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Control of active prosthetic hands using surface electromyography (sEMG) signals is an

active research area; despite the advances in sEMG pattern recognition and classification

techniques, none of the commercially available prosthetic hands provide the user with

an intuitive control. One of the major reasons for this disparity between academia and

industry is the variation of sEMG signals in a dynamic environment as opposed to the

controlled laboratory conditions. This research investigated the effects of sEMG signal

variation on the performance of a hand motion classifier due to arm position variation and

also explored the effect of static position and dynamic movement strategies for classifier

training. A wearable system is used to measure the electrical activity of the muscles and

the position of the forearm while performing six classes of hand motions. The system

is made position aware (POS) using inertial measurement units (IMUs) for different arm

movement gestures. The hand gestures are decoded under both static and dynamic

forearmmovements. Four time domain (TD) features are extracted from the sEMG signals

along with IMU-based arm position information. The features are trained and tested using

linear discriminant analysis (LDA) and support vector machine (SVM) for both TD and

TD-POS features. The results for the SVM show a significant difference between the

static and dynamic approaches, while the TD-POS features show enhanced classification

performance in comparison to the TD-based classification. Results have shown the

effectiveness of the dynamic training approach and sensor fusion techniques to improve

the performance of existing stand-alone sEMG-based prosthetic control systems.

Keywords: surface electromyography, pattern recognition, inertial measurement units, support vector machine,

linear discriminant analysis

INTRODUCTION

The control of a dexterous upper limb using surface electromyography (sEMG) is an active research
area since the 1960s. Mostly, the researchers have focused on the intuitive control of a multi-degree
of freedom (DOF) prosthetic hand. Despite the advancements in the detection of the activity and
the processing of the sEMG signals, most available commercial prostheses still utilize a pair of
electrodes to control a single or multiple DOF of the prostheses (Parker and Scott, 1986). The
current state-of-the-art myoelectric controllers require the amputee to switch between different
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pre-defined hand gestures by generating a pre-trained sequence
of pulses (Farina and Aszmann, 2014). Such non-intuitive
control is one of the major reasons for amputees to abstain
from achieving a complete control of the prosthetic device
(Engdahl et al., 2015; Chadwell et al., 2016). The stochastic
nature and several extrinsic and intrinsic factors have affected the
characteristics of the sEMG signals, and these causes have led to a
major difficulty in the realization of intuitive prostheses control.
In the past, the primary research focus was on the development
of pattern recognition (PR) and classification techniques for
the detection of different hand motion classes. As a result, a
number of techniques including fuzzy systems (Lam et al., 2002),
neural networks (Soares et al., 2003), spiking neural networks
(Behrenbeck et al., 2019), fuzzy support vector machines (SVMs)
(Xie et al., 2015), hidden Markov models (Chiang et al., 2008),
and principal component analysis (PCA) (Naik et al., 2016) have
shown high accuracy for hand movement decoding.

Although PR techniques have been successfully applied to
prostheses control (Zecca et al., 2002; Khokhar et al., 2010;
Suberbiola et al., 2013; Hargrove et al., 2017), the practical
application of these techniques in the rehabilitation industry is
very limited (Castellini et al., 2014). One possible reason for
this gap between academic research (Jiang et al., 2012; Cordella
et al., 2016) and the clinical acceptance of dexterous EMG-
based prostheses control is due to the constrained laboratory
conditions in which the sEMG signals are gathered from a test
subject under static environment while ignoring the dynamic
daily life scenarios (Chadwell et al., 2016). The unintended
variation in sEMG signals occur due to movement artifacts (De
Luca et al., 2010), variations in electrode placement (Hargrove
et al., 2008), interelectrode spacing (De Luca et al., 2012),
limb position (Radmand et al., 2014), muscle fatigue (Tkach
et al., 2010), muscle length, and arm moments (Nourbakhsh
and Kukulka, 2004). These unintended variations affect classifier
performance by creating conditions that may not be encountered
in a static laboratory environment or in clinical training sessions
(Vujaklija et al., 2017). Since supervised learning is needed for
most of the PR-based techniques for the decoding of hand
movements, any significant variation of the sEMG characteristics
negatively impacts the pre-trained classifier accuracy. Consider,
for example, the variation of sEMG signals with the arm
movement, since daily life activities are highly diverse and
dexterous, a classifier trained with sEMG data acquired at
a particular arm position or a set of positions will exhibit
degradation as the arm is dynamically moved through different
positions (Betthauser et al., 2018).

Fougner et al. (2011) have reported the effects of variation
in arm movements on classifier performance. The research
reported that the multiposition classifier training reduces the
classification error from 18 to 5.7%. Classifier performance was
further improved by adding the arm position information to
the classifier through a sensor fusion of accelerometers and
sEMG sensors. Chen et al. (2011) also reported similar results.
Multiposition classifier training and the fusion of sEMG and
accelerometer were reported for achieving 93% classification
accuracy (Yu et al., 2018). The adverse effects of arm position
variation in people with transradial amputation were studied

(Geng et al., 2012) by comparing the characteristics of the sEMG
signals of the intact limb and the amputated limb. The authors
reported a less pronounced variation in the amputated limb
as compared to the intact limb and suggested a sensor fusion
of accelerometer mechanomyography (ACC-MMG) and sEMG
to improve classifier performance. These previous studies have
shown that the classifier performance can be improved after
being trained and tested at a limited number of discrete positions.
However, increasing the number of discrete training positions
(more than five) decreases the classifier performance (Radmand
et al., 2014). It is, thus, rational to assume that classifier
performance may further degrade under dynamic forearm
movements due to the increased number of possible positions.

In this research, we investigated the effects of arm position
variation on the performance of hand motion classifiers
at discrete static positions and under dynamic forearm
movements. The objective was to suggest more realistic and
pragmatic training procedures for multi-forearm movement
classifier training. Multichannel muscle activation data, acquired
through sEMG electrodes and arm position, measured using
inertial measurement units (IMUs), were combined to study
the effectiveness of sensor fusion techniques for classifier
performance enhancement. Results for the dynamic forearm
movement classifier showed better classification accuracy as
compared to the static position classifier. The time domain
(TD)-position aware (POS) feature-based classifiers performed
significantly better than the TD feature-based classifiers,
thus proving the effectiveness of sensor fusion techniques
for rehabilitation.

MATERIALS AND METHODS

Subjects
Ten healthy male subjects aged 19–43 (30.2± 2.5%) participated
in the experiment. The experiments were conducted in
accordance with the latest Declaration of Helsinki. The
experiments were duly approved by the ethical committee of
the National University of Sciences and Technology. Written
consent was taken from the subjects prior to the start. None of
the recruited participants had any history of muscular disorders.

Data Acquisition System
A fully independent wearable system (Figure 1) was designed to
study the variation of the sEMG signals with the arm position.
The design was kept modular to ensure subject comfort and ease
of use. The system consisted of multiple sEMG sensors and IMUs
to measure the electrical activity of the muscles and the position
of the forearm relative to the shoulder.

The arm position was measured using a pair of IMUs (TDKs
InvenSense MPU-9250) attached to the upper arm and forearm.
The forearm IMU was placed proximal to the wrist, and the
upper arm IMU was paced over the biceps brachii muscle. Each
IMU consisted of a three-axis accelerometer, gyroscope, and
magnetometer. The sensor data from each IMU was integrated
by a dedicated microcontroller to measure the orientation of
each arm segment in the form of a unit quaternion using the
algorithms proposed by Madgwick et al. (2011).
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FIGURE 1 | The wearable sensor system and its schematic diagram.

A set of four custom-designed dry electrodes were used
to measure the muscular activity of the forearm (flexor and
extensor muscles). Each electrode consisted of a pair of AgCl
metal plates (5 × 10mm) with an interelectrode spacing of
20mm as per recommendations of SENIAM (surface EMG for
the non-invasive assessment of muscles) (Hermie et al., 2000).
Since sEMG signals are bipotential electrical signals and their
magnitude varies from a few microvolts to several millivolts,
they were processed for further use in PR and prosthesis
control. The signals were amplified, filtered, and rectified. To
ensure modularity and reduce the overall size, the amplification,
filtering, and rectification circuits were stacked on top of the
electrodes (Figure 2). This approach minimized cable motion
artifacts and secured the system against power line noise.

Two of the four electrodes were placed on the forearm flexors,
and the remaining two were placed at the forearm extensors
∼2 cm from the elbow. A single reference electrode was placed
on the elbow. No particular skin preparation techniques were
used; however, a thin layer of conductive gel was applied before
the start of each data acquisition session. The electrodes were
held in position by an elastic band to ensure a reliable skin
contact. Although increasing the number of sEMG electrodes can
increase the classification accuracy, however, a previous study
has shown that more than 90% accuracy is possible with careful
placement of a minimum of three electrodes (Hargrove et al.,
2007). More recently, (Benatti et al., 2015) has reported a 2%
decrease in classifier accuracy as the number of electrodes are
reduced from eight to four. Another important advantage of
channel reduction is the increased system robustness against the
sEMG signal corruption and degradation associated with shifting
of electrodes during experiments and in actual prosthetic devices
(Hargrove et al., 2008).

The analog signals from the electrodes were digitized by
a microcontroller (STM32F103C8T6)-based data acquisition
system having a 12-bit ADC. Since sEMG signals have 95%

power spectrum in the 20–500Hz range; therefore, a sampling
frequency of 1 kHz was used based on a previous research
(Ives and Wigglesworth, 2003). The four-channel sEMG data
along with the two quaternions were wirelessly transmitted to
a personal computer. Custom software, designed in Labview
(Supplementary Figure 1), was used to bandpass-filter the raw
signals with cutoff frequencies in the range of 20–500Hz with no
50-Hz notch filtering. The software also calculated the position of
the hand with reference to the shoulder using simple quaternion
algebra. The filtered signals along with position information
were monitored in real time, and the information was logged
in CSV (comma-separated values) format for further processing
and analysis.

Data Acquisition Experiments
Experimental data pertaining to six classes of hand motions
including relaxed (RE), cylindrical (CY), lateral (LA), pinch (PI),
open (OP), and spherical (SP) were collected from subjects for
both discrete static and dynamic movements along the defined
trajectories. The discrete static positions (P1–P6), illustrated
in Figure 3, were chosen based on previous researches (Chen
et al., 2011; Fougner et al., 2011; Khushaba et al., 2014). The
trajectories for the dynamic movement, illustrated in Figure 4,
were selected such as to adequately cover the static positions
in a continuous movement. The data from each subject were
gathered in several sessions. However, to ensure consistency,
the complete data for a single class for the static positions
and the dynamic movement were sampled in a single session.
Each data acquisition session consisted of forearm movement
along each of the two trajectories while executing the intended
motion class. The motion along each trajectory was repeated
six times, resulting in a total of 12 data files for a single
class. The data for the discrete static positions involved six
repetitions of the desired class at each of the positions (P1–P6),
resulting in a total of 36 individual data files for each class. Each
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FIGURE 2 | Stacked sEMG electrode (A) and its architecture (B).

FIGURE 3 | Six static forearm positions for the discrete position data. (Written informed consent was obtained for the publication of this image).

FIGURE 4 | Illustration of the two trajectories for the continuous position data.

(Written informed consent was obtained for the publication of this image).

static repetition was sustained for 7–9 s with a gap of at least
10–15 s for subject comfort and fatigue prevention. Wherever
applicable, class validity and uniformity across subjects were
ensured by grasping a real object suitable for a particular class
with moderate force.

Feature Extraction and Classification
sEMG signal processing involves segmentation, feature
extraction, PR, and classification. Segmentation is the process
of subdividing the otherwise continuous data in windows of
suitable lengths for feature extraction. In this study, a Labview
based software (Supplementary Figure 2) was designed for
data segmentation using a sliding window technique with a
window length of 250ms and an overlap of 200ms, resulting in
a new analysis window every 50ms (Smith et al., 2011). Four
TD features including average rectified value (ARV), slope sign
changes (SSC), waveform length (WL), and integral sEMG
(Iemg) were calculated for each window. The TD features were
chosen because of their wide acceptance and computational
efficiency (Hudgins et al., 1993; Scheme and Englehart, 2011).
The four TD features concatenated with the position information
(TD-POS) resulted in a feature vector represented by:

[
{

TDm,n

}
∣

∣

m = 1....4, n = 1....4

{POSk}|k = x,y,z

]

(1)

where m = feature no.

n = electrode no.

The total discrete position data of each hand motion class were
formed by combining the processed data of all the trials at
each of the static positions. The total dynamic movement data
of each class was formed by combining the processed data of
all trials for both the trajectories. The data of each class were
split in to two equal training and testing data sets through

Frontiers in Neurorobotics | www.frontiersin.org 4 July 2019 | Volume 13 | Article 43

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Shahzad et al. EMG-IMU Based Multi-Forearm Movement Decoding

random sampling. The randomly split training data sets of all
motion classes were then combined to form a single training
data set (Supplementary Figure 3). The testing data set which
was totally independent of the training data was also formed in
a similar manner.

The training data set was used to train linear discriminant
analysis (LDA) and SVM classifiers. The LDA is a classifier
that has been extensively applied to multiclass problems because
of its high performance at low computational cost (Englehart
et al., 2003; Fougner et al., 2011; Yu et al., 2018). The SVM is a
kernel-based classification technique that has been successfully
applied to machine learning problems with linear and non-
linear class boundaries. Previous studies by Oskoei and Hu
(2008) applied the SVM classifier to sEMG data for gesture
recognition and prosthesis control and reported the SVM
outperforming LDA and multilayer perception (MLP) neural
network-based classifiers. Betthauser et al. (2018) compared
LDA, SVM, non-linear logistic regression (NLR), and MLP for
classifying sEMG data and reported the SVM classifier achieving
the best classification accuracy though at a higher computational
cost. In this study, an SVM classifier with a radial basis function
(RBF) kernel has been utilized. The code was implemented in R
language (R Core Team, 2018) using package MASS (Venables
and Ripley, 2002) for LDA and package e1071 (Meyer et al.,
2019) for SVM. The parameters C and γ of the RBF kernel
were optimized using grid search algorithm with a 10-fold cross-
validation scheme. The testing and training of the classifiers were
carried out individually for each subject, and no cross-subject
training and testing were performed.

The effect of arm position variation on classifier performance
and a comparison of the discrete and continuous position
training approach were evaluated by training and testing both
the classifiers (LDA and SVM) for the following different training
and testing scenarios:

1) Classifiers trained and tested with only TD features of the
discrete static positions data.

2) Classifiers trained with combined TD features and position
information (TD-POS) for the discrete static positions.

3) Classifiers trained with only TD features of dynamic arm
movement data.

4) Classifiers trained with the TD-POS of the dynamic arm
movement data.

5) Six position-specific classifiers trained at only one of the
discrete positions and tested against all the positions.

Unless specified, all the results are reported as average accuracy
along with the standard error. The statistical comparison of
classifiers was based on t-test, and the level of significance was
set to p < 0.05.

RESULTS

Discrete Position TD Features-Based
Classifiers
After the classifiers were trained and tested with only the TD
features of the discrete position data, the average classification
accuracy across all subjects and classes for the LDA classifier was

77.2 ± 4.6%, while for the SVM classifier it was 93.4 ± 1.4%,
for which the confusion matrices are shown in Figure 5. The
values across the diagonal indicate the percentage of samples
correctly classified for each class, while those along the columns
indicate the percentage of samples incorrectly classified as other
classes. As an example, the left-most column of Figure 5B, which
corresponds to the CY class, indicates that 94.6% of the test
samples were correctly classified as CY, 1.3% were misclassified
as LA, 0.4% as OP, 1.5% as PI, 0.1% as RE, and 2.2% as SP.

Discrete Position TD-POS Features-Based
Classifiers
The LDA and SVM classifiers trained with the combined TD
features and discrete position data showed average classification
accuracies of 84.3 ± 3.0 and 97.5 ± 0.5%, respectively, averaged
across all subjects and classes. The class-wise performance is
evident from the confusion matrices shown in Figure 6. It is
evident from the results that the position aware LDA classifier
showed an average improvement of 6.1%, while the SVM
classifier showed an average improvement of 4.1% over the TD
features-only classifier.

Continuous Position TD Features-Based
Classifiers
The classifiers trained with the TD features of the dynamic
forearm movement data resulted in average classification
accuracies of 78.2 ± 4.8 and 92.9 ± 1.5% for the LDA and
SVM classifiers, respectively. The confusion matrices for both the
classifiers are shown in Figure 7. It is interesting to note that
there is no significant performance difference between the TD
feature-based classifiers for the discrete and dynamic movement
data (p > 0.05).

Continuous Position TD-POS
Features-Based Classifiers
Figure 8 shows the confusion matrices for the classifiers trained
with the concatenated TD features and position data for the
dynamic movement data set. The classification accuracy averaged
across all subjects and classes is 84.3 ± 3.7% for the LDA and
98.7 ± 0.3% for the SVM classifier. This shows an average
improvement of 5.8% over the continuous position TD feature-
based classifier and an improvement of 1.2% over the discrete
data TD-POS classifier.

Position-Specific Classifiers
The position-specific classifiers (LDA and SVM) were trained
with the TD features of the discrete position data for each of
the six static positions and tested individually against all the
positions. The resulting confusion matrix is shown in Figure 9.
The values across the diagonal indicate the intraposition
classification accuracy averaged across all subjects and classes.
The average intraposition classification accuracy for the SVMwas
99.5 ± 0.08% and for the LDA was 94.2 ± 0.26%. The SVM
performed significantly (p < 0.05) better than the LDA classifier.
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FIGURE 5 | Confusion matrices for the TD features-based LDA (A) and SVM (B) classifier-trained with the discrete position data.

FIGURE 6 | Confusion matrices of the LDA (A) and SVM (B) classifier trained with the TD-POS features of the discrete position data.

FIGURE 7 | Confusion matrices of the LDA (A) and SVM (B) classifiers trained with TD features of continuous position data.

DISCUSSION

The LDA classifier trained with the TD features of the continuous

motion training data resulted in average classification accuracy

(78.2%) as compared to the classifier trained with the TD features
of the discrete position training data (77.2%). However, this
difference is not significant (p > 0.05). Similarly, the LDA
classifiers trained with the combined TD features and the arm

position information exhibited the same classification accuracy
(84.3%) for both the discrete and continuous position training.

The SVM classifiers also showed a similar performance
difference. The TD feature-based classifier for the discrete
position data showed a slightly better but insignificant (p >

0.05) classifier accuracy (93.4%) as compared to the continuous
motion data (92.9%). Similarly, the SVM classifier trained with
the TD-POS features of the discrete position data resulted in an
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FIGURE 8 | Confusion matrices for the TD-POS features-based LDA (A) and SVM (B) classifier trained with continuous position data.

FIGURE 9 | Interposition and intraposition classification accuracy matrices for LDA (A) and SVM (B) classifiers. The columns indicate the training positions, and rows

indicate the testing positions for the classifiers.

average classification accuracy of 97.6%, which is significantly
(p < 0.05) <98.7% for the classifier trained with same features
of the dynamic forearm movement data. The results of the
classifiers prove that only the SVM classifier trained with the
TD-POS features shows a significant difference between the
static position and dynamic forearm movement-based training
approach. It is interesting to note that although the performance
difference between the two training approaches is significant
for only the SVM classifier, the continuous position training,
which involves a simple movement of the forearm along two
trajectories, is certainly a more realistic and pragmatic approach
as compared to the discrete position training, which requires
expert supervision and is physically more demanding. The
simplicity of the dynamic movement training approach is also
significant since classifier training on a daily basis is necessary for
consistent classifier performance (Amsuss et al., 2013) and, thus,
reliable prostheses control.

A significant effect of arm position was observed on classifier
performance (Figure 10). The LDA classifier trained with the
TD-POS features showed an improvement of 7.1% (p < 0.05)
for the discrete position data and an improvement of 6.1%
(p < 0.05) for the continuous motion data as compared to
classifiers trained with only the TD features. The position-aware

SVM classifiers also showed a significant improvement of 4.1%
(p < 0.05) for the discrete position data and an average
improvement of 5.8% (p < 0.05) for the continuous movement
data. These results show a substantial effect of limb position
on classifier performance for both the discrete and continuous
position training approach. Previous studies by Scheme et al.
(2010), Jiang et al. (2013), Radmand et al. (2014), and Yu
et al. (2018) also showed a significant dependence of classifier
accuracy on positional variation. Gravitational effects, changes
in muscle length, and moment arm are the possible reasons
for this variation. The extra muscular effort while moving
and stabilizing the forearm against gravity certainly causes the
recruitment of additional muscle fibers, causing a variation in
muscular activity.

The SVM classifier performed significantly better than the
LDA classifier. The performance difference is consistent for all
the training and testing scenarios (Figure 11) with an average
difference of 16.2, 13.3, 14.7, and 14.4% for the discrete position
TD, discrete position TD-POS, continuous position TD, and
continuous position TD-POS-based classifiers, respectively. The
improvement in performance can be attributed to improved class
separability due to non-linear decision boundaries of the SVM
classifier. An intercomparison of the SVM classifiers shows the
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FIGURE 10 | Performance comparisons of TD and TD-POS features-based classifiers. Results are averaged across all subjects and classes. A significant

performance improvement is shown by all the position aware classifiers.

FIGURE 11 | Comparisons of LDA and SVM classifiers. Results are averaged

across all subjects and classes.

continuous position classifier performing significantly (p < 0.05)
better than the discrete position classifier. This improvement
is consistent across all the motion classes (Figure 12) and
subjects (Figure 13). The OP class was most accurately classified
by all the four SVM classifiers. A possible reason is the
taxonomical difference of this class (all the fingers extended)
from the rest of the classes. Across individual subjects, the
best classification accuracy for all the SVM classifiers was
achieved for subject 5. The classifier performance variation
across subjects is expected as it is a known fact that sEMG
signals for the same gestures are different for different subjects.
Moreover, the physiological properties of muscles and, hence,
the sEMG signals also depend on the nature of the daily life
activities, which may differ across subjects. It can be concluded
from the results that the continuous position SVM classifier
outperforms other classifiers for all the different training and
testing scenarios.

FIGURE 12 | Classifier accuracy across individual classes. Performance of the

SVM classifiers for each motion class averaged across all subjects.

The TD-POS features-based LDA classifier, trained with the
discrete position data, resulted in an average accuracy of 84.3
± 3.0%, which is lower than 95% reported by Fougner et al.
(2011) using five static training and testing positions with an
LDA classifier. This difference in performance can be attributed
to the reduced number of sEMG channels (four sEMG and two
IMUs) as compared with the eight channels of the sEMG and
two accelerometers used in the previous study. Another study,
by Geng et al. (2012), also reported a classification accuracy of
92.7% for a six-class problem when using five static testing and
training positions with eight channels of sEMG and two channels
of ACC-MMG. Another probable reason for the comparatively
low performance is the different set of motion classes used in
this study. Although it is a known fact that opposite motion
classes (e.g., pronation and supination, OP, and close) are easier
to distinguish as compared to classes that are taxonomically more
similar, the sensitivity of classifier accuracy to different sets of
motion classes needs further investigation.

The improved performance of the position-aware LDA
and SVM classifiers advocates the use of sensor fusion
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FIGURE 13 | Classifier accuracy across individual subjects. Results indicate the performance of the four SVM classifiers averaged across all motion classes for

individual subjects.

FIGURE 14 | Classification accuracy variations for LDA (A) and SVM (B) classifiers as the number of sEMG channels are increased from 1 to 4.

techniques for classifier robustness against positional
variation. Another advantage of sensor fusion is evident
from Figure 14, which shows the classifier performance
variation as the number of electrodes is increased from 1
to 4. The TD features-only SVM classifiers for both the
discrete and continuous position case require at least four
electrodes for achieving more than 90% accuracy, while the
TD-POS classifiers achieve more than 95% accuracy with
only two sEMG channels. Although it can be argued that
the position-aware classifier also utilizes four channels of
information (two channels of sEMG and two IMUs) and
has no significant advantage over the four-channel sEMG
classifier, it is a known fact that integrating the inertial sensors
in prostheses is technically less challenging as compared to
integrating sEMG electrodes. Moreover, the inertial sensors
are less prone to noise and other factors as compared
to the sEMG sensors. Thus, sensor fusion techniques can
reduce the complexity and improve the reliability of existing
prosthetic devices.

CONCLUSIONS

In this research, hand motion classifier performance under static
and dynamic training scenarios was studied, and the adverse
effect of the arm position variation on classifier performance was
also evaluated. Results have shown no significant performance
difference for the LDA classifiers for both training strategies;
however, the SVM classifiers showed significantly improved
performance for the dynamic training as compared to the
discrete position training. This is a significant finding since
the continuous position training, which involves a simple
movement of the forearm along a trajectory, neither requires
expert supervision and lengthy training sessions nor does it
need specialized setup for training at specified discrete positions.
The dynamic training is certainly a more pragmatic approach
from the end user point of view, and the authors believe that
improvement in training procedures can certainly improve the
reliability and acceptability of active prosthetic devices. Results
have also shown a profound impact of arm position on classifier
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accuracy and have proved the effectiveness of sensor fusion
techniques to improve classifier performance and reliability.
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