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Surface electromyography (sEMG) signals represent a promising approach for decoding

the motor intention of amputees to control a multifunctional prosthetic hand in a

non-invasive way. Several approaches based on proportional amplitude methods or

simple thresholds on sEMG signals have been proposed to control a single degree of

freedom at time, without the possibility of increasing the number of controllable multiple

DoFs in a natural manner. Myoelectric control based on PR techniques have been

introduced to add multiple DoFs by keeping low the number of electrodes and allowing

the discrimination of different muscular patterns for each class of motion. However, the

use of PR algorithms to simultaneously decode both gestures and forces has never

been studied deeply. This paper introduces a hierarchical classification approach with

the aim to assess the desired hand/wrist gestures, as well as the desired force levels

to exert during grasping tasks. A Finite State Machine was introduced to manage and

coordinate three classifiers based on the Non-Linear Logistic Regression algorithm. The

classification architecture was evaluated across 31 healthy subjects. The “hand/wrist

gestures classifier,” introduced for the discrimination of seven hand/wrist gestures,

presented a mean classification accuracy of 98.78%, while the “Spherical and Tip force

classifier,” created for the identification of three force levels, reached an average accuracy

of 98.80 and 96.09%, respectively. These results were confirmed by Linear Discriminant

Analysis (LDA) with time domain features extraction, considered as ground truth for the

final validation of the performed analysis. AWilcoxon Signed-Rank test was carried out for

the statistical analysis of comparison between NLR and LDA and statistical significance

was considered at p < 0.05. The comparative analysis reports not statistically significant

differences in terms of F1Score performance between NLR and LDA. Thus, this study

reveals that the use of non-linear classification algorithm, as NLR, is as much suitable as

the benchmark LDA classifier for implementing an EMG pattern recognition system, able

both to decode hand/wrist gestures and to associate different performed force levels

to grasping actions.

Keywords: pattern recognition, surface electromyography, hand gestures recognition, prostheses, gestures

classifier, force classifiers, non-linear logistic regression, linear discriminant analysis
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1. INTRODUCTION

The use of surface electromyography (sEMG) allows the non-
invasive extraction of pattern information useful to control
active prosthetic hands. In the last 70 years, several solutions
have been proposed to extract gestures information from sEMG
(Ciancio et al., 2016, 2017); the most simple were based on
on-off (Scott and Parker, 1988), on Agonist/Antagonist (Popov,
1965) and Proportional Control (Fougner et al., 2012). Targeted
Muscle Reinnervation (TMR) enabled amputees with shoulder
disarticulation or transhumeral amputation to control motorized
prosthetic devices with multi-DoFs (Aszmann et al., 2015) in a
natural way. Pattern recognition methods enabled performance
improvements to reach an intuitive and coordinated control (Li
et al., 2018). Moreover, these techniques allowed the increasing
of the number of controllable Degree of Freedoms (DoFs)
(Ciancio et al., 2016). Different classification algorithms have
been proposed in literature, including Euclidean Distance,
Non-Linear Logistic Regression, k-Nearest Neighbors (kNN),
Hidden Markov Model (HMM), Artificial Neural Network
(ANN), Support Vector Machine (SVM), Linear Discriminant
Analysis (LDA) (Chowdhury et al., 2013). However, different arm
positions (Geng et al., 2012), electrode shift (Young et al., 2012a),
signal non-stationarity (Lorrain et al., 2011) and force variation
(Scheme and Englehart, 2011) can affect the pattern-recognition
accuracy and robustness. In addition, physiological factors as
motor unit (MU) recruitment, MU firing rate and contraction
type (e.g., isometric, isotonic, concentric, or eccentric) make
difficult the extraction of sEMG-force relationship due to non-
linear factors (Farina et al., 2007; Disselhorst-Klug et al., 2009;
Staudenmann et al., 2009).

In literature two main approaches have been proposed to
find a relationship between muscular activation and force:
mathematical models and machine learning techniques.
Force estimation, based on surface electromyographic
measurements, was determined through a sEMG-force
mathematical relationship, by applying Non-linear Wiener
Hammerstein (NLWH) and Spectral Analysis Frequency
Dependent Resolution (SPAFDR) models (Potluri et al., 2013).
Buchanan et al. (2004) presented a computational neuro
musculoskeletal model of the human arm with the aim to
estimate muscle forces, joint moments and joint kinematics
from neural signals. Moreover, “crosstalk risk factors” (CRF),
as the dependency of the relationship between the sEMG
signals, muscle length and isometric contraction force, had to
be quantified to understand the effectiveness of the muscular
co-ordination in generating force (Disselhorst-Klug et al., 2009).

Related to machine learning techniques, Srinivasan et al.
(2012) proposed a method for estimating forces from surface
electromyography (sEMG) signals with Artificial Neural
Network (ANN). Wu et al. (2017) proposed a force estimation
method employing a Regression Neural Network (GRNN)
trained with sEMG and force signals. In the most recent study,
Ren et al. (2017) divided force signals in different grades from 0
N to 16 N, expressed as percentage of the Maximum Voluntary
Contraction (MVC). They used SVM to establish non-linear
regression relationship between sEMG and force. Lv et al. (2017)

used Linear Discriminant Analysis (LDA) to classify five finger
gestures at two different levels of force (i.e., 10% MVC and
50% MVC), by using EMG and accelerometer signals. Li et al.
(2018) proposed a method based on deep neural network to
derive sEMG-force regression model for force prediction at eight
different force levels. Al-Timemy et al. (2016) reported that force
level variations negatively affected the performance of PR system
and caused the increase of the classification error rates. However,
an increasing of 6 − 8% in the classification performance can
be reached by applying Time-Dependent Power Spectrum
Descriptors (TD-PSD) features extraction to four classifiers [
i.e., LDA, Random Forest (RF), Naive Bayes (NB), k-Nearest
Neighbor (kNN)] and training with all forces across nine trans-
radial amputees. In order to investigate the performance of PR
system in presence of variations in force, Scheme and Englehart
(2011) evaluated a LDA classifier with Time-Domain (TD)
features extraction, by using data of 10 classes performed at 20%
and 80% of the strongest and reproducible contraction, except
for the tenth class of no motion. The LDA classifier performed
an error rate equals to 17% when trained and tested using data
of 11 healthy subjects at all force levels. The error increased at
31− 44% when trained at one force level and tested with all force
levels. Subsequently, the effect of contraction strength on pattern
recognition based control was studied in Scheme and Englehart
(2013). By using a LDA classifier trained with dynamic ramp
data of 10 healthy subjects, the classification error significantly
improved (11.16± 0.54%).

Different strategies have been developed by combining the
above techniques to make the control most fluid and intuitive
for the user. Two proportional control algorithms were used
to obtain a robust and proportional velocity commands that
could improve the usability of PR (pattern recognition) based
control (Scheme et al., 2014). Fougner et al. (2014) presented
a novel pattern recognition system with mutex on-off control
or proportional control of a commercial prosthetic hand and
wrist. In Young et al. (2012b) three classification strategies were
introduced and compared in order to provide simultaneous
DoFs control. The first classification approach used a single
linear discriminant analysis (LDA) classifier to discriminate both
discrete and combined motions. All the discrete and combined
gestures were considered as separated classes. The second
proposed approach was based on a hierarchical classification
strategy and consisted of a hierarchy of LDA classifiers. The
highest classifier in the hierarchy determined a motion class
for a single DoF by using both discrete and combined motion
data. The output of this classifier determined which classifier
of the second level could be used for discriminating the
motion class of a second DoF. Finally, the parallel classification
strategy employed one LDA classifier for each DoF and the
decision of the single classifier is independently defined. The
parallel classification strategy was presented also to either
allow the simultaneous control of three-digits of a monkey
(Baker et al., 2010) or to control the elbow and hand/wrist
movement of an active myoelectric transhumeral prosthesis
(Boschmann et al., 2011). No hierarchical strategy has ever
been proposed to simultaneously identify desired gestures
and forces.
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This work aims at proposing and testing a hierarchical pattern
recognition strategy to contemporary identify desired hand/wrist
gestures and force levels. In details, a Finite State Machine (FSM)
scheme (Figure 2) is introduced to manage desired hand/wrist
gestures and force levels, following a hierarchical approach.

Differently from Young et al. (2012b) the hierarchical
classification system is used to discriminate simultaneously
hand/wrist gestures and desired force levels. In details, the
highest NLR classifier, i.e., the “hand/wrist gestures classifier,”
is devoted to identify the desired hand/wrist class among seven
gestures. The output of this classifier determines the next
classifier used in the hierarchy. If the output of this classifier
is “Spherical” motion class, then the “Spherical force classifier”
is used to determine the desired force level to exert on an
object. This second classifier is conditioned on the decision of
the first classifier. The same strategy is adopted if the output of
the first classifier is “Tip” motion class. In this case, the “Tip
force classifier” lower in the hierarchy is used to determine the
desired force levels. Thus, the classifiers of the second level of
the hierarchy discriminate the force levels applied during the
related grasping class. If, instead, the output of the first classifier
is any hand/wrist gestures different from “Spherical” or “Tip”
gesture, no force classifiers are activated. Hand and wrist gestures
are classified by using the single “hand/wrist gestures classifier.”
When the “Spherical” or “Tip” state is chosen, the “Spherical
force classifier” or the “Tip force classifier” is respectively
activated in a hierarchical way to discriminate between three
different force levels (i.e., Low, Medium, and High). The FSM
use allowed the two classifiers of different grades of the hierarchy
to work simultaneously. Until the “Spherical” or “Tip” state is
classified by “hand/wrist gestures classifier,” the “Spherical force
classifier” or the “Tip force classifier” intervenes to discriminate
force levels.

TheNLR and LDA algorithms are employed for implementing
the hierarchical classification approach, since LDA and NLR
retained statistically similar value for F1Score performance and
computational burden, despite LDA has the fewest number of
classification parameters (Bellingegni et al., 2017). The number
of gestures is increased from five (Bellingegni et al., 2017)
to seven and the classification is extended to three different
force levels, by using the same number of sensors. Force
information is provided only for the two grasping classes
(i.e., “Spherical” and “Tip”) in which an object interaction is
expected. Seven hand/wrist gestures (i.e., Rest, Spherical, Tip,
Platform, Point, Wrist supination, and Wrist pronation) had
been discriminated by using a Non-linear Logistic Regression
(NLR) algorithm. When the “Spherical” or the “Tip” class
are identified, a second NLR-algorithm-based classifier, i.e.,
respectively, “Spherical force classifier” or “Tip force classifier”
is activated simultaneously in order to discriminate three force
levels (i.e., Low, Medium, and High).

The same hierarchical pattern recognition strategy was
implemented with three linear classifiers (“hand/wrist
gestures classifier,” “Spherical force classifier” and “Tip
force classifier”), based on LDA with time domain features
extraction. The performance of each algorithm (NLR and
LDA) were measured by means of F1Score value and statistical

analysis had been based on the Wilcoxon Signed-Rank test,
which had been shown to be appropriate for comparing
different classifiers in common datasets (Demšar, 2006). A
comparative analysis among NLR and LDA with features
extraction was implemented in order to define the most
suitable classification algorithm for the realization of a
gestures and forces classification architecture to control of
a prosthetic device. Thus, in literature, several studies have
been considered the LDA classifier with features extraction
as ground truth (Simon et al., 2011; Young et al., 2014) and
it can be used for the online control of prosthetic devices
(Resnik et al., 2017) that is commercially available by COAPT
(https://www.coaptengineering.com).

The performance of the proposed approach are evaluated
during an experimental session involved 31 healthy subjects. The
users are asked to perform seven hand/wrist motions and to
replicate three different force levels during the “Spherical” and
“Tip” grasps.

The paper is organized as follows. Section II describes
the proposed force/gesture classification approach and the
experimental setup used to collect sEMG and force data. Section
III reports the results in terms of F1Score and accuracy of each
classifier trained with both NLR and LDA algorithms. Section IV
discusses the achieved results and then it reports the comparative
analysis among NLR and LDA classifiers in terms of F1Score. The
last section draws the conclusion, including some considerations
regarding the comparative analysis between NLR and the LDA
benchmark classifier, limits and future works.

2. MATERIALS AND METHODS

2.1. Forces/Gestures Classification
Approach
A hierarchical pattern recognition strategy was proposed
for the classification of the desired hand/wrist gestures
and force levels from muscular signals (Figure 1). The
FSM coordinated the hierarchical activation of the three
classifiers implemented both with NLR and LDA algorithms
for doing a comparison in terms of F1Score performance.The
highest classifier in the hierarchy was a single classifier
able to discriminate seven discrete hand/wrist motion
classes. The output of this classifier determined the desired
hand/wrist gesture and, in case of “Spherical” or “Tip”
class, the force classifier, lower in the hierarchy, to be
activated. Thus, the force classifiers were activated for force
levels recognition.

The described hierarchy was implemented adopting NLR
algorithm for both gesture and force classifiers. The same
hierarchy was then reproduced using LDA algorithm in order
to perform a comparative analysis. The Linear Discriminant
Analysis (LDA), using time domain of the EMG signal, was
frequently employed in literature because it was considered
an efficient algorithm, simple to train and with an optimal
compromise in terms of computational burden (Young et al.,
2014). The Wilcoxon Signed-Rank test applied to the F1Score
values was performed with significance threshold set to 0.05.
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FIGURE 1 | Hierarchical classification strategy. “Hand/wrist gestures classifier” allowed the identification of the desired motion class among seven different gestures.

“Tip force classifier,” lower in the hierarchy, allowed the classification of three force levels for “Tip” gesture. “Spherical force classifier,” lower in the hierarchy, allowed

the classification of three force levels for “Spherical” gesture.

FIGURE 2 | Finite State Machine (FSM) strategy for the classification of seven

different hand/wrist gestures and three force levels: the blue circle states

indicated the hand gestures and wrist motions and they were all classified

through the “hand/wrist gestures classifier.” Three force levels (Low, Medium,

and High) can be classified through the “Spherical or Tip force classifier” if the

“hand/wrist gestures classifier” discriminated respectively the “Spherical” or

“Tip” state. If the “Spherical” or “Tip” state was classified, the hierarchical

classification strategy was adopted.

The FSM coordinated the three classifiers activation (i.e.,
one for hand/wrist gestures and two for force levels). The FSM
approach was characterized by the following key features:

• The FSM can only be in a fixed set of states.
• The FSM can only be in one state at a time.
• A sequence of inputs was sent to the FSM.

The proposed classification system was characterized by three
different classifiers (Figure 2):

• The “hand/wrist gestures classifier” was able to discriminate
seven states, corresponding to seven hand and wrist gestures
(blue circle states in Figure 2). This classifier was always active
and it was the highest classifier in the hierarchy (Figure 2).

• The “Spherical force classifier” was able to discriminate three
force levels (i.e., Low, Medium, and High Level shown in

Figure 2 in the red box). It was active if the “Spherical" gesture
was identified and it was lowest in the hierarchy (Figure 2).

• The “Tip force classifier” was able to discriminate three force
levels (i.e., Low, Medium, and High Level shown in Figure 2 in
the red box). It was active if the “Tip" gesture was identified
and it was lowest in the hierarchy (Figure 2).

FSM determined the following different scenarios: a single
classification approach used “hand/wrist gestures classifier”
to recognize seven discrete hand/wrist motion classes; the
classification approach become hierarchical when the output of
this classifier was the “Spherical” or “Tip” motion class. In this
case, a second classifier (force classifier) was activated. Until the
FSM system remained in one of these two states (i.e., “Spherical”
or “Tip”), the output of the FSM system provided hand/wrist
gestures and the force levels information. Otherwise, if the FSM
system was in a different state from the “Spherical” or “Tip,” only
the single “hand/wrist gestures classifier” was activated and the
gesture information was supplied.

The force classifiers managed only a three classes classification
problem related to three different force levels ( i.e., Low, Medium,
and High).

The raw sEMG recording for the six EMG channels, related
to all the seven performed movements of a single acquisition
session, was reported in (Figure 3). In details, the enveloped
EMG signal was acquired at 1 KHz to create three Datasets,
used for both the NLR and LDA algorithms (Figure 4). For
the NLR classifiers, the “raw” sEMG signals were used as input
features in order to speed up the training and cross validation
of the NLR algorithm (Figure 4A). On the other hand, for
the LDA classifiers, five commonly used time domain features
were extracted: Mean Absolute Value (MAV), Root Mean Square
(RMS), Slope Sign Change (SSC), Waveform Length (WL) and
Variance (σ 2) (Figure 4B). In this case, the features extraction
avoided the generation of large-scale-dataset without performing
the downsampling step and the time to complete the training
is not too long. The TrainingSet of the “hand/wrist gestures
classifier” was composed by sEMG signals related to all the
seven states of FSM. This TrainingSet included the recording
of Spherical and Tip gestures performed at three different
force levels in order to correctly classify gestures independently
from muscular contraction changes due to force variations.
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FIGURE 3 | Plot of the raw sEMG recording for the six EMG channels, related to all the seven performed movements of a single acquisition session from one of the

subjects who was involved into the experiment. The plot of raw sEMG recording of “Spherical” and “Tip” classes are related to muscular activations performed at

medium force level.

The TrainingSets of “Spherical and Tip force classifiers” were
composed only by sEMG data expressing different muscular
contraction levels for these gestures. The NLR and LDAmachine
learning algorithms and dataset organization are provided below.

2.2. NLR Classification Algorithm and
Dataset Organization
In each subject’s acquisition, the sEMG data were organized in
a 84000 ∗ 6 dimensions matrix. Each column of the matrix
was coupled with an EMG sensor. Firstly three-way data split
approach (Ripley, 2007) was applied to the dataset (84000 ∗ 6
sEMG data) and the Training Set (TR), the Cross Validation
Set (CVS) and the Test Set (TS) were set to contain 60, 20, and
20% of the data, respectively. A random shuffle was implemented
for filling these subsets with a proper proportion of all classes
samples distribution.

The unique operation done on sEMG data was the scaling:
it consists of subtracting the mean value to each signal and
dividing the result by the range, as done in Bellingegni et al.
(2017).Then,downsampling (with a step = 10, 100 Hz) was
applied to reduce the data dimensions and training process.

The scaled “raw” sEMGdata were directly used as input for the
NLR model, without performing any features extraction. The use
of only “raw” sEMG signals allowed a significant reduction of the
classification time and of the response time without loss of system
performance (Nazarpour, 2005; Dohnalek et al., 2013; Benatti
et al., 2014). Moreover, the use of “raw” scaled sEMG signals
(Figure 3) as input features approximated the class evaluation
time and system readiness to the sampling time (Bellingegni

et al., 2017). The discarded data rising from the downsampling
process (90% of initial data) composed a new set of data called
Generalization Set (GS) used as a second test to obtain an
estimation of the generalization capability of each classifier. The
three way data split approach was applied on the data coming
from downsampling process (10% of initial data): TR, CVS, and
TS were set to contain 6, 2, and 2% of the data, respectively. The
TR and CV were used to train and cross validate the classifiers
and the TS and GS were employed to test the performance of
the classifiers. In details, the TR was used to train the supervised
classification algorithm by minimizing a specific cross-entropy
error cost function:

J(θ , θ0) = −
1

m

[

m
∑

i=1

y(i) · ln g
(

θT · x(i) + θ0

)

]

−
1

m

[

m
∑

i=1

(

1− y(i)
)

· ln
(

1− g
(

θT · x(i) + θ0

))

]

(1)

where m is the number of samples of TrainingSet, y(i) is the
known class membership of the i-th sample, θ and θ0 are the
classification parameters and g(·) is the logistic function. Resilient
Backpropagation (RProp) was chosen as minimization algorithm
(Baykal and Erkmen, 2000; Bellingegni et al., 2017) for the NLR.
Each single classifier was iteratively trained with all possible
configurations of its internal parameters that had an appropriate
range of values (Bellingegni et al., 2017).

To avoid overfitting and explore the best model, the
CV was used to evaluate the performance of classifiers
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for each set of internal parameters (Bellingegni et al.,
2017). In this study, the goodness of the classification
was evaluated in terms of F1Score because it was
considering more robust, in lieu of accuracy, to assess

the performance (Powers, 2011). Once the optimal
classification model had been chosen, TS was used to
evaluate the performance of classifier when new features
were introduced as input.

FIGURE 4 | Block diagram of classification system for the creation of three different TrainingSet for obtaining the relative output classes. (A) For the NLR classifiers,

the raw sEMG signals are used as input features in order to speed up the training and cross validation of the NLR algorithm. (B) For the LDA classifiers, five commonly

used time domain features were extracted: Mean Absolute Value (MAV), Root Mean Square (RMS), Slope Sign Change (SSC), Waveform Length (WL), and Variance

(σ2).

FIGURE 5 | The experimental setup was composed by: (i) a sEMG elastic bracelet, (ii) NI DAQ USB 6002, (iii) a conditioning circuit, and (iv) glove equipped with Force

Sensitive Resistors (FSR), Model 402 by Interlink Electronics.
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The NLR algorithm calculated the class membership
probability by using the following logistic function:

P(1 | x, θ) =

{

g(θT · x) = 1

1+e−(θT ·x+θ0)

1− P(y = 0 | x, θ)
(2)

where θ and θ0 are, respectively, the classification parameters
vector and bias term, while g(·) is the logistic function. Additional
polynomial features (e.g., x1, x2, x1 ∗ x2, x

2
1, x

2
2) were introduced

to make non-linear this logistic regression model. The prediction
of class labels hθ for the NLR algorithm was achieved by
comparing the probability distribution P(y|x) with a decision
threshold (TH):

hθ =

{

P(1 | x, θ) ≥ TH → 1

P(1 | x, θ) < TH → 0
(3)

2.3. LDA Classification Algorithm and
Dataset Organization
In order to create linear classifiers able to provide accurate
movement classes and force levels recognition, a proper features
set needs to be chosen to represent the sEMG signals (Hargrove
et al., 2007). In our study, for each of the three LDA classifiers,
five time-domain (TD) features (Mean Absolute Value (MAV),
Root Mean Square (RMS), Slope Sign Change (SSC), Waveform
Length (WL) and Variance (σ 2) were extracted from the
corresponding channels of “raw” EMG data (Figure 3), in each
analysis windows of 150 ms with an overlap of 100 ms (Smith
et al., 2011). Since the LDA classifiers don’t required the setting
of internal parameters (Bellingegni et al., 2017), the training and
test rely on a two ways data split approach (Ripley, 2007). Thus,
the initial dataset was divided in this way: the TrainingSet (TR)
contains 70% of the data and the test set contains the remaining
30% of the data. The training of the classifiers was performed
by using the Equations (4,5). The subset were iteratively filled

FIGURE 6 | Subject positioning and data acquisition during experimental

validation of the proposed approach. The subject was sitting in a comfortable

chair in front of a PC monitor and was asked to perform six repetitions of each

hand/wrist gesture. The subject performed “Spherical” and “Tip” gestures

during the grasping of a rectangular object and executed three force levels.

Written informed consent for the publication of this image was obtained.

trough a random shuffle in order to obtain a configuration
with proportionated class number (Bellingegni et al., 2017).
The downsampling step wasn’t necessary because the features
extraction avoided the generation of large-scale-dataset and
guaranteed a short time for the training of the classifiers. In
details, the Linear Discriminant Analysis (LDA) with features
extraction is a binary supervised machine learning algorithm able
to transform the features into a lower dimensional space, which
maximizes the ratio of the between-class variance to the within-
class variance. This guarantees the maximum class separability
(Welling, 2005). The following decision function is used to
discriminate between only two different classes and to assign class
label 1 or 2 to unknown data:

hβ (x) =

{

(βT · x+ β0) ≥ 0 → 1

(βT · x+ β0) < 0 → 2
(4)

where β and β0 are, respectively, the classification parameters
vector and the bias term. In details, the classification parameters
can be evaluated in this way:

{

β = 6−1 · (µ1 − µ2)

β0 = −βT ·
(

µ1+µ2
2

)

+ ln
(

51
52

) (5)

where 6 is the pooled covariance matrix, µ1, µ2, 51, 52 are
the mean vectors and the prior probabilities of class 1 and
2, respectively. Since LDA is a binary algorithm a one vs. all
approach was implemented to solve the multi-class classification
problem. The class label (c) is predicted as following:

hβ (x) = max
c

(

cβ
T · x+ cβ0

)

and

{

cβ = 6−1 · (µc)

cβ0 = −cβ
T ·

(

µc
2

)

+ ln (5c)

(6)
where cβ and cβ0 are the classification parameters vector and the
bias term of c class, respectively. An ad hoc developed software
was implemented in Matlab for the construction of the three
LDA classifiers.

The performance were evaluated through F1Score values and
aWilcoxon Signed-Rank test at p < 0.005 had been employed for
comparing NLR and LDA classifiers in common datasets (Ortiz-
Catalan et al., 2014). The LDA were trained and tested at 1KHz
(without downsampling step) and for this reason the NLR model
was evaluated considering the F1score on GS for the comparative
analysis of the performance.

2.4. Experimental Setup
Thirty-one healthy participants (age: 28 ± 7.6 years) were
involved in the experiments. Six commercial active sEMG
sensors (Ottobock 13E200 = 50, 27mmX18mmX9.5mm) were
equidistantly fixed on an elastic adjustable bracelet and then were
placed on the forearm of the able-bodied subjects in order to
acquire sEMG signals (Figure 5).

The bracelet was located about 5cm below the subjects elbow,
in line with the positioning of the electrodes, commonly used
to control a prosthetic hand (Riillo et al., 2014). This type
of electrodes output an enveloped signal of the “raw” signal
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FIGURE 7 | Normalized confusion matrix of the “hand/wrist gestures classifier” obtained with NLR algorithm (A) and LDA algorithm (B). The confusion matrices are

normalized with respect to the number of data belonging to the “GS” for the NLR classifier and to the “TS” for the LDA classifier. On the main diagonal the cardinality

of the correct classifications is reported; in the top left dial and bottom right dial, the cardinality of the misclassified data related to the 7 output classes representing

the hand gestures are reported.

FIGURE 8 | Normalized confusion matrix of the “Spherical force classifier” obtained with NLR algorithm (A) and LDA algorithm (B). Normalized confusion matrix of the

“Tip force classifier” obtained with NLR algorithm (C) and LDA algorithm (D). The confusion matrices are normalized with respect to the number of data belonging to

the “GS" for the NLR classifier and to the “TS” for the LDA classifier. The cardinality of the correct classifications is reported on the main diagonal; in the top left dial

and bottom right dial, the cardinality of the misclassified data related to the 3 output classes that represented the force levels are reported.
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(after amplification, filtering and rectification). The number of
sEMG sensors was chosen equal to six because it was considered
the highest number that was possible to place into the socket
(Riillo et al., 2014). Moreover, it allowed to reduce the data
dimensionality and complexity (Bellingegni et al., 2017). The
EMG sensors operated in the range 0 − 5V with a bandwidth
of 90− 450Hz and a common rejection ratio higher than 100dB.

Five Force Sensitive Resistors (FSR), Model 402 by Interlink
Electronics, were placed on a glove to verify the effective forces
executed by the subjects. The relationship between the FSR
voltage value V and the force value F was established with a

statistically characterization as explained in Romeo et al. (2015).
The relation between voltage and force is described trough the
following mathematical expression:

F = p1V
5 + p2V

4 + p3V
3 + p4V

2 + p5V + p6 (7)

obtained with the polynomial model:

y =

n+1
∑

i=1

pix
(n+1−i) (8)

TABLE 1 | Mean value and standard deviation of F1Score and Accuracy of the “hand/wrist gestures classifier” calculated for 31 healthy subjects with NLR and LDA

algorithms.

Hand/Wrist gestures classifier

NLR classifier LDA classifier

F1_Score Accuracy F1_Score Accuracy

Classes Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Rest 98.25 4.05 99.50 1.24 97.62 4.31 99.05 3.55

Spherical 95.63 6.22 98.71 1.94 94.28 7.58 93.89 7.76

Tip 95.56 4.93 98.69 1.55 94.25 6.14 93.68 7.56

Platform 95.97 6.58 98.86 1.84 94.60 6.32 95.96 5.25

Point 92.69 9.25 97.63 3.58 93.52 6.02 92.38 7.67

Wrist supination 95.70 6.70 98.64 2.26 95.57 6.18 95.27 7.36

Wrist pronation 98.20 4.93 99.41 1.7 98 3.53 97.66 4.41

The classification performance for the NLR classifiers are evaluated on “GS,” while LDA classifiers are tested on “TS,” with data sampled at 1 KHz (without downsampling).

TABLE 2 | Mean value and standard deviation of F1Score and Accuracy of the “Spherical force classifier” calculated for 31 healthy subjects with NLR and LDA algorithms.

Spherical force classifier

NLR classifier LDA classifier

Classes F1_Score Accuracy F1_Score Accuracy

Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Low 97.49 4.84 98.35 3.13 98.49 2.62 98.7 2.76

Medium 97.43 4.21 98.25 2.86 98.43 2.46 98.05 3.35

High 99.69 1.2 99.80 0.78 99.47 1.33 99.48 1.81

The classification performance for the NLR classifiers are evaluated on “GS,” while LDA classifiers are tested on “TS” with data sampled at 1 KHz (without downsampling).

TABLE 3 | Mean value and standard deviation of F1Score and Accuracy of the “Tip force classifier” calculated for 31 healthy subjects with NLR and LDA algorithms.

Tip force classifier

NLR classifier LDA classifier

Classes F1_Score Accuracy F1_Score Accuracy

Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std Mean (%) Dev_std

Low 91.54 8.61 94.46 5.42 97.11 3.46 97.79 4.34

Medium 91.56 8.24 94.36 5.14 96.31 4.17 96.36 5.46

High 99.03 1.96 99.26 1.31 99.16 2.03 98.66 3.77

The classification performance for the NLR classifiers are evaluated on “GS,” while LDA classifiers are tested on “TS,” with data sampled at 1 KHz (without downsampling).
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where n+ 1 represents the number of fitting coefficients, while n
(1 ≤ n ≤ 9) is the degree of the polynomial. The Anderson loop
was used as signal conditioning circuit (Anderson, 1998).

The EMG and force data were simultaneously acquired at 1
KHz using a suitable software on Labview platform by DAQ USB
6002 device. The PC (Samsung Intel(R) Core (TM) i7-4500U

CPU @ 1.80 GHz 2.40 GHz) and DAQ communicated by means
of an USB port.
The subject was sitting in front of a monitor (Figure 6) and
was asked to perform the following seven hand gestures: Rest
(hand relax), Spherical (hand with all fingers closed), Tip (hand
with thumb and finger touching as if picking a small object),

FIGURE 9 | (A) Average F1Score values calculated on 30 healthy subjects using NLR “hand/wrist gestures classifier” algorithm, tested on “GS,” and LDA “hand/wrist

gestures classifier” with 5 time domain features, tested on “TS.” (B) Average F1Score values calculated on 30 healthy subjects using NLR “Spherical force classifier”

algorithm, tested on “GS,” and LDA “Spherical force classifier” with 5 time domain features, tested on “TS.” (C) Average F1Score values calculated on 30 healthy

subjects using NLR “Tip force classifier” algorithm, tested on “GS,” and LDA “Tip force classifier” with 5 time domain features, tested on “TS.” Statistical

non-significance is indicated by “ns”.

FIGURE 10 | Force sum average values are obtained, by FSR measurements, for 31 healthy subjects during, respectively, the “Spherical” and “Tip” gestures,

performed six times: the blue, red and black values represent the mean value and standard deviation of respectively low, medium, and high force values performed by

each subject.
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TABLE 4 | Misclassification error rates of the “hand/wrist gestures classifier"

calculated with NLR and LDA algorithms.

Misclassification error rates (%)

Hand/Wrist gestures classifier

Classes NLR classifier LDA classifier

Rest 1 1

Spherical 6 11

Tip 5 12.7

Platform 5 7

Point 9 11.3

Wrist Supination 5 7

Wrist Pronation 2 4

Platform (hand completely open and stretched), Point (handwith
all fingers closed except for the index finger), Wrist Supination
and Wrist Pronation. The participants were asked to produce
each of these gestures for six times and hold it for 2 s with an
interval of rest state about 2 s between each repetition.

In a initial phase before the training, each subject was asked to
produce maximum muscle contractions in order to perform the
highest peak of force, while grasping a stiff object of rectangular
shape (weight 66 g, dimensions 50 × 100 × 17 mm) with
“Spherical” and “Tip” grasps. The object was used also during the
training session.

Three force thresholds were established at 30% (low), 60%
(medium), and 90% (high) of the sum of all force contributions
recorded from FSR sensors. Three force bands were defined as
follows to reduce the difficult to perform a punctual value of
force: the low level was fixed between the ±15% of the lowest
threshold (i.e., 30%), the medium level was fixed as ±15% of the
medium threshold (i.e., 60%), while the high level starts from
−15% of the highest threshold (i.e., 90%) and continued until
the maximum value. These bands were used to give a visual
feedback to the subject during the recording of “Spherical” and
“Tip” gestures.

3. RESULTS

The results of the “hand/wrist gestures classifier” are reported
in Table 1 in terms of the average accuracy and F1Score for
NLR and LDA algorithms. The results of LDA classifiers with
time domain features extraction were obtained with data sampled
at 1 KHz (without downsampling). Thus, for the comparative
analysis, we reported the results of NLR classifiers tested on “GS”
because they represent the behavior of the classifiers when data
sampled at 1 KHz are provided as input (Bellingegni et al., 2017).
To this purpose, the Wilcoxon Signed-Rank test applied to the
F1Score values was performed with significance threshold set
to 0.05. Average classification accuracy for the NLR “hand/wrist
gestures classifier,” the NLR “Spherical force classifiers” and “Tip
force classifiers” are respectively equals to 98.78, 98.80, and
96.09%. The LDA “hand/wrist gestures classifier” reaches an
average classification accuracy equals to 95.41%, while the LDA

“Spherical force classifiers” and “Tip force classifiers” show an
average classification value of 98.74 and 97.60%, respectively.

The results of the two force classifiers, “Spherical force
classifier” and “Tip force classifier” are shown, respectively, in
Tables 2, 3, in terms of the average F1Score and accuracy for the
NLR and LDA classifiers. The average classification accuracy of
the NLR “Spherical force classifier” is 98.35% for the low force
level, 98.25% for the medium force level and 99.80% for the high
force level.The LDA “Spherical force classifier” shows an average
classification accuracy of 98.7% for the low force level, 98.05% for
the medium force level and 99.48% for the high force level. The
average classification accuracy of the NLR “Tip force classifier” is
94.36% for the low force level, 94.46% for the medium force level
and 99.26% for the high force level. The LDA “Tip force classifier"
shows an average classification accuracy of 97.79% for the low
force level, 96.36% for the medium force level and 98.66% for the
high force level.

Figure 7 shows the average confusion matrix when testing
the NLR and LDA “hand/wrist gestures classifier” on “GS” and
“TS,” respectively. In details, Figure 7A reports the normalized
confusion matrix for the NLR “hand/wrist gestures classifier,”
while Figure 7B is related to the LDA “hand/wrist gestures
classifier.” Figure 8 shows the average confusion matrices when
testing the NLR “Spherical force and Tip force classifiers” on
the “GS” (Figures 8A,C) and the LDA “Spherical force and Tip
force classifiers” on “TS” (Figures 8B,D). As shown in Figure 9

the NLR and LDA “hand/wrist gestures classifier” were able
to identify seven hand gestures with an average F1Score of
96.01% and 95.41% respectively (Figure 9A). The “Spherical
force classifier” identified the force level reaching an average
F1 score of 98.75 and 98.79% with NLR and LDA classifiers,
respectively (Figure 9B). The “Tip force classifier” was able to
define the force level with an average F1 score of 94.04 and
97.53% with NLR and LDA classifiers, respectively (Figure 9C).
The Wilcoxon Signed-Rank test applied to the F1Score values
points out no statistically significant difference (‘ns") between
NLR and LDA algorithms (at p < 0.05).

In Figure 10 the average values of the sum of all the
FSR measurements for 31 healthy subjects are showed. The
misclassification error rates are presented in Tables 4, 5 for
both the NLR and LDA “hand/wrist gestures classifier”. The
NLR “hand/wrist gestures classifier” performed the highest
misclassification errors (i.e., 9%) with “Point” class, while the
LDA “hand/wrist gestures classifier” performed misclassification
errors greater than 10% (i.e., 11, 12.7, and 11.3%) for the
“Spherical, Tip and Point” classes, respectively. The NLR
and LDA “Spherical force classifier” reached the maximum
misclassification error (i.e., 3 and 8%, respectively) for the
“Medium" force level. The “Tip NLR and LDA force classifier”
presented the same maximum misclassification error (i.e., 8.5%)
for the “Medium” force level.

4. DISCUSSION

As shown in Table 1 and Figure 9 the NLR and LDA “hand/wrist
gestures classifier" were able to identify seven hand gestures
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TABLE 5 | Misclassification error rates of Spherical and Tip Force Classifier calculated with NLR and LDA algorithms.

Misclassification error rates (%)

NLR classifier LDA classifier

Classes Spherical force classifier Tip force classifier Spherical force classifier Tip force classifier

Low 2 8 4 4

Medium 3 8,5 8 8.5

High 1 2 4 4

with an average F1Score of 96.01 and 95.41% respectively. The
“Spherical force classifier” identified the force level reaching
an average F1 score of 98.75 and 98.79% with NLR and LDA
classifiers, respectively (Table 2). The “Tip force classifier" was
able to define the force level with an average F1 score of
94.04 and 97.53% with NLR and LDA classifiers, respectively
(Table 3). These results seem to be very promising if we consider
that similar values of average F1Score have been achieved only
for gesture classification (Duan et al., 2016; Bellingegni et al.,
2017). The comparative analysis betweenNLR and LDA classifier,
applied to F1Score values, reported no statistically significant
difference (p < 0.05) between them.

Confusion matrices, reported in Figures 7, 8, confirmed the
positive results of the accuracy parameter. The cardinality of
the correct classifications on the main diagonal underlined the
high classification accuracy even if some misclassified data out
of the main diagonal suggested a bit minus performance of
“Tip force classifier” respect to “Spherical force classifier.” This
is due to the major difficulty encountered by few subjects to
modulate between low and medium force levels during a Tip
grasp. The high force levels were always well discriminated at 99%
of average accuracy for both the NLR and LDA force classifiers.
In Table 4, the LDA “hand/wrist gestures classifier” obtained
a greater misclassification error rates than NLR “hand/wrist
gestures classifier” ranging from 1% to maximum 12, 7% for
discriminating seven hand/wrist gestures classes by using data
including different muscular activations related to desired force
levels. This may due to the fact that linear classifiers, with
straight line or plane decision boundary, could not be the
most appropriate method for a seven multi-class problem with
features not linearly separable at all. In comparison to the results
presented in Scheme and Englehart (2011), the misclassification
error values, obtained for the “Spherical” and “Tip” classes with
the LDA “hand/wrist gestures classifier,” were lower than 17%
and, thus, it can be considered an effective result. Moreover,
the misclassification error values, obtained for the “Spherical”
and “Tip” classes with the NLR “hand/wrist gestures classifier”
were, respectively, equals to 6 and 5% and these results can be
considered positive for an usable system (< 10%) (Scheme and
Englehart, 2011). Finally, the misclassification error rates for the
“Spherical and Tip force classifiers” are similar (Table 5), ranging
from 1% tomaximum8, 5% for both theNLR and LDA classifiers.

Almost all healthy subjects were able to modulate the force
levels and fall into the range displayed by the visual feedback,

without generating high variance values, as shown in Figure 10.
Fewer subjects difficulty reproduced the force values within the

force intervals, despite the visual feedback as reference. For
instance, in Figure 10, the subjects 25 and 3 were not able to
well differentiate between medium and high force levels during
Tip grasp (represented as red and black points), while subject 28
performed the three force levels too closed during Tip grasp. This
depended on the subject’s difficulty to maintain the applied force
within the force intervals.

These results are also more appreciable if we take into
account that NLR, used for the classification of both hand/wrist
gestures and force levels, was trained and tested using only raw
scaled sEMG signals as input features. On the other hand, the
LDA algorithm employed the minimum number of classification
parameters and computational burden. However, the use of time
domain features extraction based on time windowing, make the
class evaluation time equals to the window shift and the system
delay approximates to the time window length (Bellingegni
et al., 2017). Furthermore, the same number of sensors were
adopted to classify seven gesture classes respect to the previous
five (Bellingegni et al., 2017) and to identify three levels of
force during the execution of “Spherical" and “Tip" grasps. The
proposed hierarchical classification architecture permitted to
decode the user’s motion intention and desired force levels with
high reliability. Despite the proposed PR approach was tested
only on healthy subjects, the reported results are promising for
future developments on trans-radial amputees. The proposed
hierarchical pattern recognition approach has obtained effective
results with both NLR and LDA algorithms that have been
demonstrated to be suitable for discriminating both hand/wrist
gestures and force levels applied during grasping tasks. Moreover
online performance will be evaluated for controlling a multi-
functional prosthetic device.

5. CONCLUSION

In this study a hierarchical classification approach was developed
and tested to discriminate both hand/wrist gestures and force
levels applied during grasping tasks. The proposed PR system,
implemented with both NLR and LDA classifiers, was tested on
31 healthy subjects by using 6 commercial sEMG sensors and
five FSR placed on a glove. The method employed three different
classifiers to discriminate both desired gestures and forces.
To this purpose, the NLR and LDA algorithms were adopted
for implementing the hierarchical classification approach and
a comparative analysis among the performance of these two
algorithms was done. The statistical analysis based on the
Wilcoxon Signed-Rank test, applied to the F1Score values,
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revealed no statistically significant difference between NLR and
LDA. The NLR classifiers exhibited excellent results in terms of
accuracy both for gestures (i.e., 98.78%) and forces (Spherical
98.80%, Tip 96.09%). In particular, the force classifiers were able
to robustly discriminate the same class of movement performed
at different muscle contractions because they were trained with
data containing the modulation of different force levels. Also the
LDA classifiers achieved effective results in terms of accuracy
both for gestures (i.e., 95.41%) and forces (Spherical 98.74%, Tip
97.60%). The misclassification errors of the NLR classifiers was
limited to a maximum values of 9% for the “hand/wrist gestures
classifier,” 3% for the “Spherical force classifier” and 8.5% for the
“Tip force classifier.” On the other hand, the misclassification
errors of the LDA classifiers reached the maximum values
at 12, 7% for the “hand/wrist gestures classifier,” 4% for the
“Spherical force classifier" and 8.5% for the “Tip force classifier.”
In particular, the results of misclassification values obtained
by the NLR and LDA “hand/wrist gestures classifier” for the
“Spherical” and “Tip” classes, were particularly noteworthy and
promising. Based on these outcomes, a new potential strategy
should be introduced for mitigating the effect of different exerted
forces within a given movement class. Another innovative
contribution is represented by the use of FSM theory for the
management of three classifiers. This control strategy avoids to
face a more seven multi-class problem using a single classifier
and make the system controllability less complex by activating
the force classifiers only when the “hand/wrist gestures classifier”
returns an output class belonging to a closure hand gesture. This
classification approach, implemented both with NLR and LDA
algorithms, have obtained positive results and seems to be very
promising for identifying simultaneously desired gestures and
force levels.

In conclusion, the proposed method allowed to extract from
EMG signals all the valuable information regarding not only
muscle contractions related to hand/wrist motions but also the
changes of muscle activation patterns depending on the influence
of different force levels. This approach will allow to improve the
performance of the currently adopted prosthesis EMG control
architectures thanks to the possibility to manage desired gestures
and force levels in amore natural way. The ultimate goal will be to
produce an intuitive controlled hand prosthesis integrating force
regulation. Although the type of the recruited subjects did not
allow to verify the performance in a real application scenario,
this study permitted to provide a general indication about the
performance of the proposed approach. Future works will be
focused on the validation of the presentedmethod on trans-radial
amputees controlling multi-fingered hand prostheses. Moreover,

online performance will be evaluated in real application scenario.
After reaching an advanced grade of real time accuracy, an
embedding version of this classification system will be developed
to control a prosthetic device. Measures of system robustness
and reliability will be performed testing the proposed approach
during the control of prosthetic devices. Advanced control
strategies (Ciancio et al., 2015; Barone et al., 2016) will be
adopted to allow force regulation and slippage management
during grasping (Cordella et al., 2016).
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