and low temporal resolution in a fresh new
paradigm. This sensor has matured to the point of entering commercial market only in the last
decade. As a much younger field, one of the main challenges faced is the lack of neuromorphic
vision datasets impeding the progress of the field. We can thus learn from the rapid development
and maturation of computer vision.

It cannot be doubted that neuromorphic vision research will benefit from new datasets
similar to those of computer vision. However, the unique difficulty in the datasets arises because
neuromorphic vision data differs significantly from conventional camera data and no direct
method for converting between two data formats exists. To address this, we introduce the largest
neuromorphic vision datasets targeting the three humanmotion related tasks: pedestrian detection,
human action recognition and human fall detection. We hope that those datasets will meet the
significant demands of the neuromorphic vision, computer vision and robotic communities. More
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specifically, the open access of three datasets should stimulate
the development of algorithms processing the event-based
asynchronous stream input. In addition, to allow for a fair
comparisonwith frame-based computer vision, we also introduce
three encoding methods which are used to convert the spatio-
temporal data format to conventional frames.

Previously, several datasets of neuromorphic vision sensors
addressing the problem of detection and classification were
proposed (Orchard et al., 2015; Serrano-Gotarredona and
Linares-Barranco, 2015; Hu et al., 2016; Liu et al., 2016; Li
et al., 2017). Many of them were recorded with a static DVS
facing a monitor on which computer vision datasets were set to
play automatically (Serrano-Gotarredona and Linares-Barranco,
2015; Hu et al., 2016). Thus, the intrinsic temporal information
of moving objects between two frames are lost. It is gratifying
that there are several high-quality datasets recorded in a real
environment in recent years (Moeys et al., 2016; Zhu et al., 2018).
Other pioneering works from iniLabs1 and the RPG group2.
DDD17 dataset (Binas et al., 2017) is the first annotated driving
dataset for event-format data. End-to-end prediction for the
steering angle of a vehicle can be achieved with a convolutional
neural network. Dataset for Pose Estimation, Visual Odometry,
and SLAM is published by Mueggler et al. (2017b).

It is noteworthy that although there are many public datasets
released by the neuromorphic vision community3, open-access
datasets for human motion analysis are still lacking. Therefore,
we aim to fill this gap and to introduce three datasets in this
report: the pedestrian detection dataset, the action recognition
dataset and the fall detection dataset. A DAVIS346redColor
sensor4 is used for recording. Alongside the datasets, this report
presents three encoding methods considering the frequency of
the event (Chen, 2018), the surface of active events (Mueggler
et al., 2017a) and the Leaky Integrate and Fire (LIF) neuro
model (Burkitt, 2006), respectively. We conclude this report
with the recording details and summaries of the datasets and
encoding methods.

2. MATERIALS AND METHODS

In this section, we first introduce the recording setup of those
datasets. Further, specific recording procedures are shown. Three
encoding approaches are finally provided.

2.1. Dataset Recording Setup
Those datasets are recorded with a DAVIS346redColor, a camera
tripod and a laptop. DAVIS346redColor with a resolution of
346 × 260 is used to record real-world scenes. For each event
[t, x, y, p], x ∈ [0, 345] and y ∈ [0, 259]. In order to reduce data
storage size, APS frames were not recorded. The spatio-temporal
event data in aedat format was saved with jAER software5.

1https://inilabs.com/
2http://rpg.ifi.uzh.ch/index.html
3https://github.com/uzh-rpg
4https://inivation.com/support/hardware/davis346/
5https://github.com/SensorsINI/jaer/releases

2.2. Recording Procedure
We used a retractable tripod with a maximum elongation of
five meters and a two-axis gimbal to make the field of view
cover the entire region of interest. The pedestrian detection
dataset was recorded in both indoor and outdoor scenarios, as
shown in Figure 1A. The action recognition dataset and fall
detection dataset were recorded in an empty office, as shown
in Figures 1B,C.

2.3. Encoding Approaches
Standard computer vision algorithms cannot be used directly
to process event data (Tan et al., 2015; Iyer et al., 2018). To
address this problem, we introduce three encoding approaches
here as Frequency (Chen, 2018), SAE (Surface of Active Events)
(Mueggler et al., 2017b) and LIF, (Leaky Integrate-and-Fire)
(Burkitt, 2006) to convert the asynchronous event stream to
frames (Chen et al., 2019). The event data encoding procedure
is shown in Figure 1D.

2.3.1. Frequency
Given that many more events would occur near the object edges,
we utilized the event frequency as the pixel value to strengthen
the profile of the object. At the same time, noise caused by the
sensor could be significantly filtered out due to its low occurrence
frequency at a particular pixel within a given time interval.
Concretely, we counted the event occurrence at each pixel (x, y)
for accumulating each event into frames, based on which we
calculated the pixel value using the following range normalization
equation inspired by Chen (2018):

σ (n) = 255 · 2 · (
1

1+ e−n
− 0.5) (1)

where n is the total number of the occurred events (positive or
negative) at pixel (x, y) within a given interval, and σ (n) is the
value of this pixel in the event frame, the range of which is
normalized between 0 and 255 in order to fit a 8-bit image.

2.3.2. Surface of Active Events (SAE)
In order to take full advantage of the unique characteristic that
neuromorphic vision sensors can record the exact occurring time
of incoming events with low latency, the SAE (Surface of Active
Events) (Mueggler et al., 2017b) approach is applied to reflect
time information while the pixel value and its gradient can tell
the moving direction and speed of the event stream. Specifically,
regardless of the event polarity, each incoming event [t, x, y, p]
will change the pixel value tp at (x, y) according to the timestamp
t. In this way, an grayscale image frame is acquired according to
the timestamp of the most recent event at each pixel:

SAE : t ⇒ tp(x, y) (2)

Moreover, to attain an 8-bit single channel image, numerical
mapping is conducted by calculating the 1t between the pixel
value tp and the initial time t0 for each frame interval T as follows:

g(x, y) = 255 ·
tp − t0

T
(3)
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FIGURE 1 | (A) Experiment environment setup of pedestrian recordings and corresponding data visualization. (B) Experiment environment setup of human action

recordings and corresponding data visualization. (C) Experiment environment setup of human fall recordings and corresponding data visualization. (D) Encoding

process of three methods as Frequency, SAE and LIF. The corresponding produced screenshots are from the pedestrian dataset. We clarify that the human subject’s

face in the images is obscured, and the subject has agreed on the publication of this figure.

2.3.3. Leaky Integrate-and-Fire (LIF)
According to the LIF (Leaky Integrate-and-Fire) neuron model
(Burkitt, 2006), we regard every image pixel (x, y) as a neuron
with its Membrane Potential (MP) and firing counter n. The MP
value of a neuron will be influenced by input spikes and time-
lapse. In detail, each incoming event at pixel (x, y), regardless
of polarity, will trigger a step increase of this pixel’s MP value.
Simultaneously, MP value of each pixel will decay at a fixed rate.
When the MP value of a pixel exceeds the preset threshold which
is chosen based on the effect of LIF output, a firing spike output
will be generated there, and theMP value of this pixel will be reset
to 0 with no latency.

In a specific time interval, we count the number of the
firing spike outputs for each pixel, i.e., the occurrence of events
(recorded as firing counter n). After each interval, the firing
spikes counter n of each pixel will be reset to 0. The accumulated
grayscale frame can thus be obtained.

2.3.4. Summary
Three different event-stream encoding methods are presented
according to their ability to reflect different aspects of the event
information. For the Frequence encoding method, the edges
of the object will be strengthened to a great extent, which is
beneficial for object detection as we have a clearer profile of
the object. For the SAE encoding method, the raw timestamp
information is directly utilized while the pixel value and its
gradient can tell the moving direction and speed of the event
stream. For the LIF encoding method, historical event data have
been considered so that the output frames contain more past

information. Three encodingmethods can be used independently
or as a fusion.

3. RESULTS

We provide three neuromorphic vision datasets for pedestrian
detection, human action recognition and fall detection,
respectively. All the recordings, annotation files and source code
of the three encoding methods are free to the public via this
website6. The characteristics of three datasets are summarized in
Table 1. Details are provided below.

3.1. Pedestrian Detection Dataset
Recordings
The pedestrian dataset is set to record many scenarios, such as
corridor, walking street, and square. All recordings last about 30
s, with slight variations in length. Each recording lasts about 30
s, in which multiple scenarios that are commonly seen in traffic
surveillance tasks such as pedestrian overlapping, occlusion
and collision are contained. Figure 2A shows an example from
pedestrian detection recordings. A large part of raw data is
converted to 4,670 frame images through a SAE encodingmethod
with a time interval of 20ms. which equals to 50 fps of a
conventional frame-based sensor. All these images have been
labeled via annotation tool labelImg7.

6https://github.com/MSZTY/PAFBenchmark
7https://github.com/tzutalin/labelImg/releases
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TABLE 1 | Characteristics of the three provided benchmark datasets.

Pedestrian detection dataset Action recognition dataset Fall detection dataset

Number of subjects – 15 15

Number of recordings 12 450 180

Average length 30 s 5 s 5 s

Number of labeled frames 4670 – –

Scenarios Corridor, walking street and square Office Office

Weather Sunny, Rainy – –

Sensor DAVIS346redColor

Resolution 346 × 260 346 × 260 346 × 260

Number of classes - 10, including arm-crossing, getting-up, kicking,

picking-up, jumping, sitting-down, throwing,

turning-around, walking and waving

4, including falling, bending,

slumping-down, tying-shoes

FIGURE 2 | (A) Actual scenes and pre-processed frames of pedestrian. (B) Actual scenes and pre-processed frames of human action. (C) Actual scenes and

pre-processed frames of fall. (D) Event density variation among different recordings and different action classes. (E) Event density variation among different recordings

and different fall detection classes. Each point in figures (D,E) corresponds to all recordings from one subject. The triangles plot the overall mean for each action or fall

detection class. All the faces of the subjects shown in this figure have been obscured.

3.2. Action Recognition Dataset
Recordings
The action recognition dataset is recorded in an empty office,
with 15 subjects acting out 10 different actions. Each subject

shall perform three times for each pre-defined action within 5
s, and the camera is set to three positions and from different
distances to the subject for recording each action. Recorded
files are named after each action as arm-crossing, getting-up,
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kicking, picking-up, jumping, sitting-down, throwing, turning-
around,walking, andwaving. Figure 2B shows a recording for the
sequence of jumping. The event density analysis, which shows
motion variation among subjects, is presented in Figure 2D.

3.3. Fall Detection Dataset Recordings
The fall detection dataset is recorded with 15 subjects in an empty
office. Actions are pre-defined as falling, bending, slumping down
and tying-shoes, in which falling is a positive sample and the rest
are negative samples. Each subject performs each action within 5
s and repeats it three times. The position of the camera changes
according to the subject. Figure 2C shows sample recordings for
the fall sequence. Figure 2E presents the event density analysis.

4. DISCUSSION

We presented three neuromorphic vision datasets for pedestrian
detection, human action recognition and human fall detection
with DAVIS346redColor, which are freely available at Github.
These datasets contain 642 recordings in jAER (.aedat) format
and 4,670 annotated frames converted from event streams
of pedestrian detection. To make event data for training fit
with conventional neural networks, three different event-stream
encoding approaches are provided with an open-source code. It
is worth noting that the neuromorphic vision sensor is a perfect
sensor to solve the privacy problems which always occurs for
traditional frame-based cameras (e.g., pedestrian’s face may be
recognized in public computer vision dataset such as ImageNet).
The raw data of the DVS sensor are event streams which only
keep the shapes and movements of the subjects. In other words,
there is no texture or appearance information recorded in our
dataset. Therefore, it is impossible to identify subjects from our
dataset which highlights one of the advantages of neuromorphic
vision sensor over traditional frame-based cameras. We hope
that these datasets can contribute to the advance of algorithms

for neuromorphic vision sensor data, and further boost the
development of neuromorphic vision.

It is noted that a fraction of recordings for pedestrian detection
are spotted with dense noisy events caused by raindrops. And
illumination changes outside will result in tiny noisy events
on the recordings. These phenomena indicate that appropriate
approaches for filtering event data are supposed to be adopted
according to the purpose of researchers. However, details in this
data report as well as images shown above prove that the datasets
presented here are of high fidelity and high quality, which benefit
from low latency and high temporal revolution of DVS.
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