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We propose an architecture for the open-ended learning and control of embodied

agents. The architecture learns action affordances and forward models based on

intrinsic motivations and can later use the acquired knowledge to solve extrinsic tasks by

decomposing them into sub-tasks, each solved with one-step planning. An affordance

is here operationalized as the agent’s estimate of the probability of success of an action

performed on a given object. The focus of the work is on the overall architecture while

single sensorimotor components are simplified. A key element of the architecture is

the use of “active vision” that plays two functions, namely to focus on single objects

and to factorize visual information into the object appearance and object position.

These processes serve both the acquisition and use of object-related affordances, and

the decomposition of extrinsic goals (tasks) into multiple sub-goals (sub-tasks). The

architecture gives novel contributions on three problems: (a) the learning of affordances

based on intrinsic motivations; (b) the use of active vision to decompose complex

extrinsic tasks; (c) the possible role of affordances within planning systems endowed with

models of the world. The architecture is tested in a simulated stylized 2D scenario in which

objects need to be moved or “manipulated” in order to accomplish new desired overall

configurations of the objects (extrinsic goals). The results show the utility of using intrinsic

motivations to support affordance learning; the utility of active vision to solve composite

tasks; and the possible utility of affordances for solving utility-based planning problems.

Keywords: open-ended learning, intrinsic motivations, affordance learning, goal-based planning, utility-based

planning, active-vision, attention

1. INTRODUCTION

This work proposes an architecture for the control and learning of embodied agents. The
architecture has been developed within an open-ended learning context. Figure 1 shows a typical
scenario used in such a context1: the scenario is used here to test the proposed architecture. The
general structure of the scenario involves two phases (Baldassarre, 2011; Seepanomwan et al., 2017):

1This and more complex versions of the scenario involving autonomous robots have been developed within the EU funded

project “GOAL-Robots – Goal-based Open-ended learning Autonomous Robots,” www.goal-robots.eu.
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(a) a first intrinsic motivation phase where the agent is not
given any task and should freely explore the environment to
autonomously acquire as much general-purpose knowledge as
possible; (b) a second extrinsic motivation phase where the agent
has to solve one ormore tasks assigned externally within the same
environment (extrinsic tasks). Importantly, the extrinsic phase
can furnish an objective measure of the quality of the algorithms
used by the agent to autonomously learn during the intrinsic
phase. In the intrinsic phase of the specific scenario used here,
the agent can perceive objects and explore and learn the effects
of certain pre-wired actions (e.g., “move in space” or “change
object color”). In the extrinsic phase, the agent is required to use
the knowledge acquired in the intrinsic phase to solve extrinsic
tasks: first the agent has to memorize the state of some objects
set in a certain configuration (goal; notice how this is a handy
way to allow the agent to store the goal in a format suitable for
its processes); then the objects are “shuffled” into a different state
(“initial state”); last the agent has to bring the objects back to the
goal state.

Facing the challenges posed by the scenario requires different
functions. The functions used by the architecture proposed here
are summarized in Figure 2. The figure shows that during the
intrinsic phase the architecture uses intrinsic motivations to
learn action affordances and forward models, and during the
extrinsic phase it uses affordances and forward models to plan
and solve the extrinsic tasks. Importantly, in both phases active
vision allows the agent to focus on a single object per time,
in particular to elicit object-centered intrinsic motivations, to
learn or activate the affordances and the forward models related
to specific objects, and to parse the extrinsic goal into simpler
sub-goals each achievable with 1-step planning. These processes
are now considered more in detail. For each process we now
highlight the relevant concepts and literature and introduce the
open problems faced here (section 4 compares the architecture
with other specific models proposed in the literature). We then
illustrate the three main contributions of the work.

1.1. Links to the Literature and Open
Problems
The proposed architecture has been developed within the area
of developmental and autonomous robotics called open-ended
learning (Thrun and Mitchell, 1995; Weng et al., 2001). Open-
ended learning processes allow robots to acquire knowledge (e.g.,
goals, action policies, forward models, and inverse models, etc.)
in an incremental fashion by interacting with the environment.
These learning processes are strongly inspired by the exploration
processes seen in animals, in particular in humans and especially
in children (Asada et al., 2001; Lungarella et al., 2003). Although
open-ended learning processes can involve both social and
individual mechanisms (Baldassarre and Mirolli, 2013a), here
we only focus on individual learning processes supporting an
autonomous acquisition of knowledge.

A central concept in open-ended learning is the one of
intrinsic motivations (IMs). These are mechanisms for driving
autonomous learning (White, 1959; Ryan and Deci, 2000;
Oudeyer and Kaplan, 2007; Baldassarre and Mirolli, 2013a). The

utility and adaptive function of IMs reside in that they can
produce learning signals, or trigger the performance of behaviors,
to drive the acquisition of knowledge and skills that become
useful only in later stages with respect to the time in which
they are acquired (Baldassarre, 2011). There are various IM
mechanisms, some based on the novelty or surprise of the stimuli
(Baldassarre and Mirolli, 2013b; Barto et al., 2013), and others
based on the agent’s competence, i.e., its capacity to successfully
accomplish a desired outcome (Mirolli and Baldassarre, 2013).

While various works use IMs as a means to directly guide
the autonomous learning of skills (e.g., Schmidhuber, 1991b;
Oudeyer et al., 2007), recently they have been used in connection
to goals. In particular, surprise or novelty IMs can be used to
generate goals, and the goal accomplishment rate can be used
to measure competence (Barto et al., 2004; Santucci et al., 2012,
2016; Baranes and Oudeyer, 2013). By goal here we refer to
an internal representation of the agent having the following
properties (cf. Fikes and Nilsson, 1972; Bratman, 1987): (a) the
representation refers to a possible future state/state-trajectory (or
set of states/state-trajectories) of the world; (b) the representation
can be re-activated on the basis of internal processes in the
absence of that state/state-trajectory in the world; (c) if the
agent “activates”/“commits” to the goal, the goal motivates the
performance of some behaviors, in particular the performance
of behaviors that tend to push the environment toward the goal
state; (d) when the environment reaches (or is close to) the goal
state, learning signals or motivations to act in a certain way can
be generated; (e) a sub-goal is a goal that is not pursued per se
but as a means to achieve a desired “final” goal. The architecture
presented here, as usually done in the robotic literature on
affordances (see below), assumes the agent is given a set of actions
and the capacity to recognize if the performance of those actions
leads to their desired effects (goals): the challenge for the robot is
indeed to use intrinsic motivations to learn which actions can be
successfully accomplished on which objects (object affordances).

Much research on open-ended learning has focused on
the autonomous acquisition of knowledge during “intrinsically
motivated” phases. On the other side, only a few works (e.g.,
Schembri et al., 2007; Santucci et al., 2014; Seepanomwan et al.,
2017) have focused on how such knowledge can be exploited later
to solve “extrinsic tasks,” namely tasks that produce a material
utility to the agent (or to its user in the case of robots, Baldassarre,
2011). The work presented here focuses on problems involving
both the intrinsic and extrinsic phases. Although the intrinsic
and extrinsic learning processes are often intermixed in realistic
situations, separating them can help to clarify problems and
to develop algorithms, most notably to use the performance in
the extrinsic phase to measure the quality of the knowledge
autonomously acquired in the intrinsic phase.

In the extrinsic phase, we consider a test that requires
solving a complex task formed by multiple sub-tasks each
involving a specific object. The reason why we focus on
these types of complex tasks is that: (a) they are involved in
most sensorimotor non-navigation robotics scenarios requiring
object-manipulation; (b) active perception (see below) can be
extremely useful to tackle these scenarios. A possible strategy
to solve complex tasks is based on planning (Ghallab et al.,
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FIGURE 1 | Example scenario used to test the open-ended learning architecture proposed here. (A) Intrinsic phase: initial configuration of the environment containing

nine 2D “objects.” Each object has a certain position and color (the “object state”). In this phase the agent can autonomously explore the objects for a certain time to

acquire as much knowledge and skills as possible. (B) Extrinsic phase: example of a task that the agent has to solve, requiring to either move objects or change their

colors to bring the “environment” to the state of the “goal image”; the agent has to be able to do this on the basis of the knowledge and skills acquired during the

intrinsic phase. Note that in these images the objects are set on the vertices of a 3× 3 regular grid, although during exploration and extrinsic-task solving they can

occupy any non-overlapping position with their center within the white square frame.

FIGURE 2 | Main functions (gray boxes) and their relations (arrows with labels) implemented by the architecture proposed here. The dashed and dotted frames

contain the main functions used in the intrinsic phase and extrinsic phase, respectively. During the intrinsic phase intrinsic motivations support the autonomous

learning of affordances and forward models; during the extrinsic phase, affordances and forward models support planning to accomplish extrinsic tasks (bold arrows).

Importantly, in the two phases active vision supports these processes (thin arrows): to generate intrinsic motivations linked to objects; to learn affordances and forward

models related to objects; and to plan based on parsing the goal into object-related sub-goals.

2004), directed to assemble sequences of sub-goals/skills leading
to accomplishing the overall complex goal. In this work we
focus on a class of tasks where the sub-tasks are (cf. Korf,
1985; Russell and Norvig, 2016): (a) independent between them,
meaning that the accomplishment of one of them does not
require the previous accomplishment of another; (b) serializable,
meaning that the accomplishment of each sub-goal does not
violate other already accomplished sub-goals; (c) can be achieved
with a single action available to the agent. An example of such

a task in the domain considered here, involving two sub-goals,
is: “turn the red circle into a blue circle and move the red
square to a desired x-y position.” This type of task can be
solved with repeated single-step planning processes. The use of
this simple class of problems allows us to focus on the issues
illustrated below.

In order to study the relations between affordances (see
below) and planning, we focus here on two types of planning
strategies investigated in the literature on planning (Ghallab et al.,
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2004; Russell and Norvig, 2016). The first type involves goal-
based planners that have to decide which actions to perform
to accomplish a desired future condition (goal). The second
type involves utility-based planners that have to decide between
alternative conflicting goals having a different desirability and
pursued in uncertain conditions (here the stochasticity of the
environment is due to the fact that actions succeed only with a
certain probability).

As mentioned above, an important dimension of the focus of
this work concerns affordances. This concept was first proposed
within the psychological literature to refer to the actions that a
given condition or object “offers” to an agent given its current
body state (Gibson, 1979). The concept has been later used in the
developmental-robotics literature to refer to the dyadic relational
concept for which a certain condition or object allows performing
a certain action on it (Stoytchev, 2005; Sweeney and Grupen,
2007). The interest of affordances for autonomous robotics, as
we will also show here, resides in the fact that they can represent
a simple and efficient mechanism to rapidly decide which actions
can be performed, with some potential utility, on the objects
available in the environment.

In the literature, the concept of affordance has occasionally
been broadened to refer to various elements relevant for
planning. For example, affordances have been associated with
three functions linking three critical elements of behavior
(Montesano et al., 2008; Ugur et al., 2011): an Object (O), the
Action (A) to perform on it, and the resulting Effect (E). The
three functions, denoted here as F, C and I, get as input two
of the three elements and return the remaining one as output:
(a) forward model, E = F(O,A); (b) relevance, O = C(A,E);
(c) inverse model, A = I(O,E). With respect to planning, these
functions can play various roles. “Forward models” can be used
to support forward planning, as here, because they allow the
agent to predict the effect of performing a given action A on
a certain object O and check if the obtained effect E matches
a desired goal/sub-goal (G). “Relevance” checking (Russell and
Norvig, 2016) allows the agent to search actions for which the
effect fulfills the goal and then to search for relevant objects (on
which the actions can be applied) to accomplish the goal (the
function C has also been used often in the affordance literature to
perform sheer object recognition based on how objects respond
to actions, e.g., see Fitzpatrick et al., 2003; Castellini et al., 2011;
Nguyen et al., 2013; Ugur and Piater, 2014). “Inverse models” can
be used to directly perform actions, with the caveat that the object
does not represent the whole state of the environment as required
by proper inverse models (this is not further discussed here).
These broad definitions of affordance are important to highlight
the triadic relational nature of affordances, involving not only
object/conditions and actions but also action effects. On the other
hand, such definitions overlap to a certain degree with other
concepts used in the computational literature and this decreases
their utility.

Here we contribute to the investigation of the possible
functions of affordances for autonomous agents by assuming
a restricted definition of them. This definition allows us to
evaluate the utility of affordances within planning systems and
also to contribute to clarifying the relation between the concept

of affordance used in psychology and in robotics. Informally,
the definition is this: an affordance is an agent’s estimated
probability that a certain action performed on a certain object
successfully accomplishes the desired outcome associated with the
action (“goal”). Formally, the definition of affordance used in this
work is as follows:

An affordance is an agent’s estimated probability Pr(s′
b,o
∈ G|a, sb,o)

that if it performs action a on the object o when the object and own

body b are in state sb,o then the outcome will be a state s′
b,o

belonging

to a set of goal states G to which the action is directed.

We illustrate the features of this definition and its differences and
links with other definitions. (a) The definition is more specific
than other definitions that often have vague features. (b) The
states sb,o refer to a certain object and the agent’s body so the
definition is closely linked to the original idea of affordance
as founded on the body-object relation. Moreover, the focus
on “b” and “o” differentiates the concept from the transition
models (linking current state and action to future states) used
in the reinforcement learning literature (Sutton and Barto,
2018) as these use atomic/whole-state representations; instead,
such reference links the definition to the preconditions used in
symbolic planning operators that use structured representations
capturing the relations between different entities (here “o”
and “b”; Russell and Norvig, 2016). (c) The definition is
centered on the concept of “object,” intended here as a limited
portion of matter that is physically detached from the rest to
the environment. This is very important as in the literature
on affordances objects are crucial for manipulation tasks, an
important class of robotic tasks alongside navigation tasks. As
discussed below, the focus on objects makes attentional processes
very useful for the acquisition and use of affordances. (d)
Importantly, the definition is grounded on the link between
the action and its goal, i.e., the possible effects that the action
is expected to produce on the object; for example, a “grasping
action” might have the goal “hand envelops the object.” This is
important as often in the computational literature on affordances
it is assumed that the agent is able to check the success of an
action performed on a certain object (e.g., that “the object rolls”
if pushed) without fully recognizing that such a check needs a
reference state/event with which to compare the action outcome;
that is, it needs a goal. (e) The goal can be abstract in the sense
that it encompasses different states sb,o. In particular, it can be
abstract with respect to the elements of the environment other
than the object and body. Sometimes the goal might even be
abstract with respect to the body features; for example different
robots with different actuators could all be able to “grasp” a
certain object. In some cases, the goal might abstract altogether
from the body and involve more than one object, in particular
some relation between them; for example the goal might require
piling “object A on object B” (in this case the affordance is that
A is “pileable” on B). The “o” in the definition might even go
beyond “objects” and include broader affordances; for example
Ugur et al. (2007) studied the “traversability” of a portion of
environment in a navigation task. (f) There can bemany different
possible goals G, and actions to pursue them, that an agent
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can perform on a given object; for example a robot can “push,”
“grasp,” or “lift” a given object to accomplish different goals. (g)
The definition, based on a probability, takes into account the
uncertain nature of the environment where the performance of
actions does not necessarily produce the desired outcomes. (h)
The definition assumes a binary success/failure of the action,
for example based on the use of a threshold (e.g.: “the object
is considered as reached if the distance between the object and
the hand-palm after action execution is smaller than 2 cm”).
An alternative definition, assuming that suitable distance metrics
could be applied to the object/body states, could state that the
affordance is accomplished in a continuous degree related to the
final distance of the state achieved by the action and the reference
goal-state (e.g.: “a reaching action toward an object brought the
hand 5 cm close to it”). Here we will use the first definition
related to probability-based binary affordances. Within this, we
will consider two types of affordances. The first, called here
deterministic affordances, where objects allow or not the agent to
accomplish the goal (e.g., an object could be “movable” or “non-
movable”): in this case the affordance probability is equal to 0 or
1. The second, called here stochastic affordances, can accomplish
the goal only with a certain probability, for example an object
might be “movable” with a probability of 0.7 and another one
with a probability of 0.3.

We now introduce a pivotal feature of our system, the
use of active vision (Ballard, 1991; Ognibene and Baldassare,
2015). Agents with active vision: (a) use a visual sensor that
returns information related to only a limited portion of the
scene; (b) actively direct the sensor on relevant regions of
space (“overt attention”). These assumptions reflect fundamental
principles of organization of the visual system of primates
(Ungerleider and Haxby, 1994) and in artificial systems they
allow the reduction of visual information processing and an
easier analysis of spatial relations between scene elements
(Ognibene and Baldassare, 2015). Here active vision is used
to extract information on objects, very important for three
processes: intrinsic motivations, affordance processing, and
planning. Regarding intrinsic motivations, we shall see that
our system relates them to objects and on this basis decides
on which object to invest exploration and learning. Regarding
affordances, we have seen above that most works in the literature
use setups structured so that the system can gather information
on affordances related to single objects (e.g., see Fitzpatrick
et al., 2003). The system proposed here uses active vision to
focus on single objects and detect their affordances. Regarding
planning, the classic AI planners usually employ structured
knowledge representations of states and actions (“operators”)
expressed with propositional logic or first order logic; this
type of representation is very important as it allows systems
to “reason” about objects and their relations, and “almost
everything that humans express in natural language concerns
objects and their relationships” (Russell and Norvig, 2016).
For our focus on embodied systems, we instead use here
factored knowledge representations based on feature vectors, in
particular image features. However, active vision allows the
system to identify single objects, and this information allows
the system to parse overall goal images into object-related

sub-goals that can be pursued one by one. The planning
processes considered here are akin to those used within the Dyna
systems of reinforcement learning literature where planning is
implemented as a reinforcement learning process running within
a world model rather in the actual environment (Sutton, 1990;
Baldassarre, 2002; Sutton and Barto, 2018). Some caveats on the
approach used here to visually isolate objects are due.We simplify
the task by not considering cluttered scenarios. Moreover, we
use simple bottom-up attention processes to control gaze. These
simplifications allow us to develop the overall architecture of
the system, but in future work some of the components of the
system could be substituted by more sophisticated components,
in particular for object segmentation and detection (Yilmaz et al.,
2006; Zhang et al., 2008; LeCun et al., 2015) and for a smarter
“top-down” control of gaze depending on the agent’s information
needs (Ognibene et al., 2008, 2010; Dauce, 2018).

1.2. Contributions of the Work
A first contribution of this study is on how intrinsic motivations
can support efficient learning of affordances, in particular when
an attention mechanism focusing on objects is used. There are
some previous studies linking affordance learning to intrinsic
motivations and active learning (Ugur et al., 2007; Nguyen et al.,
2013), but they did not investigate how intrinsic motivations can
be used to learn object affordances when the visual sensors access
only one object at a time. To face this condition, we will propose
a mechanism that compares the estimated learning progress from
acting on the currently seen object with the progress that it could
gather by acting on other objects. The mechanism is inspired
by the concept of opportunity cost used in economics, referring
to the value of the opportunities that are lost by allocating a
certain resource (here a unit of learning time) to a certain activity
(Buchanan, 2008).

A second contribution of this work is the study of how the
introduction of the attention mechanism, extracting information
about the single object and about the object appearance/location
impacts (a) the affordance learning process and (b) the second
extrinsic phase where planning is needed to accomplish an
extrinsic complex goal. The first issue has only been indirectly
studied in the literature on affordances where models often
assume pre-processing mechanisms to extract information on
specific objects (see also the “OAC – Object Action Compound”
framework pivoting on object information; Krüger et al., 2011).
The second issue is important as attention is a key means to
detect objects in humanoid robots (Camoriano et al., 2017) and
information on objects is pivotal for both affordance detection
(e.g., Montesano et al., 2008) and for planning. Regarding
planning, attention can be used to refer to single objects, and
then to reason about their relations, as typically done when
using structured representations (Russell and Norvig, 2016). In
particular, in the intrinsic phase the architecture presented here
can use attention to identify different objects in the environment
and learn affordances related to them. Then in the extrinsic phase
it can use attention to parse the whole goal state into object-
related sub-goals that can then be more easily accomplished one
by one.
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A third contribution of this work concerns the relationship
between affordances and planning. In particular we will face the
problem of what could be the utility of affordances, defined as the
probability estimate of action success, within a planning system
that is endowed with refined components implementing forward
models and relevance checking. Are affordances still useful in such
conditions? The importance of this problem derives from the
fact that psychology shows that affordances are very important in
real organisms. One might thus wonder if they can still furnish
relevant functions within sophisticated systems endowed with
the capacity of planning. In this respect, we will propose that: (a)
affordances can play a role in forward planning as they support
fast selection of relevant actions within the system’s controller in
a way similar to the way they are used to act in the environment,
akin to the role of the “preconditions” of STRIPS-like operators
in symbolic planning (Fikes and Nilsson, 1972); (b) affordances,
when capturing the expected probability of action success, can
play an important role in utility-based planning agents, the most
sophisticated form of rational agent (Russell and Norvig, 2016).

The rest of the paper is organized as follows. Section 2
illustrates the experimental setup, and the architecture and
functioning of the system. Section 3 shows the results of the
tests. Section 4 compares the system proposed here to other
systems proposed in the literature. Finally, section 5 draws the
conclusions and illustrates open problems that might be tackled
in the future.

2. METHODS

2.1. Experimental Setup: Overview
The experimental scenario (Figure 1) consists of a black 2D
working space containing different objects. Objects have different
shapes (squares, circles, and rectangles) and colors (red, green,
and blue). Section 2.2 describes the scenario and objects in
more detail.

Each test consists of two phases: the intrinsic phase and the
extrinsic phase. In the intrinsic phase the agent is free to interact
with the objects for a certain time to autonomously acquire
knowledge on them, in particular on their affordances and on
forward models related to them (Figure 1A). In the extrinsic
phase an overall goal state, with specific desired location and
color of the objects in the working space, is presented to the
agent that memorizes an image of it. The objects are then set in a
different state and the agent has to re-create the goal state based
on knowledge acquired in the first phase (Figure 1B).

The agent (section 2.3) is endowed with a simulated camera
sensor that can look at different sub-portions of the working
space, and is able to select and perform four actions on the
object that is at the center of its camera. The actions can
move the object to a new position or change its texture to a
particular color (red/green/blue); different objects afford only
a subset of these actions. As often assumed in the affordance
literature, action execution is based on pre-programmed
routines implementing the effect of the action that is selected
and triggered.

Three versions of the system are implemented and compared:
IGN, FIX and IMP. The three systems differ in the IM

mechanisms they use to support affordance learning: FIX uses a
mechanism taken from the literature (Ugur et al., 2007) whereas
IGN and IMP use new mechanisms. Section 2.4 describes the
three systems in detail. In the extrinsic phase, the knowledge
acquired by the three systems in the intrinsic phase is tested with
problems requiring goal-based or utility-based planning.

2.2. Working Space and Objects
The working space is formed by a 150 × 150 pixel square. The
points of the working space are encoded as a 3D binary array
where the first 2 dimensions encode the x-y pixel position, and
the third dimension encodes the color (RGB). The color of
the working space background is black. All objects are initially
located on the vertexes of a 3 × 3 regular grid (white square
in Figure 1).

Each object presents the following attributes: (a) center: x-y
coordinates; (b) color: three values for red, green, and blue; (c)
shape: either square, circle, or rectangle. Assuming the working
space has a side measuring 1 unit, the circle has a diameter
measuring 0.1 units, the square has a side measuring 0.1 units,
and the rectangle has sides measuring 0.6 and 0.16 units.

As a consequence of the actions performed by the agent, the
position and color of the objects can change. This defines the
possible affordances of objects: “movable,” “greenable,” “redable,”
and “bluable.” Each object has a specific subset of affordances, for
example a blue circle is “movable” and “redable.” In some tests,
affordances are stochastic in the sense that the related actions can
produce an effect only with a certain probability.

2.3. The System Architecture
The system controller consists of three different components
(Figure 3): (a) the perception component implements a “bottom-
up attention” mechanism that leads the system to scan the
environment based on its salient features (color blobs of objects)
and also observes the action effects in the environment by
looking at portions of the scene that are changed by the actions
(section 2.3.1); (b) the action component executes actions on
the objects based on pre-wired routines (section 2.3.2); (c) the
predictor component is formed by the predictors for affordances
and forward models that support action selection in both the
intrinsic and extrinsic phases (section 2.3.3). In the following
sections we describe the different components in more detail.

2.3.1. The Perception Component: Attention and

Effect Detection
The perception component is responsible for the attention
processes supporting visual exploration of both the environment
and, in the extrinsic phase, the goal image. The perception
component implements two attention processes: an inner
attention process operating in parallel with an outer attention
process. The outer attention scans the environment on the basis
of two bottom-up processes both affecting gaze (they sum up):
the first process is sensitive to the saliency of objects, and the
second process is sensitive to the changes of the appearance of
objects produced by actions. The inner attention scans the goal
image on the basis of either the saliency of objects or by having
the same focus as the one of the outer attention process. All these
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FIGURE 3 | System architecture: main components.

attentional processes are activated when needed on the basis of
intrinsic motivations or planning processes, as we now illustrate
more in detail.

Attention actively guides a RGB visual sensor (a pan-tilt
camera) returning an image centered on the current attention
focus and sufficient to always cover the whole working space
independently of the gaze pointing. The central part of such an
image, called focus image, forms the main input of the system.
This focus image has a size of 0.14 × 0.14 (recall the scene is
1 × 1) and usually covers only one specific object. The whole
image is used with a lower resolution (here in gray scale) to form
a peripheral image that is used to drive the bottom-up attention
processes now illustrated (cf. Ognibene and Baldassare, 2015).

The first type of bottom-up attention process, the saliency-
based one, is driven by the most “salient” elements in the
peripheral image, here the activation of pixels corresponding to
objects. This process is implemented as follows. First a random
noise (ǫ ∈ [−0.05, 0.05]) is added to each pixel of the peripheral
image and the resulting image is smoothed with a Gaussian
filter. Then the pixel with the maximum activation is used as the
focus of attention (but if a change happens the second bottom-
up attention mechanism also intervenes, see below). Thanks to
the Gaussian smoothing, the focus falls around the center of the
focused object, which thus becomes wholly covered by the focus
image. The noise fosters exploration as it adds randomness to
the saliency of objects, thus leading the system to explore the
different objects.

Note that in the future more sophisticated approaches might
be used to ensure that the focus-image involves only the
focused object of interest (e.g., object-background segmentation
approaches). Moreover, other mechanisms might be used to
ensure a more efficient scan of the environment (e.g., inhibition
of return might be used to avoid scanning the same location
multiple times). These mechanisms are not considered here for

simplicity and because the focus of this research is on the effects
of attention, rather than on the mechanisms for its control.

The second bottom-up attention process, sensitive to changes,
is directed to detect the effects of actions. The process works
as follows. Firstly the system focuses on the portion of space
where a change in the periphery image takes place (this mimics
some processes of primates for which a reflex focuses attention
on changes happening in the environment (Comoli et al., 2003;
Gandhi and Katnani, 2011; Sperati and Baldassarre, 2014). To
this purpose, the system computes the “change image” given
by the pixel-by-pixel absolute difference between the whole
periphery image after and before the performance of the action:
both images are taken with the same initial gaze before the next
attentional movement but the “after-image” is taken after the
action performance (e.g., leading to displace the object). The
change image is smoothed with a Gaussian filter and summed up
to the salience-based attention image described above to guide
the gaze displacement to the maximally activated pixel of the
“sum image.” This process leads the system to look at the object
that has been changed by the action, e.g., the object that has been
changed in color or displaced in space (in the latter case, the
system gazes the position where the object is moved, and not
the position where it disappears, due to the object saliency that is
not present where it disappears). After this attentional movement
on the changed object is performed, the system compares the
focus image (involving only the area covering the object) and
the object position (given by the gaze direction) before and
after performing the attentional movement itself: this allows the
system to decide if the performed action was successful or not
(presence of affordance). The focus image comparison is based
on the L1 norm of the difference between the vectors of the
two images before and after action performance, divided by the
number of dimensions of the vectors: if this measure is higher
than τi = 10−5 then the focus image is considered to have
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changed. The position comparison is based on the L1 norm of
the difference between the vectors of the two (x,y) focus positions
before and after action performance, divided by 2: if this measure
is higher than τp = 0.02 then the position of the object is
considered to have changed.

An affordance is considered to be in place if: (a) an effect is
detected; (b) the effect is the one related to the performed action
(e.g., the object is displaced by the action “move,” or the object
is made green by the action “change object color to green”). This
information is used to train the affordance predictors. The focus
image and object position after the action execution are used to
train the effect predictors.

2.3.2. The Action Component
The system is equipped with four actions: move object, change
object color to green, change object color to red, and change
object color to blue. The move action can displace objects in
the environment if they have the affordance for this effect. The
move action is parametric: it affects the target object (object
under focus) on the basis of two parameters corresponding to
the object desired x-y location. During the intrinsic phase, the
desired location is randomly generated within the working space
(excluding positions that cause object overlapping). During the
extrinsic phase, the target location corresponds to the location
of the “sub-goal” that the system is currently attempting to
accomplish (see section 2.4.3). The color-changing actions are
non-parametric: they simply change the color of the target object
into the desired one if the object has the affordance for the
corresponding effect. Only one color-change action might have
been considered if parameterized with the color (this would have
been a discrete parameter vs. the continuous parameters of the
move action). We chose a non-parametric version of the color
actions to develop the features of the system working for both
parametric and non-parametric actions.

2.3.3. The Predictor Component: Forward Models

and Affordances
The predictor component is formed by 16 predictors (these
are regressors), 4 for each of the 4 actions: (a) the affordance
predictor predicts the object affordance (i.e., the probability that
the action effect takes place when the action is performed); (b)
the learning-progress predictor predicts the learning progress of
the affordance predictor when applying the action to the target
object, and is used to generate intrinsic motivations based on the
learning progress of the affordance predictors; (c) the what-effect
predictor predicts the focus image of the object resulting after
the action performance; (d) the where-effect predictor predicts the
object position resulting after the action performance. Given the
simplicity of the stimuli, the predictors are implemented here as
simple perceptrons but more sophisticated models might be used
to face more challenging scenarios. All the predictors are trained
during the intrinsic exploration phase and are now explained
more in detail.

The affordance predictors estimate the affordance probability
Pr(s′

b,o
∈ G|a, sb,o) of each action/goal related to different objects.

Each predictor gets as input the focus image (whose pixels
are each mapped onto (0, 1) and unrolled into a vector) and

returns, with one output sigmoid unit, the prediction of the
action success. Each predictor is trained with a standard rule
and a learning target 0 or 1, encoding respectively the failure
or success of the action to produce its desired effect, i.e., the
presence/absence of the affordance (the learning rate used varied
in the different tests, see section 3).

Each learning-progress predictor gets as input the focus image
and returns, with a continuous linear output unit, the learning
progress of the associated affordance predictor. The predictor is
updated with where the target for learning is the difference in
the output of the corresponding affordance predictor, computed
before and after the action is performed and before the affordance
predictor is updated.

Each of the what-effect predictors gets as input the focus image
and predicts, with sigmoidal output units, the focus image after
the action performance. The predictor is updated with rule with a
target corresponding to the observed focus image after the action
is performed.

Each of the where-effect predictors gets as input the initial (x,
y) position of the target object and the desired (x, y) position
of the object depending on the sub-goal, and predicts, with two
linear units, the predicted object (x, y) position after the action
performance [x and y coordinates are each mapped to the range
(0, 1)]. The predictor is updated with a where the target for
learning is the object position after the action is performed.

2.4. The Intrinsic-Phase Learning
Processes and the Extrinsic-Phase
Planning
In this section we first present the motivation signals
(section 2.4.1) and the algorithm for learning affordances
and forward models (section 2.4.2) used by the three versions
of the system (IGN, FIX, and IMP) during the intrinsic phase.
Then we describe the two algorithms of the attention-based goal
planner (section 2.4.3) and the attention-based utility planner
(section 2.4.4) used in the extrinsic phase.

2.4.1. IM Signals
In the intrinsic phase, the system autonomously explores the
objects in the environment to learn affordances and train its
predictors. The exploration process is driven by IMs related to
the knowledge acquired by the affordance and learning-progress
predictors. Depending on how the IMs are implemented, we have
three versions of the system: FIX, IGN, and IMP.

The FIX system uses an IMmechanism for affordance learning
like the one used by Ugur et al. (2007). This work studies
a mobile robot that learns the “traversability” affordance in a
maze scattered with obstacle-objects. A Support Vector Machine
(SVM) is used to classify the view of the obstacle-objects to
estimate the presence/absence of the affordance. The system
estimates the novelty, and hence the interest, of the current view
of the objects on the basis of its distance from the hyperplane
used by the SVM to classify the affordance presence/absence. If
this distance is below a fixed threshold, the view is considered
interesting and so the system performs the exploratory action of
trying to traverse the maze. The system observes if the affordance
holds, and uses its observation to train the SVM.
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In our case, as a measure of how interesting the current
object is we consider the Shannon entropy of the estimated
affordance probability:

H(p) = −

n
∑

i=1

Pr(xi)logb(Pr(xi)) = −p log2 p−
(

1− p
)

log2
(

1− p
)

(1)

where we considered b = 2 as the basis of the logarithm; xi
are the two events s′

b,o
∈ G and s′

b,o
/∈ G corresponding to

the presence or absence of the affordance, having respectively
a probability Pr(s′

b,o
∈ G) = p and Pr(s′

b,o
/∈ G) = 1 − p.

The use of this formula is justified by the fact that entropy is a
measure of ignorance (uncertainty) of the system: the uncertainty
is minimal when p = 0 or p = 1, and maximal when p = 0.5 (the
value of the entropy is here normalized so that H(p) ∈ (0, 1), in
particular H(0) = H(1) = 0 and H(0.5) = 1). The weights of the
affordance predictors are initialized to 0, resulting in an initial
sigmoid activation of 0.5 and an ignorance of 1.

Following Ugur et al. (2007), the current object is considered
interesting, and hence worth exploring, when the entropy is
above a threshold th (here th = 0.3, which corresponds to
an ignorance value, i.e., affordance predictor output, of 0.947
or 0.053). Ignorance (entropy) thus represents the IM signals
that drive exploration of objects. Since we have more than one
action, for a given focused object we consider the action with
maximum ignorance for that object. This mechanism is simple
and interesting, but it also has some limitations when applied
to multiple objects and actions as it leads to an evaluation of
how interesting potential experiences are in a fixed way. In
particular, all objects with an ignorance above the threshold will
be considered equally interesting. Moreover, after the ignorance
related to an object decreases below the threshold the agent will
stop exploring it independently of the fact that it might still have
some exploration time available.

The IGN system (IGN stands for “IGNorance”) is a first
version of our system that is directed to overcome the limitations
of the IMmechanism of FIX. The newmechanism uses a dynamic
threshold th. This threshold is continuously adjusted as a leaky
average of the IM signal, IM (here IM = H), related to the objects
explored one after the other in time:

tht = tht−1 + ν(−tht−1 + IMt−1) (2)

where t is a trial and ν the leak coefficient (ν = 0.3 in
the deterministic environment and ν = 0.1 in the stochastic
environment). When objects are explored and predictors are
trained, the ignorance of objects, and hence the IM signal related
to them, will decrease and so will th. By comparing the highest
action-related entropy of an object with th the system will be
able to trigger the exploration action or to pass to explore more
interesting objects. When the system decides to not explore the
object, then the leaky average gets IMt−1 = 0 as input. This
implies that when objects are considered not interesting, the
threshold progressively decreases so that some objects become
interesting again.

A limitation of the IM mechanisms of IGN is that it is not
able to cope with stochastic environments where the success

of an action is uncertain (e.g., when the agent tries to move
an object, the object moves only with a certain probability). In
this case, the affordance predictor will tend to converge toward
the corresponding probability p and so objects with stochastic
affordances will always remain interesting.

The IMP system (IMP stands for “IMProvement”) overcomes
the limitations of IGN by suitably coping with stochastic
environments. The motivation signal used by IMP is
implemented as the absolute value of the learning-progress
predictor output (let’s call this LP). Similarly to IGN, th is
computed as a leaky average of the IM signal, namely with
Equation (2) where IM = LP (ν = 0.1 in all tests). In particular,
as for IGN the expected learning progress of the action with
the highest LP is compared with th. This makes the system
explore the current object if it promises a learning progress
that is higher than the learning progress for other objects,
represented by th. The learning-progress predictor weights are
initialized to random values within (−0.00075,+0.00075) so
that the motivation signal is non-zero for all objects when the
intrinsic phase starts. The distinction between IGN and IMP
reflects the distinction between prediction error and prediction
error improvement within the literature on IMs, justified as here
by the need to face deterministic or stochastic environments
(Schmidhuber, 1991a; Santucci et al., 2013).

The mechanism of the leaky average threshold, used in
IGN and IMP, allows the agent to indirectly compare the
relative levels of how interesting different objects are, and
to focus the exploration effort on the most interesting of
them notwithstanding the fact that different objects are in
focus at different times due to the presence of the active
vision mechanisms. This is a novel general mechanism
that allows the integration of attention (targeting different
objects) and IMs (returning an interest of the object).
Here the mechanism is used for the learning of object
affordances but its generality allows its use also for the
acquisition of other types of knowledge in the presence of
focused attention.

2.4.2. Intrinsic Phase: Learning of Affordances and

World Model
The intrinsic phase allows the system to autonomously explore
the objects by looking at and acting upon them. Based on the
observed consequences of actions, this allows the system to train
the predictors, including those related to affordances. At each
step of the phase, the system performs a number of operations
as illustrated in Algorithm 1. This algorithm is used by both the
goal-based planner and the utility-based planner.

The algorithm is based on the following operations and
functions: (a) the Scan function focuses the system visual sensor
on an object based on the bottom-up attention mechanism
and returns the image and position of the object; (b)
SelecActionWithHighestIM selects the action with the highest IM
and computes its motivation signal; (c) ExecuteAction executes
the selected action as illustrated in section 2.3.2 if the motivation
signal is higher than the threshold; (d) ScanEffect looks where
a change in the environment has happened (e.g., at the new
position occupied by the object after the move action, or at
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Algorithm 1: Intrinsic phase: one step of learning of affordances and forward models

1: (object_image, object_position)← Scan(environment)
2: (action, motivation_signal)← SelectActionWithHighestIM(action_list, predictors, object_image, object_position)
3: if (motivation_signal ≥motivation_threshold) then
4: ExecuteAction(action, object_image, object_position)
5: (new_object_image, new_object_position)← ScanEffect(new_environment, environment)
6: affordance←...
7: Affordance(action, new_object_image, new_object_position, object_image, object_position)
8: UpdateWeights(affordance_predictor, action, object_image, affordance)
9: UpdateWeights(affordance_predictor, action, object_image, affordance, improve_predictor) ⊲ Only IMP
10: if (affordance = TRUE) then
11: UpdateWeights(effect_predictors, action, object_image, object_position,...
12: new_object_image, new_object_position)
13: end if

14: motivation_threshold← LeakyAverage(motivation_threshold, motivation_signal) ⊲ Only IGN/IMP
15: else

16: motivation_threshold← LeakyAverage(motivation_threshold, 0) ⊲ Only IGN/IMP
17: end if

the object that changed its color after a change-color action),
and returns the resulting new object image and position; (e)
Affordance compares the past and new state of the target object
and returns a Boolean value (affordance) for the affordance
presence/absence; (f) UpdateWeights updates the connection
weights of the predictors of the performed action as illustrated in
section 2.3.3: the affordance predictor is updated on the basis of
the affordance presence/absence; in the case of IMP, the learning-
progress predictor is also updated on the basis of the affordance
predictor output before and after the action performance (and
hence the predictor update); in the case of the presence of
the affordance (action success), the effect predictor learns to
predict the effects of the performed action; (g) LeakyAverage,
present in the case of IGN/IMP, updates the threshold according
to Equation (2) and uses as input either the IM signal of the
performed action, or zero if no action was executed.

2.4.3. Extrinsic Phase, Pursuing the Overall Goal:

Goal-Based Planner
During the extrinsic phase, the system is tested for its capacity
to accomplish an “overall goal” based on the knowledge acquired
during the intrinsic phase. Such an overall goal is assigned to the
agent through the presentation of a certain desirable spatial/color
configuration of some objects in the environment. The agent
stores the goal as an image (“goal image”). The configuration of
the objects is then changed and the task of the agent is to act on
the environment to arrange it according to the goal image.

Importantly, the agent scans the goal image through a
second “inner” attention mechanism similar to the “outer”
attention mechanism used to scan the external environment.
This inner attention mechanism is important to parse the goal
image into sub-goals, each corresponding to the configuration
of a single object in the goal image, one per saccade. These
sub-goals are then pursued in sequence to accomplish the
overall goal.

The operations taking place in one step of this process
are shown in detail in Algorithm 2. The pseudo-code of

the algorithm highlights the effects of the factorization of
information on objects, related to their state and position, based
on the attention mechanisms. A new sub-goal is selected either
in the case that the previous sub-goal has been accomplished
(in which case the Boolean variable sub_goal_active = FALSE)
or if a time out elapses in the unsuccessful attempt to pursue
it (here the time out is equal to 8 iterations of the algorithm).
The agent uses the function Scan to identify a new target sub-
goal: this function scans the goal-image with the saliency-based
attention mechanism and returns the new sub-goal image and
focus location (sub_goal_image and sub_goal_position).

Next, the agent checks if the sub-goal has not
been accomplished yet. To this purpose, the function
ScanEnvironmentWithSameFocusAsSubGoal drives the outer
attention focus (targeting the environment) to the position
corresponding to the inner attention focus (targeting the
goal image) and returns the corresponding focus image
(focus_image). Then the function GoalNotAchievedCheck
compares the sub_goal_image and the focus_image to check that
the sub-goal has not been achieved yet, in particular it sets the
variable sub_goal_active to FALSE or TRUE if they, respectively,
match or mismatch (the match holds if the Euclidean distance
between the vectors corresponding to the two images is below a
threshold τ = 0.01).

If the sub-goal has not yet been accomplished, the system

scans the environment to find a new object and then the function

ActionPlanning checks if at least one action is able to accomplish

the sub-goal by acting on the focused object. To this purpose, the

function uses the effect predictors to predict the effect of each

action and then compares it with the sub-goal (this happens if the

Euclidean distances are below 0.0035 for the sub-goal image and

the object image, and below 0.01 for their position coordinates).

Depending on the result of the planning, the function sets the

Boolean variable sub_goal_achievable to TRUE or FALSE and

possibly returns the action to be executed to achieve the sub-goal.

These processes, based on the forward models, are an important
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Algorithm 2: Extrinsic phase: one step of goal-based planning

if time_out OR (NOT sub_goal_active) then ⊲ Select non-achieved sub-goal
(sub_goal_image, sub_goal_position)← Scan(goal)
focus_image← ScanEnvironmentWithSameFocusAsSubGoal(environment)
sub_goal_active← GoalNotAchievedCheck(sub_goal_image, focus_image)

end if

if (sub_goal_active = TRUE) then
(object_image, object_position)← Scan(environment) ⊲ Select object
(sub_goal_achievable, action)← ActionPlanning(predictors, action_list,...

sub_goal_image, sub_goal_position, object_image, object_position) ⊲ Plan action
if (sub_goal_achievable = TRUE) then

ExecuteAction(action, object_image, object_position, action) ⊲ Perform action
focus_image← ScanEnvironmentWithSameFocusAsSubGoal(environment)
sub_goal_active← GoalNotAchievedCheck(sub_goal_image, focus_image)

end if

end if

part of the algorithm as they implement a one-step forward
planning process.

Lastly, if a potentially successful action has been identified, it
is executed and then the system checks again if the sub-goal has
been accomplished. If so, sub_goal_active is set to FALSE so that
a new sub-goal is chosen in the next iteration.

Importantly, the ActionPlanning function could possibly
check all actions. Affordances (i.e., the predictors estimating
Pr(gj|aj, oi)) can be employed to avoid this. In particular, the
check can be limited only to those actions having an affordance
for the current object (here when Pr(gj|aj, oi) > 0.5). This
allows affordances, which are computed fast through 1-output
neural networks, to speed up the planning search by reducing the
number of more computationally expensive operations involving
the prediction of action effects (new object image and position)
and their comparison with the sub-goal. Here actions are only 4,
but this advantage increases with the number of actions available
to the agent.

2.4.4. Extrinsic Phase, Pursuing the Overall Goal:

Utility-Based Planner
In the case of utility planning, different “sub-goals” deliver a
different value if accomplished. In cases where the agent has a
limited amount of resources available to accomplish the goals
(e.g., time or energy to perform actions), it should first invest
such resources in the accomplishment of the most valuable sub-
goals (for simplicity, we assume here a constant cost per action
and a negligible cost of reasoning with respect to acting, as often
done in utility-based planning, Russell and Norvig, 2016). Notice
that in utility planning “sub-goals” are directed to accomplish the
overall objective of utility maximization rather than an overall
goal intended as a particular state of the environment.

The utility-based planner works as shown in Algorithm 3.
When the Boolean variable max_utility_estimatation is TRUE,
the planner evaluates the value of the possible sub-goals it
can achieve with the available object-action combinations and
stores an estimate of its value in the variable potential_utility,
otherwise it acts in the world. Various mechanisms could be
used to set and keep the system in the evaluation mode: here

for simplicity we gave the system a certain amount of iterations
before performing an action, but more flexible mechanisms
might be used (e.g., passing to act when the estimates stabilize).
To perform this evaluation, the system performs the sub-goal
seeking, object seeking, and one-action planning processes as
done in Algorithm 2. However, instead of executing the planned
actions the system only updates the potential_utility if the current
goal-object couple has a higher utility than it: this ensures that the
potential utility estimation tends to approximate the value of the
most valuable sub-goals. The utility of the sub-goal-object couple,
given the found action, is computed as:

U = Pr(s′b,o ∈ G|a, sb,o)× V(s′b,o) (3)

where Pr(s′
b,o
∈ G|a, sb,o) is the affordance (expected probability

of accomplishing the desired sub-goal) and V(s′
b,o
) is the value of

the sub-goal. The actual update of the potential utility is based on
a leaky average (based on Equation 2 using a leak rate ν = 1.0;
a value lower than this might be used for having a more reliable
but slower process).

When the max_utility_estimation is set to FALSE, the system
starts to perform actions in the environment. This is similar
to what is done in Algorithm 2, the difference being that now
the system executes actions only if the expected utility of the
current subgoal-object is higher than the potential utility. For
each chosen action, this potential utility is decreased with the
leaky average using 0 as input and a leak rate ν = 0.1. This
ensures that the potential utility progressively decreases so that
the system initially works on most valuable sub-goals-object
couples and then engages with less valuable ones.

3. RESULTS

To test the performance of the systems, different tests were
run with both deterministic and stochastic environments.
Performance in the intrinsic phase was measured by evaluating
the quality of the output of the predictors when receiving as input
each one of the nine focused images corresponding to the nine
possible objects (Figure 1).
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Algorithm 3: Extrinsic phase: one step of utility-based planning

if (time_out OR (NOT sub_goal_active)) then ⊲ Select non-achieved sub-goal
(sub_goal_image, sub_goal_position)← Scan(goal)
focus_image← ScanEnvironmentWithSameFocusAsSubGoal(environment)
sub_goal_active← GoalNotAchievedCheck(sub_goal_image, focus_image)

end if

if (sub_goal_active = TRUE) then
(object_image, object_position)← Scan(environment) ⊲ Select object
(sub_goal_achievable, action)← ActionPlanning(predictors, action_list,...

sub_goal_image, sub_goal_position, object_image, object_position) ⊲ Plan action
if (sub_goal_achievable = TRUE) then

object_utility← ComputeUtility(object_affordance, sub_goal_value)
if (max_utility_estimatation = TRUE) then ⊲ Computing the maximum possible utility

if (object_utility ≥ potential_utility) then
potential_utility← LeakyAverage(potential_utility, object_utility) ⊲ Increase utility expectation

end if

else ⊲ Acting if high utility is attainable
if (object_utility ≥ potential_utility) then

ExecuteAction(object_image, object_position, action)
end if

potential_utility← LeakyAverage(potential_utility, 0) ⊲ Decrease utility expectation
end if

sub_goal_active = FALSE
end if

end if

3.1. Deterministic Environment
In the deterministic environment two tests were run to test the
goal-based planner. The first, called the base test, involved all
nine objects each affording all four actions. The purpose of this
test is to compare the different intrinsic motivation mechanisms
driving affordance acquisition. During the intrinsic phase of this
test, the objects are initialized as in Figure 1A and the system
explores them. Afterwards, in the extrinsic phase the system is
tested in five different conditions involving different goal images
and environment settings (Figure 4). The first scenario contains
only one object, a blue square that has to be changed to green.
In each subsequent scenario one additional object is introduced
to increase the scenario difficulty: scenario 2 introduces a green
rectangle that has to be changed to red; scenario 3 introduces a
red square that has to be moved; scenario 4 introduces a green
circle that has to be changed to blue; finally, scenario 5 introduces
a red circle that has to be moved.

The second test, called the late object test, involves an
intrinsic phase where some objects, not initially present, are
introduced after the system has acquired knowledge on objects
introduced initially. Then the system is tested with the extrinsic
phase scenarios as in the base test (Figure 4). The purpose
of this test is to evaluate how the systems perform when,
during the intrinsic phase, new knowledge is added to already
acquired knowledge, a situation very common in open-ended
learning conditions.

Affordance predictor learning rates were α = 0.01 in the
IGN and IMP systems and α = 0.002 in the FIX system. The
learning rates of the learning-progress predictors were set to

α = 0.005. The leaky average of the intrinsic motivation was
updated with a leak rate ν = 0.3 in the IGN system and ν = 0.1
in the IMP system. The results of these tests are presented in the
following sections.

3.1.1. Base Test
In the base test, all the nine objects afford all the four actions with
the exception of those not causing any change (Table 1).
Intrinsic phase. The intrinsic phase of the base test was run 10
times, each lasting 6,000 steps, for each system, IGN, FIX and
IMP. All three systems learned a good estimate of the affordances
of the nine objects (Figure 5; the true values to estimate are either
0 or 1). The affordance predictions after learning were closer to
the true values for the IGN and IMP systems compared to the FIX
system. The variance of the predictions was lower in the FIX and
IGN systems compared to the IMP system Figure 5A.

These results offer a first validation of the idea that the IMP
and ING systems, using a dynamic threshold for evaluating the
interest of the current object in terms of its potential return of
information, outperform the FIX system previously proposed in
the literature. The reason is that the IMP and IGN systems can
decide to explore or ignore an object based on the possibility of
learning more from other objects, rather than in absolute terms
as in FIX.
Extrinsic phase. The test of the extrinsic phase was repeated 10
times for each system, for each extrinsic scenario, and for each of
the 10 repetitions of the intrinsic phase. The results show that
the three systems succeeded in accomplishing the tasks in the
majority of times (Table 2).
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FIGURE 4 | The five different scenarios (goal image and initial environment setup) used to test the systems in the extrinsic phase. The scenarios involve an increasing

number of objects. (A) Scenario 1. (B) Scenario 2. (C) Scenario 3. (D) Scenario 4. (E) Scenario 5.

TABLE 1 | Base test: affordance probabilities for all objects and actions.

Object Move action

prob.

Turn green

prob.

Turn red

prob.

Turn blue

prob.

1 Red square 1.0 1.0 0.0 1.0

2 Green square 1.0 0.0 1.0 1.0

3 Blue square 1.0 1.0 1.0 0.0

4 Red circle 1.0 1.0 0.0 1.0

5 Green circle 1.0 0.0 1.0 1.0

6 Blue circle 1.0 1.0 1.0 0.0

7 Red rectangle 1.0 1.0 0.0 1.0

8 Green rectangle 1.0 0.0 1.0 1.0

9 Blue rectangle 1.0 1.0 1.0 0.0

Completion time in the IMP system showed an approximately
quadratic dependency on the number of sub-goals (Figure 6)
and also an increasing variance. The other two systems
showed similar results. This test suggests that in a more
complex environment with more objects, the system would
be incapable of completing tasks within a reasonable
amount of time. The reason for the poor scaling is mainly
due to the simple bottom-up attention mechanism used
here to guide attention, which uses a random exploration

to find the objects needed to accomplish a certain sub-
goal. A top-down mechanism capable of avoiding multiple
explorations of the same objects would supposedly lead to
a linear dependence of the completion time on the number
of sub-goals.

3.1.2. Late-Object Tests
Three late-object tests were run. The features of the tests are
summarized in Table 3. In the first test the six red-green-blue
square and circle objects are present from the start of the
simulation and have all affordances, while the red-green-blue
rectangle objects are introduced late, have move affordance set
to 0 (not movable) and the color affordances set to 1 (“greenable,”
“redable,” and “blueable”). In the second test, the square objects
are present from the start and afford all actions, the circle objects
are present from the start and do not afford any action, and the
three rectangle objects are introduced late and afford all actions.
In the third test, the square and rectangle objects are present from
the start and afford all actions, while the three circle objects are
introduced late and do not afford any action. The three tests were
run for 10,000 steps each and late objects were introduced after
2000 steps.

In the first late-object test, all three systems successfully
learned the affordances of all objects, including the non-movable
rectangles introduced late (Figures 7–9). After the intrinsic
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FIGURE 5 | Base test: affordance predictions (y-axis) after 6,000 learning steps for the four actions (four graphs) and nine objects (x-axis) averaged over 10 trials in

the base test, for the IGN, FIX, and IMP systems. Mid-line of boxes shows median values, boxes show quartiles, and bars show the min-max range. The target values

that the predictors had to estimate were 0 or 1. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

phase, the predictions of object affordances were correct for all
three systems, except the “move” action affordances of the late
objects 7 and 8 in the FIX system, which also showed the highest
variance, followed by the IMP system (Figure 10).

Performance in the five extrinsic phase test scenarios (Table 4)
was low for the FIX system compared to the IGN and IMP
systems, and was highest for IMP.

In the second and third late-object test, the three systems
differed in their behaviors while learning the affordances during
the intrinsic phase, but all presented a similar performance
when tested in the extrinsic phase, so we report the data related
to them in Supplementary Material. In the second late-object
test, the IGN and IMP systems first learned the affordances
of objects introduced early in the simulations, and then
focused and learned the affordances of the objects introduced
late (Supplementary Figures 1, 2). Instead, the FIX system did

not have such efficient focus (Supplementary Figure 3). After
learning, the affordance predictions were correct for the IGN and
IMP systems (with a higher variance for the IMP system) whereas
the FIX system was less accurate and had a higher variance
(Supplementary Figure 4).

Regarding the extrinsic-phase tests (Table 5), all three systems
were successful in the first three scenarios, but failed in the
fourth and fifth scenarios, showing that the different quality
of affordances acquired in the intrinsic phase did not affect
the performance in these particular tests. All systems failed the
extrinsic phase scenario 4 and 5, involving an additional circle
each, because in the late-object tests 2 and 3 the circle objects do
not afford any action and so their state cannot be changed.

The first and second late-object tests confirm that the IGN and
IMP systems outperform the FIX system in learning affordances
as they can decide to explore a certain object on the basis of
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TABLE 2 | Base test: success of the extrinsic-learning process for the three

systems IGN, FIX, and IMP.

Extrinsic-phase scenarios

System 1 2 3 4 5

IGN 1.0 1.0 1.0 1.0 0.9

FIX 1.0 1.0 1.0 1.0 0.8

IMP 1.0 1.0 1.0 1.0 0.9

For each of the 10 intrinsic-phase runs and each of the 5 extrinsic-phase scenarios, the

extrinsic-phase test was repeated 10 times: the figures reported here represent the portion

of “successful” intrinsic-phase runs leading to > 90% successful extrinsic-phase tests.

a comparison between its expected information gain and the
information gain expected on average from other objects.

In the third late-object test, none of the systems successfully
learned to focus on, and predict accurately, the lack of affordances
of the late circle objects (Supplementary Figures 5–7). As a
consequence, after learning, the affordance predictions of
such objects were inaccurate (far from 0) (object numbers
4, 5 and 6) and showed high variance for most objects
(Supplementary Figure 8). This result can be explained
by the fact that the predictions for the novel objects are
bootstrapped from previously learned affordances of similar
objects, in particular based on the color that causes synergies
when it involves objects with same present/absent affordance,
and interference in the opposite case. A mechanism of
replay of past experience would possibly overcome this
problem as it would intermix experience related to the
different objects, allowing the neural-network predictors
to disentangle the present/absent affordances of similar
objects.

During the extrinsic phase (Table 6), all the three systems
successfully accomplished the goal in the first three scenarios but
not in the last two.

3.2. Stochastic Environment
3.2.1. Learning of Stochastic Affordances
The stochastic environment used stochastic affordances for some
objects and actions whereas the other affordances were as in the
deterministic environment (Table 7).

The intrinsic phase was run 10 times each for 10,000 steps.
The plots show the average performance over 10 trials. The leaky
average of the maximum utility estimation was updated with
a leak rate ν = 0.1 in both the IGN and IMP systems. The
learning rate of the affordance predictors was set to α = 0.001
and the learning rate of the learning-progress predictors was set
to α = 0.0005.

After learning, all three systems showed a good capacity to
predict the affordances, but the IMP system was more accurate
than the IGN and FIX systems as it could better employ
the available learning time to accumulate more knowledge
(Figure 11). In particular: (a) it learned better to estimate
affordances, with a probability equal to 1.0 (Figures 11A,C) or
0.0 (Figures 11B–D); (b) it correctly learned the 0.8 probability
for the change-color-to-blue action (Figure 11D).

FIGURE 6 | Completion times (y-axis) for the IMP system in the different

extrinsic-phase scenarios involving an increasing number of objects (x-axis).

Data refers to 100 simulations (10 runs of the extrinsic-phase test for each of

the 10 runs of the intrinsic-phase learning process). For each scenario, the

mid-line of boxes shows median values, boxes show quartiles, and bars show

the min-max range. The dashed line shows a quadratic fit:

y = ax2 + bx = 1.364x2 − 0.808x.

TABLE 3 | The structure of the three late-object tests.

Objects types:

Late-test number Squares Circles Rectangles

Start Start Late

1 Move: 1 Move: 1 Move: 0

Color: 1 Color: 1 Color: 1

Start Start Late

2 Move: 1 Move: 0 Move: 1

Color: 1 Color: 0 Color: 1

Start Late Start

3 Move: 1 Move: 0 Move: 1

Color: 1 Color: 0 Color: 1

“Start/Late”: objects that are present form the start of training/introduced later.

“Move/Color”: type of affordances. “1/0”: presence/absence of the affordances.

Both the FIX and IGN systems fail to learn accurate affordance
probabilities as they get high motivation signals for exploring
stochastic objects even when there is no more knowledge to
be gained on them. Only the IMP system is able to focus on
different objects depending on the actual learning progress they
can furnish.

As the IMP system learned affordance probabilities better than
IGN and FIX, we ran the extrinsic-phase tests illustrated in the
next section using only such a system.

3.2.2. Goal-Based Planning vs. Utility-Based Planning
The goal-based planner and the utility-based planner were
compared by running an extrinsic-phase test in a stochastic
environment with the four objects indicated in Table 8. The four
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FIGURE 7 | First late-object test, IGN system. Affordance prediction for the four actions (4 graphs) and nine objects (lines in each graph) averaged over 10 trials. Red

lines refer to red objects, green dashed lines to green objects, and blue dotted lines to blue objects. Markers on lines represent the shape of objects, where squares

refer to square objects, circles to circular objects, and stars to rectangular objects. Note that an object of a color does not have the affordance to be turned to the

same color (e.g., a red object cannot be turned red) as this involves no change. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

objects were assigned different values and the actions required
for accomplishing each sub-goal had different probabilities of
success (those corresponding to the affordances learned in the
intrinsic phase). This resulted in a different expected utility of
the objects.

The test was run 20 times for each of the 10 simulations of
the intrinsic phase using different action budgets available to
the system (1 to 5 actions). A small action-budget constraint
introduces the need of deciding which actions to perform based
on their expected utility.

The results show that the utility-based planner performed
significantly better than the goal-based planner when it could rely
on a small number of actions, and showed a statistical trend to
do so for a higher number of actions (Figure 12). This shows an
advantage of affordances for planning when the system knows the
utility of different alternative sub-goals.

The smaller difference between the models in utility for a
higher number of actions is expected due to the fact that if
all goals can be accomplished, independently of their utility,
the order of their accomplishment does not matter. However,
reality, offering a very large number of alternative (sub-)goals
with respect to the actions that can be performed, is similar to
the case of the experiment where the system has only 1 or 2
actions available, so utility-based planning is very important in
such conditions.

3.2.3. Learning of Forward Models in the Stochastic

Environment
Having illustrated the utility-planning experiment, it is now
possible to show that IMP outperformed IGN and FIX not
only in terms of the quality of learned affordances but also in
terms of the quality of the learned forward models. To this
purpose, we compared the performance of the utility-planner
using affordances and forward models trained with either one
of the IGN/FIX/IMP mechanisms for 4,000 executed actions, a
time not sufficient to fully learn the forward models. Figure 13
shows the performance (overall gained utility) of the three utility
planners using a maximum of 1, 2, or 3 actions and averaged
over 100 repetitions of the experiment. The results show that IMP
has a higher performance than IGN and FIX in all conditions; in
particular, it is statistically better than FIX with 2 and 3 actions
(p < 0.05), and better than IGN with 3 actions (p < 0.05).

The better performance of IMP could be due to either worse
affordances or worse forward models of IGN and FIX. To
ascertain this, we repeated the experiment using forward models
trained for a time allowing convergence (10,000 executed actions)
for all the three systems. In this case the three systems showed
a similar performance (data not reported). This indicates that
the better performance of IMP in the previous experiment was
due to better forward models. A possible explanation of this
is that there is a correlation between the difficulty of learning
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FIGURE 8 | First late-object test, FIX system. Red lines refer to red objects, green dashed lines to green objects, and blue dotted lines to blue objects; markers on

lines represent the shape of objects, where squares refers to square objects, circles to circular objects, and stars to rectangular objects. (A) Move. (B) Turn green. (C)

Turn red. (D) Turn blue.

the predictors estimating the affordance-probabilities and the
predictors implementing the what-effect forward models as they
share the same input (object image). So the effective decisions of
IMP on which experiences to focus on to learn affordances also
benefit the learning of the forward models. On the other hand,
even if affordances of IGN and FIX have a lower quality than IMP
(section 3.2.1), this does not negatively affect their performance
as such lower quality does not impair the utility-based ranking of
the object-related sub-goals.

3.2.4. Affordances Allow the Reduction of the

Forward Planning Search
We have seen that a potential benefit of affordances for planning
is the possibility of reducing the number of actions that should
be checked during the generation of the forward trajectories. To
validate this idea, we ran again the previous extrinsic-phase test
(section 3.2.2) but without constraining the number of actions
that the system could perform. In particular, we compared two
systems, a first one checking all available actions and a second one
restricting the forward-model-based search to only those actions
having an affordance ≥ 0.5 (here this value excludes from the
search all non-afforded actions). The results show that the use of
affordances allows a significant reduction of the mean number of
actions checked (Figure 14).

Consider that in realistic situations, the number of actions
that can be performed in a certain condition is very high.

Moreover, often several actions can be performed in sequences
to accomplish a certain (sub-)goal, a situation not investigated
here. In this case, the possible reduction based on affordances of
the branching factor due to actions is even more important.

4. OTHER RELEVANT MODELS IN THE
LITERATURE

The architecture presented here integrates functionalities that
have been investigated in isolation in other computational
systems. In this section we review the systems that are more
closely related to the system presented here, and compare their
main features.

Many works have focused on intrinsic motivations as a means
to solving extrinsic challenging tasks where a long sequence
of skills is required to solve a task or maximize a specific
reward function (“sparse reward,” e.g., Santucci et al., 2014).
Instead, fewer works on open-ended learning have focused on
intrinsic motivations for the autonomous acquisition of skills
that are assembled in sequences in a later “extrinsic phase.”
For example, Schembri et al. (2007) and Kulkarni et al. (2016)
present two reinforcement learning systems that undergo two
separated learning phases. In the second extrinsic phase, both
systems use reinforcement learning to solve complex tasks by
assembling sequences of skills acquired in the first phase. In the
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FIGURE 9 | First late-object test, IMP system. Affordance prediction for the four actions (4 graphs) and nine objects (lines in each graph) averaged over 10

simulations. Red lines refer to red objects, green dashed lines to green objects, and blue dotted lines to blue objects; markers on lines represent the shape of objects,

where squares refers to square objects, circles to circular objects, and stars to rectangular objects. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

intrinsic phase, the first system learns the skills on the basis
of reinforcement learning guided by intrinsic motivations and
reward functions found by a genetic algorithm that uses the
performance in the extrinsic phase as fitness. Instead, during the
intrinsic phase the second system learns the skills on the basis of a
mechanism generating skills when the agent’s action causes “two
objects to interact.” Although these systems employ the idea of
the two phases to develop and test open-ended learning systems,
they do not investigate how they could learn affordances in the
intrinsic phase and their possible use for planning.

Seepanomwan et al. (2017) investigates how a robot can
exploit knowledge acquired with open-ended learning in an
intrinsic phase to accomplish user-defined goals in a later
extrinsic phase. In a first intrinsic phase the robot autonomously
generates multiple “goals/outcomes” related to moving a ball in
different positions on a table. In a following extrinsic phase the
system reuses the acquired goals and skills to directly accomplish
new goals (assigned to it by a user) or to more quickly learn
the skills to do so. To this purpose, the system performs a one-
step backward planning search by searching for the best skill to
perform on the basis of the similarity of the user’s goal with the
goals of all skills. Contrary to here, the system can solve only
simple but not compound tasks, can interact with only one object
at a time since it does not have an attention system, and the initial

condition is identical in each trial (the environment is “reset”
after each skill performance).

Planning represents a central theme in artificial intelligence
(Ghallab et al., 2004; Russell and Norvig, 2016). Here we only
considered few aspects of planning relevant to face the issues
related to open-ended learning and exploitation of affordances.
Investigating the possible roles of affordances with planning,
we have seen that when forward planning is used affordances
allow the agent to short-list the available actions. Interestingly
(cf. Russell and Norvig, 2016), until the late 90’s the research
on planning mainly focused on backward planning because this
revealed more efficient than forward planning generating a wide
search branching as many actions are applicable to each state.
Later, forward planning became popular again, thanks to general-
purpose heuristics that allowed the reduction of the search
breadth based on domain-independent general heuristics, for
example focusing only on the “positive effects” (usually denoting
the action success) while ignoring the “delete effects” (usually
involved in the violation of other sub-goals). This suggests that
the common use of forward planning by organisms (Wikenheiser
and Redish, 2015) might rely on affordances for pruning relevant
actions: affordances hence are so important for organisms (Thill
et al., 2013) because they not only support an efficient action but
also planning.
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FIGURE 10 | First late-object test: affordance predictions after learning. Plotted as in Figure 5. (A) Move. (B) Turn green. (C) Turn red. (D) Turn blue.

The work presented here has multiple links with the
autonomous/developmental robotics literature on affordances.
In an early work, Stoytchev (2005) was among the first to propose
the idea of a robot using affordances related to different objects
(in this case tools) to evaluate their effects. Affordances, stored
in a table, regarded the effects that actions could produce on
different tools. Among other things, the work established the
importance of focusing on objects rather than on the whole
“state” of the environment for processing affordances.

Regarding the link between affordance acquisition and open-
ended learning, Ugur et al. (2007) was among the first to use
intrinsic motivations to support the acquisition of affordance
knowledge. In particular, it investigated a mobile robot that had
to learn to evaluate the “traversability” of a set of obstacle-
objects in front of it. The robot scanned different possible
directions of movement and decided to attempt to move along
one of them if its ignorance with respect to the possible

success in doing so was above a certain threshold. This aimed
to invest the time and energy of the agent on learning the
more uncertain affordances. Here we compared this mechanism
with a more sophisticated mechanism where the ignorance for
the current object and more uncertain affordance is compared
with the estimated average ignorance for the other objects and
affordances on which exploration time and energy might be
alternatively invested.

The link between affordances and the possible relations
between the elements of the object/action/effect triad was
investigated by Montesano et al. (2008). The work equated
affordances with the relations between such three elements
and represented them with a Bayesian network within a
probabilistic framework. Here we assumed a restricted definition
of affordances, more closely linked to the initial definition, and
this allowed us to investigate their relations with the elements
involved in planning. Building on the probabilistic framework
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TABLE 4 | First late-object test: success of the three systems IGN, FIX, and IMP

in the five extrinsic scenarios.

Extrinsic-phase scenario

System 1 2 3 4 5

IGN 1.0 0.4 0.4 0.4 0.1

FIX 0.8 0.0 0.0 0.0 0.0

IMP 1.0 0.9 0.9 0.9 0.6

Data as in Table 2.

TABLE 5 | Second late-object test: success of the three systems IGN, FIX, and

IMP in the five extrinsic scenarios.

Extrinsic-phase scenario

System 1 2 3 4 5

IGN 1.0 1.0 1.0 0.0 0.0

FIX 0.9 0.9 0.7 0.0 0.0

IMP 1.0 0.9 0.9 0.0 0.0

Data as in Table 2.

TABLE 6 | Third late-object test: success of the three systems IGN, FIX, and IMP

in the five extrinsic scenarios.

Extrinsic-phase scenario

System 1 2 3 4 5

IGN 0.8 0.8 0.7 0.0 0.0

FIX 0.9 0.9 0.8 0.0 0.0

IMP 1.0 0.9 0.8 0.0 0.0

Data as in Table 2.

TABLE 7 | Stochastic environment: affordance probabilities for all objects and

actions.

Object Move action

prob.

Turn green

prob.

Turn red

prob.

Turn blue

prob.

1 Red square 0.6 0.7 0.0 0.8

2 Green square 1.0 0.0 1.0 0.8

3 Blue square 1.0 0.7 1.0 0.0

4 Red circle 0.6 0.7 0.0 0.8

5 Green circle 1.0 0.0 1.0 0.8

6 Blue circle 1.0 0.7 1.0 0.0

7 Red rectangle 0.6 0.7 0.0 0.8

8 Green rectangle 1.0 0.0 1.0 0.8

9 Blue rectangle 1.0 0.7 1.0 0.0

of the work by Montesano et al. (2008), Gonçalves et al. (2014)
propose to model affordances as the interaction between tools
and objects based on their physical (geometrical) properties.

The link between affordances and planning was investigated
in Ugur et al. (2009, 2011). The authors equated affordances

to the forward models, in particular to the triad <object-
features, action, effect>, where actions are pre-coded behaviors
for moving or lifting objects and effects are clustered with a
support vector machine. In a first phase the system learns the
affordances and in a second phase the system is assigned a
goal and plans the course of actions to pursue it based on a
breadth-first forward search over actions and states until it finds
a state similar to the goal. In Mar et al. (2015) a robot explored a
pulling action performed with a rake-like tool to retrieve a target
object. This allowed the robot to learn a mapping (through a
support vector machine) between the pose of the tool in space
and the affordances intended as the class (produced with a k-
means clustering) of the possible “action parameters-retrieval
effect” concatenated feature vector. For a given tool pose, this
allowed the robot to select related affordance (action-effect class)
and then to select the action parameters corresponding to the
highest effect. This system shares some resemblance with the
utility planner used here with the difference that in Mar et al.
(2015) affordances support the selection of actions based on
the amount of the expected desired (continuous) effect, whereas
in our system they support the selection of actions based on
their probability of producing the desired effect (which can be
present/absent).

The affordance concept used here is analogous to the one
of “preconditions” used in STRIPS-based planning operators.
Preconditions establish if the operator is applicable or not to
the current environment state (Fikes and Nilsson, 1972; Russell
and Norvig, 2016). A similar concept is the “initiation set” of
options in the reinforcement learning literature. The initiation
set encompasses the states in which the action policy of the
option can be performed (Sutton et al., 1999). Both concepts
are deterministic. Instead, in utility-based reasoning actions
produce desired effects only with a certain probability (Russell
and Norvig, 2016). We think this action-success probability is
the concept of artificial intelligence that is more similar to the
concept of affordance used here.

Some of the relations between attention, affordances and
intrinsic motivations were investigated in Nguyen et al. (2013)
and Ivaldi et al. (2014). They proposed a robotic system endowed
with a bottom-up attention system to detect the various objects
available in the scene. Intrinsic motivations related to knowledge
acquisition (3D object recognition) were used by the robot to
decide which strategy to use (autonomous vs. social) to decide
on which object to focus the learning resources. The work did
not investigate, as here, the specific effects of a restricted focus
of attention on the intrinsic-motivation mechanisms supporting
affordance learning.

A last field of research related to this work involves active
vision (Ballard, 1991). This literature is relevant as many
action affordances tend to involve objects and a controllable
visual sensor with a limited perceptual scope is a means to
isolate information on specific objects (not considering here the
important problem related to the fact that objects have different
sizes and this requires an adjustable visual scope). Previous
works (Ballard, 1991; Ognibene and Baldassare, 2015) have
shown how such systems decrease the computational burden
required by processing too wide visual images, and research on
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FIGURE 11 | Stochastic environment: affordance predictions after learning. Plotted as in Figure 5. (A) Move. (B) Turn red. (C) Turn red. (D) Turn blue.

TABLE 8 | Utility planning test: Objects in the utility planning test and their

corresponding values, probability of goal-accomplishing action success and

expected utility.

Object Value P(action success) Expected utility

Blue circle 1 0.7 0.7

Green square 1 0.8 0.8

Red rectangle 2 0.7 1.4

Red square 4 0.6 2.4

state-of-the-art deep neural networks applied to vision problems
is confirming the utility of an attentional focus (Xu et al., 2015).
Here we use active vision in a different way to extract information
on single objects, factored into information about the object state
and its location in space. As mentioned in the introduction, this
is a fundamental operation representing a first important step
from a factored (featured-based) representation of the world state

to a structured representation, allowing to reason on the state
and relations between objects, typically used in classic planning
(Russell and Norvig, 2016). Although this does not still allow the
performance of the complex logic-based reasoning of classical
planning, it allows the parsing of the whole goal into specific
solvable object-centered sub-goals in the extrinsic phase.

We started to explore the factorization of a scene by an active
vision system endowed with controllable restricted visual sensors
in a camera-arm robot interacting with simple-shaped 2D objects
as those used here (Ognibene et al., 2008, 2010). The sensor of
this system was controlled not only with a bottom-up attention
component, as here, but also by a top-down component able to
learn to find a desired target-object by reinforcement learning:
the latter component might be integrated into the current model
in the future. The system was developed to accomplish only one
extrinsic task, rather than multiple ones as here, and did not deal
with open-ended learning. A system developed starting from the
previous ones (Sperati and Baldassarre, 2014), again endowed
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FIGURE 12 | Performance of the goal-based planner and the utility-based

planner. Each bar is the average utility over 10 repetitions of the intrinsic-phase

training and 20 runs of the extrinsic-phase test. Statistical significance was

computed with a double-tailed t-test (Mid-line of boxes shows median values,

boxes show quartiles, and bars show the min-max range, of the

intrinsic-phase repetitions): *p < 0.05; **p < 0.01; and ***p < 0.001.

with a bottom-up and a top-down attention component, is
instead able to self-generate and learn tasks based on intrinsic
motivations. This system has been further developed to self-
generate and encode multiple visual-target goals, and to learn
the camera-controller to find them (Sperati and Baldassarre,
2018). These systems have functionalities complementary with
those of the system presented here, so they might be suitably
integrated in the future to have a system able to: (a) self-generate
goals and use them to drive the learning of the attention and
motor skills to accomplish them through intrinsic motivations
(previous systems) and (b) develop affordances and re-use the
previously acquired skills to solve complex extrinsic tasks (system
proposed here).

5. CONCLUSIONS AND FUTURE WORK

This work has focused on a possible specific instance of the
concept of affordance intended as the probability of achieving a
certain desired outcome associated to an action, by performing
such action on a certain object. We investigated here three issues
related to this concept: (a) within an open-ended autonomous
learning context, how can intrinsic motivations guide affordance
learning in a system that moves the attention of a visual
sensor over different objects; (b) how can such an attention
process support the decomposition of complex goals (tasks),
involving multiple objects, into separated sub-goals related to
single objects; (c) what could be the added value of affordances
in planning systems already having sophisticated forward models
of the world. For each issue we presented possible advancement

FIGURE 13 | Stochastic environment: quality of forward models acquired.

Statistical significance is based on a double-tailed t-test (Mid-line of boxes

shows median values, boxes show quartiles, and bars show the min-max

range, of the ten intrinsic-phase repetitions). *p < 0.05; **p < 0.01.

FIGURE 14 | Average number of actions to check for accomplishing each

sub-goal in the case of affordance-based restricted and nonrestricted planning

search. Statistical significance is based on a double-tailed t-test (Mid-line of

boxes shows median values, boxes show quartiles, and bars show the

min-max range, of the intrinsic-phase successful repetitions). ***p < 0.001.

with respect to the state of the art (section 4), and showed their
advantages in specific experiments (section 3). Several aspects of
the system could however be improved in future work.

Regarding the first issue, we proposed a mechanism to
use intrinsic motivations (system IGN) to improve previously
proposed ways (Ugur et al., 2007) with which a system endowed
with a mechanism focusing on only one object/condition per
time can decide whether or not to invest energy to explore it. The

Frontiers in Neurorobotics | www.frontiersin.org 22 July 2019 | Volume 13 | Article 45

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Baldassarre et al. Open-Ended Learning: Affordance, Attention, and Planning

proposed mechanism is quite general and could in principle be
used for any decisionmaking process supported by a collection of
information from the environment based on selective attention.
The proposed solution is based on an adjustable variable storing
the opportunity cost of the current choice, i.e., the value that
the system looses by selecting the current option rather than
alternative ones (Buchanan, 2008). The presented experiments
support the effectiveness of this mechanism.

With respect to intrinsic motivations, in the case of
deterministic scenarios where the system knows in advance that
the affordance probability is either 0 or 1, the value of actions on
the current object and the cost of alternatives was here estimated
in terms of intrinsic motivations measuring the system ignorance
(system IGN). This is not possible in stochastic scenarios where
the affordance probability can be any value ranging in (0, 1), so
we proposed an intrinsic motivation tied to the improvement,
rather than the level, of the probability estimation (system
IMP). This solution, building on previous works on intrinsic
motivations (e.g., Schmidhuber, 1991a; Santucci et al., 2013),
led to a faster learning of affordance probabilities in our tests.
However, an open problem of this solution, known in the
literature (Santucci et al., 2013), is the fact that error improvement
signals, as those used to compute intrinsic motivation in IMP,
are small with respect to noise as they are equivalent to a
derivative in time (vs. error signals used by IGN-like systems).
This makes them more unstable: future work should face
this problem.

Another important aspect related to autonomous learning
driven by intrinsic motivations is that here, for the sake of
focussing the research, the current system learns affordances on
the basis of pre-wired actions and goals (expected outcomes
of affordances). In a fully autonomous open-ended learning
agent such actions and goals should instead be autonomously
learned. Much literature has focused on the autonomous
learning of actions and, more recently, of goals (e.g., Kulkarni
et al., 2016; Santucci et al., 2016; Forestier et al., 2017;
Cartoni and Baldassarre, 2018; Nair et al., 2018). Future
work should thus aim to integrate the autonomous learning
of affordances with the autonomous learning of actions
and goals.

Regarding the second issue, related to the advantage
for planning of having an attention system focusing on
objects, we showed how the parsing of the scene into objects
allows the solution of non-trivial planning problems on the
basis of relatively simple one-step planning mechanisms.
This agrees with previous proposals, such as the “object
action compound” framework (Krüger et al., 2011; see
also Montesano et al., 2008) stating the importance of
representing information based on objects. Future work
should investigate the advantage of object-centered attention
andmulti-step planning.

Although the introduction of focused visual sensors
(attention) facilitates the parsing of the scene into objects,
it also makes decision making more difficult. Indeed, the system
has to look at different objects, and store information on them,
to decide on which object to act or not. We have seen that
the information to store can for example involve either the

expected information gain, as requested by intrinsic motivations,
or the utility of sub-goals, as requested by the solution of a
utility-based problem. Here we have proposed a first solution
to this problem that requires low computational resources
(scanning objects in sequence, computing their expected utility,
updating a variable that stores the maximum expected utility
encountered this far, and deciding to act on the current object
depending on how its utility compares with the maximum
expected utility). This mechanism proved effective in tests.
However, other more efficient (but also computationally more
expensive) mechanisms could be used, in particular based
on a memory of the specific utility of the different scanned
objects. This information could be indexed by the different
positions that have been visually inspected in the scene so
that the information itself is readily usable to guide top-down
attention processes and actions on specific target objects
(Ognibene and Baldassare, 2015).

Regarding the third and last issue, related to the possible
added value of affordances in planning systems, we showed
that affordances as defined here can be useful in goal-based
planning systems as they allow a search focused on actions
that can be used in the current context. In section 4 we
mentioned that this function is similar to that played by
preconditions in STRIPS-based planning and by the “initiation
set” in reinforcement-learning options. We have also seen that
a second function that affordances can play, in particular for
utility-based planning problems, is for weighting the importance
of alternative goals based on the probability to accomplish
them. The definition used to this purpose, Pr(s′

b,o
∈ G|a, sb,o)

can be related to one of internal models of the transition
function Pr(s′|a, s) used in model-based reinforcement-learning
systems (Sutton and Barto, 2018). These models take into
consideration stochastic environments rather than deterministic
ones, as usually done in symbolic planning; but on the other
hand they use atomic representations, s, of whole states, rather
than information on single objects and their relations as
done in symbolic planning using structured representations
(Russell and Norvig, 2016). In this respect, the concept of
affordances used here, pivoting on sb,o, starts to integrate
the two approaches as it focuses on single objects (the body
and the target object), and at the same time it considers
probabilities of their states (specifically encoded with factored
representations, such as pixels images, as commonly done in
robotic reinforcement learningmodels, Wiering and VanOtterlo,
2012). Future work could further develop this integration
(e.g., see Konidaris et al., 2018).

Overall, we think that showing how attention can support a
representation of information centered on objects rather than
on whole states, and the implications of this for autonomous
affordance learning and planning, is a very important issue to
which this work contributed.

We conclude by discussing how the system might scale
up to more complex scenarios. The overall architecture is
expected to scale up well to more complex environments but
the implementation of its components should be enhanced to
such purpose. For the sake of simplicity here we developed
the model components in a way that was sufficient to tackle
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a simple environment featuring a black background and non-
overlapping objects. A realistic environment with a rich texture
and several possibly-overlapping objects would produce cluttered
images. To face this condition the system should be endowed
with object segmentation capabilities (Zhang et al., 2008)
or robust object recognition algorithms such as deep neural
networks (LeCun et al., 2015). Interestingly, some of these
latter algorithms have started to use attention mechanisms to
improve object recognition (Maiettini et al., 2018): future work
might investigate the links between these mechanisms and the
attention processes presented here. More powerful deep learning
models might also be used to implement the predictors used
in the architecture. A last critical component is the simple
bottom-up attention mechanism used to identify objects, and,
as expected, this was limited (it scaled worse than linearly with
the number of objects). The component could be enhanced
with the addition of more sophisticated top-down attention
mechanisms able to drive attention on the basis of the current
knowledge on the identity and position of objects in the scene
(Rasolzadeh et al., 2010; Sperati and Baldassarre, 2014, 2018;
Ognibene and Baldassare, 2015).

A final general feature of the system that should be addressed
in future work is the fact that the information flows between
the several components of the architecture are managed by
a hard-coded central algorithm using time flags and in some
cases symbolic representations. This feature is shared by most
architectures of this type. An alternative approach would be
to follow the design of real brains where the information
flows between components is continuous and has a distributed
nature. An example of this is given in Baldassarre et al. (2013)
proposing an architecture for goal-based open-ended learning
where components are implemented on the basis of leaky-neuron
neural networks. This strategy has the advantage of a higher
biological realism (relevant when brain modeling is the research

objective) and for having a higher tolerance to noise affecting
the timing of events. On the other side it has the disadvantages
of making it more difficult to tune the whole system and also
to use some learning algorithms that require a precise timing
of events.
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