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We present a model for the autonomous and simultaneous learning of active binocular

and motion vision. The model is based on the Active Efficient Coding (AEC) framework, a

recent generalization of classic efficient coding theories to active perception. The model

learns how to efficiently encode the incoming visual signals generated by an object

moving in 3-D through sparse coding. Simultaneously, it learns how to produce eye

movements that further improve the efficiency of the sensory coding. This learning is

driven by an intrinsic motivation to maximize the system’s coding efficiency. We test

our approach on the humanoid robot iCub using simulations. The model demonstrates

self-calibration of accurate object fixation and tracking of moving objects. Our results

show that the model keeps improving until it hits physical constraints such as camera

or motor resolution, or limits on its internal coding capacity. Furthermore, we show

that the emerging sensory tuning properties are in line with results on disparity, motion,

and motion-in-depth tuning in the visual cortex of mammals. The model suggests that

vergence and tracking eye movements can be viewed as fundamentally having the same

objective of maximizing the coding efficiency of the visual system and that they can be

learned and calibrated jointly through AEC.

Keywords: autonomous learning, active perception, binocular vision, optokinetic nystagmus, smooth pursuit,

efficient coding, intrinsic motivation

1. INTRODUCTION

The development of sensorimotor and cognitive skills in humans and other animals provides a rich
source of inspiration for research in robotics and artificial intelligence. For example, how can we
build robots that acquire intelligent behavior in an autonomous and open-ended developmental
process mimicking that of human infants? And, in turn, can we use such robotic models to better
understand the computational principles underlying human development?

Early stages of human development are largely concerned with learning to control various
sensorimotor systems. These systems form the foundation for the later development of higher
cognitive functions. Specifically, some of the earliest sensorimotor skills developing in human
infants are related to active visual perception. The infant needs to make sense of the signals arriving
at her eyes and she needs to learn how to move her eyes to facilitate perception of the world around
her. For the development of visual representations (in particular early visual representations) the
Efficient Coding Hypothesis has been the most influential theory. Inspired by the development of
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information theory, Attneave (1954) and Barlow (1961) have
argued in their pioneering works that the visual system
exploits the statistical regularities of visual input in order
to encode the visual scene efficiently. Furthermore, Barlow
(1961) conjectured that early sensory systems have evolved to
maximize the amount of information about the visual scene
passed to successive processing stages with a constraint of
minimizing the associated metabolic costs. Later, the work of
Olshausen and Field (1996) established a relation between the
statistical structure of natural images and the response properties
of cortical simple cells. They proposed to represent natural
image patches as linear combinations of sparsely activated basis
functions in order to encode the regularities in the images
efficiently. Their experiments revealed that a model which learns
sparse codes of natural scenes succeeds in developing receptive
fields similar to those in the visual cortex. Since then, many
experiments have supported the idea that efficient coding is
a ubiquitous strategy employed in multiple modalities across
diverse organisms (Olshausen and Field, 2004).

A recent extension of the efficient coding hypothesis is Active
Efficient Coding (AEC). AEC postulates that biological sensory
systems do not just seek to encode the sensory input efficiently,
but that they also utilizemotor behaviors, such as eyemovements,
to further improve their coding efficiency (Zhao et al., 2012;
Lonini et al., 2013b). Thus, AEC studies efficient coding in the
context of behavior and considers the full perception-action
cycle and how the organism’s behavior shapes the statistics
of the sensory signals. AEC works by combining a sparse
coding model with a reinforcement learner, which is responsible
for generating actions. The sparse coding model learns to
efficiently encode the visual input, which serves as a state
representation for the reinforcement learner. The reinforcement
learner generates actions in order to increase the coding efficiency
of the sparse coder.

In previous work, we have successfully applied the AEC
approach to model the development of disparity tuning and
vergence eye movements using both discrete (Zhao et al., 2012;
Lonini et al., 2013b) and continuous actions (Klimmasch et al.,
2017). In addition, we have shown that the AEC framework can
also be used to model the development of other eye movements
such as smooth pursuit (Zhang et al., 2014) and the optokinetic
nystagmus (Zhang et al., 2016). Furthermore, the approach has
been extended to also learn attention shifts via overt saccadic eye
movements (Zhu et al., 2017). In the present study, we present an
integrated model of the autonomous learning of active depth and
3-D motion perception using the AEC framework. The model
autonomously learns to generate vergence and smooth pursuit
eye movements in the presence of a stimulus moving in 3-D.
Learning is driven by the agent’s intrinsic motivation tomaximize
its coding efficiency. The advancement to our previous work is
the integration of learning to perceive and fixate stimuli located
in 3-D and to perceive and track the 3-D motion of respective
stimuli. Our results show that the model self-calibrates its eye
movement control, improving its performance until it either
hits a physical constraint (camera or motor resolution) or runs
out of internal resources (capacity of the sparse coding model).
Thereby we show and explain the limitations of the model.

Furthermore, we show that the model’s learned representation of
the visual input matches recent findings on the tuning properties
of neurons in visual cortex coding for 3-D motion. Thus, the
model offers an explanation of how these tuning properties
develop in biological vision systems.

2. MATERIALS AND METHODS

2.1. Model Overview
Our model consists of three distinct parts (see Figure 1)
explained in detail below. At first, one image per camera is
preprocessed and dissected into sets of patches. These are
encoded by spatio-temporal basis functions of a sparse coding
model. This forms a state representation of the sensory input. The
state information is processed by a reinforcement learner, which
generates camera movements. The negative reconstruction error
of the sparse coding stage serves as an indicator of the efficiency
of sensory encoding and is used as the reward signal of the
reinforcement learner. After execution of the calculated camera
movement, the next image pair is sensed and the perception-
action cycle starts anew.

2.2. Simulation
We simulate the perception-action cycle by using Gazebo1, a
well known open-source robot simulation platform. Our agent
operates the iCub2 robot in a rendered virtual environment
by moving its cameras (see Figure 2). The two cameras have
a horizontal field of view (FOV) of 90◦ and a resolution of
320 px × 240 px. The distance between the cameras is dE =

0.068m. The visual stimuli presented to the agent were taken
from the man made section of the McGill Calibrated Color
Image Database (Olmos and Kingdom, 2004), which contains
natural images of urban scenes. Each stimulus had a resolution
of 600 px × 600 px. The stimuli were placed on a 1.5m × 1.5m
plane, perpendicular to the gaze direction. The plane moved
within ±30◦ vertically and horizontally from the agent’s center
of FOV and [1, 2.5]m in depth. The background image in our
virtual environment was taken from Frank Schwichtenberg3 and
is licensed under CreativeCommons (CC BY-SA 4.0).

2.3. Image Processing
At first the images from the left and right camera are gray
scaled and convolved with a combined whitening/low-pass
filter, a method described by Olshausen and Field (2004). The

frequency response of that filter is defined by R(f ) = fe
−( f

f0
)n
,

where we set the cutoff frequency f0 = 96 px/image and
the steepness parameter n = 4. Olshausen and Field (2004)
stated that such a filter not only reduces various challenges in
operating on digitized natural images but roughly resembles
the spatial-frequency response characteristic of retinal ganglion
cells. Following Lonini et al. (2013b) we use multiple spatial
scales to increase the operating range and robustness of our

1http://gazebosim.org/
2http://www.icub.org/
3https://commons.wikimedia.org/wiki/File:Uetersen_Langes_Tannen_Panorama_
02.jpg
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FIGURE 1 | Overview of the active vision architecture. From the binocular visual input at time points t− 1 and t, patches of different resolutions are extracted for the

coarse pc (blue) and fine pf (red) scale. These patches are encoded by spatio-temporal basis functions of the coarse scale (blue) and fine scale (red) sparse coders.

The activations of both sparse coders’ basis functions φc and φf form the state vector st. The negative reconstruction error indicates the encoding efficiency and is

used as the reward signal rt for the reinforcement learner. The Critic computes from rt and st a TD-error δt and three distinct actors generate from st movement

actions αpan,t, αtilt,t, αvergence,t for the respective camera joints.

FIGURE 2 | The agent operating the iCub robot inside the virtual environment

rendered by the Gazebo simulator.

model. Specifically, we extract two sub-windows with different
resolutions from the preprocessed left and right camera image.
The first sub-window is a coarse scale 128 px × 128 px image,
which covers 36◦ FOV and corresponds approximately to the
human near peripheral vision. To simulate the coarser resolution
in the peripheral parts of the human FOV, this image is down-
sampled by a factor of 4 via a Gaussian pyramid, resulting in
a 32 px × 32 px coarse scale input. The second sub-window is
a fine scale 64 px × 64 px image, which covers 18◦ FOV and
corresponds approximately to humanmacular vision. This image
is not down-sampled. Each pixel in the coarse (fine) scale image
corresponds to 1.125 (0.281) degrees. Subsequently, patches of
8 px × 8 px size with a stride of 4 px are cut for each scale and
camera and normalized to zero mean and unit norm. At each
point in time of the simulation, respective patches of the left

and right camera image for the current and last iteration are
combined to a 16 px × 16 px binocular spatio-temporal patch.
This is conducted for each scale and the sets of patches are then
encoded by the respective sparse coders.

2.4. Sparse Coding
The sensory input is encoded by sparse coding models for the
two scales. For each scale S ∈ {c, f } there is a corresponding
dictionary BS of spatio-temporal basis functions φS,i with |BS| =

600. For the coarse scale, there are |pc| = 49 spatio-temporal
patches and for the fine scale there are |pf | = 225. Each spatio-
temporal patch pS,j is encoded by a linear combination of 10 basis
functions φS,i to form an approximation p̂S,j of the respective
patch by

p̂S,j =

|BS|
∑

i=1

κ
j
S,iφS,i . (1)

This is accomplished by the matching pursuit algorithm (Mallat

and Zhang, 1993), where we restrict that 10 κ
j
S,i are non-zero.

Hence, we ensure a sparse encoding by using only a subset of 10
basis functions from the dictionary to approximate each image
patch. The error of this approximation is the reconstruction error
ES (Lonini et al., 2013b), defined as

ES =

|pS|
∑

j=1

||pS,j − p̂S,j||
2

||pS,j||2
. (2)

We use the negative of the total reconstruction error E = Ec+Ef
as the reinforcement signal in the next stage of the procedure.
The sparse coding model creates as the last step a feature vector
st of size 2|BS|, which serves as the sensory state information
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for the reinforcement learner. Every entry in st corresponds to

the mean squared κ
j
S,i over all patches. This state representation

is motivated by the results of Freeman and Ohzawa (1990)
who demonstrated that the response of complex cells could be
modeled by summing the squared outputs of preceding simple
cells. In our case one can interpret the φS,i as receptive fields of
simple cells in the visual cortex and the entries in the feature
vector as activities of complex cells which pool the activities of
simple cells over a larger portion of the visual field.

The receptive field (RF) of a neuron in the visual system refers
to the visual attributes of a stimulus it is confronted with which
generate a response in that cell. The attributes encoded cover a
wide range, such as location within the visual field, orientation,
disparity, motion direction, velocity and contrast to name a few.
Jones and Palmer (1987) have shown that the RFs of neurons
in cat striate cortex are particularly well characterized by 2D
Gabor filters. The idea that visual input is encoded by elementary
components resembling Gabor functions is supported by Bell
and Sejnowski (1997). They demonstrated that orthogonal
decompositions of natural scenes lead to filters which are best
characterized by Gabor-like functions. How RFs arise in living
organisms remains a big topic of investigation. In her review of
retinal waves Wong (1999) provides support that these patterns
of coordinated activity of the premature retina mediate the
shaping of structure and function of the visual system in animals
already before birth. The current point of view is that the
foundations of the visual system are established by spontaneous
activity and molecular cues before eye opening (Huberman et al.,
2008; Hagihara et al., 2015). Subsequently, the system is fine
tuned by visual experience, especially in the so called critical
period of development (Thompson et al., 2017). Chino et al.
(1997) have quantified the fine tuning of response properties of
disparity selective V1 neurons in macaque monkeys during the
first four postnatal weeks. They found that a coarse disparity
selectivity was already present at the sixth postnatal day. In
recent studies it has been shown that RF properties such as
orientation and direction sensitivity are even established in mice
when they are dark-reared (Ko et al., 2014). In view of this
background we initialize our basis functions as Gabor wavelets.
Specifically, we assume that neurons in the visual system have RFs
resembling 2D Gabor functions already before visual experience
is gained. However, we do not assume any correlations in time
representation of pairs of RFs or space representations of left and
right eye encoding RFs. Thus, we initialize each of the four sub-
fields of all φS,i with independent random 2D Gabor functions,
defined by

g(x, y)1 = exp(−
x′2 + β2y′2

2σ 2
) cos(2π

x′

λ
+ ψ) (3)

1 = {λ, θ ,ψ , σ ,β , xc, yc} (4)

x′ = (x− xc) cos θ + (y− yc) sin θ (5)

y′ = −(x− xc) sin θ + (y− yc) cos θ , (6)

where λ is the wavelength of the sinusoidal factor, θ represents
the orientation, ψ is the phase offset, σ is the standard deviation
of the Gaussian envelope, β is the spatial aspect ratio which

specifies the ellipticity, and xc, yc are the coordinates of the
center. The parameters were drawn from uniform distributions
over the following intervals: λ∼ [ 83 , 16] px, θ∼ [0, 180] deg,

ψ∼ [0, 360] deg, xc, yc ∼ [ 83 , 8] px. The aspect ratio of the

Gaussian envelope was set to β = λ
0.8·8px and the envelope’s

standard deviation was kept constant σ = 2.5px.
The basis functions are adapted during the training to

represent the visual input in the best way with respect to
its reconstruction. Therefore, the basis functions are updated
through gradient descent on the reconstruction error (Olshausen
and Field, 1996):

1φS = ηκS(pS − p̂S)
1

|pS|
, (7)

where η is the learning rate, which we set to 0.5 for both scales.
After each update step all basis functions are normalized by
their energy.

2.5. Reinforcement Learning
In the course of training our agent learns to use the sensory
state representation to generate camera movements. For this
we use a reinforcement learning approach (Sutton and Barto,
1998) named natural-gradient actor-critic (NAC) with advantage
parameters (Bhatnagar et al., 2009). The critic learns to
approximate the value function given the current state st , which
is represented by the sensory state vector provided by the sparse
coding model. The actor is generating movement commands
on the basis of the current state, which results in a new state
and a reward. The goal of the reinforcement learning is to
select actions which maximize the discounted cumulative future
reward, defined by R(t) =

∑∞
i=0 γ

irt+i, where we set the reward
rt = −Et and the discount factor γ = 0.3. The value function is
learned by computing the temporal difference (TD) error δt and
approximating the average reward Ĵt . The TD-error is defined by
Equation 8, where V̂t(st) = 〈θVt , st〉 is the critic’s current value
function approximation with θVt being the respective parameter
vector and 〈, 〉 indicating the inner product of two vectors. The
approximation of Ĵt is defined by Equation 9 which is equivalent
to low-pass filtering rt , where ξ = 0.01 is the smoothing factor.
For the value function approximation we use a two layer artificial
neural network (ANN) with |st| input neurons, one output
neuron and θV as weights between the layers. The weights are
updated by Equation 10, where α = 0.4 is the learning rate of the
critic. The low value of γ was found empirically to produce good
performance. As the agent receives a reward in every iteration
there is no issue of delayed rewards and therefore a fairly strong
discounting of future rewards does not disadvantage the learning
or performance.

δt = rt − Ĵt + γ V̂t(st)− V̂t−2(st−2) (8)

Ĵt = (1− ξ )Ĵt−1 + ξ rt (9)

1θVi,t = αδtst−2 (10)

The movement commands are generated by three individual
actors which control the agent’s pan, tilt, and vergence joints of
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the cameras, respectively. Each actor maps the current st to an
action a ∈ A = {−16,−8,−4,−2,−1,−0.5, 0, 0.5, 1, 2, 4, 8, 16}.
The actions of the pan and tilt joint controlling actors are
interpreted as acceleration commands of the cameras, whereas
the vergence joint controlling actor’s output is interpreted as
change in the vergence angle of the cameras. Therefore, the units
for the pan and tilt actions are deg/s2 and deg for the vergence
actions. Each actor is implemented as a two layer ANN with |st|
input neurons, |A| output neurons and θA as weights between the
layers. The activation za,t of the output neuron corresponding to
the respective action a is computed by za,t = 〈θAa,t , st〉. The actions
applied are chosen by sampling from a Softmax policy, where the
probability πa,t for action a is

πa,t =
exp(za,tT−1)

∑|A|
n=1 exp(zn,tT

−1)
, (11)

where T is the temperature parameter, which controls the
exploration vs. exploitation behavior of the agent. We set T = 1
to ensure the agent explores while learning. The actors’ weights
θA are updated by

ζt = ∇θ logπθ (at−2 | st−2) , (12)

1wt = β(δtζt − ζt(ζ
T
t wt−1)) , (13)

1θAt = ηwt , (14)

where ζt are the policy derivatives, wt are the advantage
parameters, β is the learning rate of the natural gradient and η
is the learning rate of the actor. The family of NAC algorithms
are reinforcement learning approaches, which combine learning
from the TD-error δt and a policy gradient. However, instead of
following the regular (vanilla) policy gradient, NAC algorithms
are following the natural gradient to update the actor’s weights
θA. A thorough derivation and discussion of the natural gradient
is provided, e.g., by Peters et al. (2005). The NAC algorithm with
advantage parameters wt does not explicitly store an estimate of
the inverse Fisher information matrix, which the other members
of the NAC family are using to follow the natural gradient
as Bhatnagar et al. (2009) point out. This makes the NAC
algorithm with advantage parameters computationally cheaper
and the approximation of the natural gradient through the
wt is comparable to the other members of the NAC family.
The interested reader is referred to Bhatnagar et al. (2009)
for derivations of Equations 8–10 and Equations 12–14 and
convergence analysis and discussion of various NAC algorithms.
We set for all actors β = 0.16 and η = 0.4. Due to the model’s
architecture, it takes two iteration steps until an action has its full
effect on the state representation. Therefore, we update the critic
and the actors with respect to st−2 and at−2.

2.6. Experimental Procedure
In our experiments we probe the agent’s capability to learn to
fixate and track a moving stimulus. Each experiment consists
of 5 · 105 training iterations, each corresponding to 100ms.
Experiments are repeated 10 times with different randomization

seeds. Training is divided into intervals, each lasting 40 iterations.
At the start of each interval, a stimulus is drawn at random
from a set of 100 images from the McGill dataset and centered
in the agent’s FOV. The stimulus is positioned at a distance to
the agent drawn from a uniform distribution over [1, 2.5]m.
The agent initially fixates on a point directly in front of it
at a distance chosen at random from the interval [0.3, 3]m.
During the interval, the stimulus moves according to velocities
drawn from uniform distributions over [−7.5, 7.5] deg/s in the
horizontal and vertical directions and [−0.375, 0.375]m/s in
depth. The agent updates the pan and tilt velocities of its eyes
and the vergence angle between them according to the policy.
In case any joint exceeds a pre-defined angle boundary (±15 deg
for the pan/tilt joint, [0.2, 16.3] deg for the vergence joint), the
joint velocities are set to zero and the agent’s gaze is reset as
described afore.

3. RESULTS

We start by presenting the quality of sensory state encoding
of our approach. Figure 3A shows the reconstruction error
of both sparse coders vs. training time in solid lines. The
improvement of stimulus reconstruction in both scales over the
course of training clearly shows an increase in coding efficiency.
As we enforce the encoding to be sparse (see Equation 1),
the agent works with the same small amount of resources
throughout training. Hence, by improving the encoding result
using the same amount of resources as at the start of training,
the agent increases its encoding efficiency. We also tested
the encoding performance of the sparse coding model in a
testing procedure (which is described further below) with a
stimulus set disjoint from the training set. As the agent showed
similar reconstruction capabilities in both training and testing
procedures (compare Figure S3), the learned sparse coding
dictionary can be considered generic (at least for urban scenes
and man-made objects as they occur in the data base). In a
control experiment we used the same model but exchanged
the action generation of the reinforcement learning (RL) by
a uniform sampling at random of the pan, tilt and vergence
actions from the same action sets we used before. The encoding
performance of both sparse coders in this control experiment is
shown in Figure 3A in dashed lines. The sparse coders’ coding
efficiency does not significantly improve in this setup in the
course of training compared to the model using RL for action
generation. This shows that the RL does improve the coding
efficiency in our AEC framework. In Figure 3B six representative
spatio-temporal basis functions of the coarse scale dictionary are
depicted at initialization time and at the end of the training. The
fine scale bases look similar. The basis functions were initialized
by random Gabor wavelets, but the sparse coding model has
adjusted the bases to properly encode the stimulus statistics it was
confronted with.

For a qualitative impression of the reconstruction
performance, a stimulus is shown at different processing and
training stages in Figure 4. The comparison of the preprocessed
input images and the respective reconstructions thereof, shows
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FIGURE 3 | (A) Reconstruction error of the sparse coding model. The error is

plotted in arbitrary units vs. training time for the coarse scale (blue) and fine

scale (red) sparse coder in solid lines. The model’s encoding performance in a

control experiment, where the actions were uniformly sampled at random from

the same action sets (RNDCTL) is plotted in dashed lines. (B) Coarse scale

basis functions. Six representative spatio-temporal basis functions of a coarse

scale dictionary are shown at the start (left) and the end of training (right). Every

basis function consists of 4 parts. The rows show the corresponding patch for

the left (top) and right (bottom) eye. The columns represent the patch for time

t− 1 (left) and t (right).

a clear improvement of the reconstruction quality between the
sparse coding model at initialization time and at the end of
training. All images are shown for the left eye and its respective
basis parts at time t are used for encoding and reconstruction.
For a fair comparison between the trained and the untrained
agent the joint angles of the cameras are set to perfectly
fixate the center of the stimulus. The image reconstruction is
already at initialization time fairly decent due to the size of the
sparse coding dictionary, the amount of basis functions used
for individual patch encoding and the perfect fixation of the
stimulus. Though, the encoding and therefore the reconstruction
improves as the basis functions are adapted to the stimulus
statistics. The image reconstruction with white noise initialized
basis functions looks more noisy at initialization time but similar
at the end of training (see Supplementary Material).

We tested the policy at 10 points during training for
50 · 63 = 10800 trials, each corresponding to one of the possible
combinations of 50 stimuli chosen from a set of images from the
McGill database disjoint from the training set and 6 velocities
in each of the three directions (horizontal, vertical and depth).
The velocities were chosen from {±0.1,±0.5,±1} times the
maximum velocities in each direction. Each trial lasted for 10
iterations, as no performance improvement was gained after that.
To correctly track the stimulus, the agent needs to rotate its eyes

with the same speed as the stimulus is moving in the respective
direction. Therefore, the errors for the pan and tilt joints1vwere
measured in deg/iteration as the difference between the speeds of
the object and the eyes at the last iteration of the trial. The error
for the vergence joint 1ξ was defined as the difference between
the actual and desired vergence angle, which was computed by

ξ∗ = 2 arctan

(

dE

2dO

)

, (15)

where dE is the horizontal separation between the eyes and dO
is the object distance. During the performance assessment, the
learning of the sparse coders and the reinforcement learner was
switched off and the actors applied a greedy policy. The testing
performance is depicted in Figure 5A. For each of the respective
joints the median of the absolute error at the last iteration of a
testing trial is plotted in solid lines and one IQR is indicated by
shading. Statistics are computed over all testing trials.

We also examined the influence of the sparse coder’s basis
function dictionary size on the testing performance. Figure 5B
shows the testing performance after training for 5 · 105 iterations
for |BS| ∈ {100, 200, 400, 600} on the same test stimulus set
used before. Each experiment was repeated 3 times with different
randomization seeds. A student’s t-test revealed a significant
improvement (p-values < 10−8) for all comparisons marked
in Figure 5B. The errors decrease with increasing dictionary
size. Calculation of the effect sizes by Cohen’s d (Cohen, 1988)
showed that increasing the dictionary size to 800 results in
a neglectable effect of d < 0.045 compared to |BS| =

600. Therefore, we conclude that the model’s performance
saturates when ∼ 600 basis functions are present. Initializing
the basis functions with white noise yielded similar results (see
Supplementary Material), though the learning progress was less
robust, as the IQRs were bigger before convergence.

In Figure 6 we provide a more detailed view of the learned
policies averaged over 10 agents and the 50 stimuli of the test
set. It shows the probability distributions of the action sets
of the respective pan, tilt and vergence actor over a range
of errors in the corresponding state space. The ideal policy
π∗ is a diagonal in each case. The pan and tilt actor’s policy
was probed by moving the stimulus only along the respective
dimension. For the vergence actor the stimulus’s distance was
varied but the object remained static. Thereby, we avoided any
interference between the actors. The pan and tilt actors perform
more accurately the bigger the absolute speed errors are. For
small speed errors the ideal action is not uniquely identified.
The vergence policy shows the desired diagonal structure only
for negative and small positive vergence errors 1ξ . This is due
to the ranges of initial eye fixations and stimulus depths in our
experimental setup. Specifically, the agent is rarely confronted
with big positive vergence errors and never with1ξ > 3 deg (see
Equation 15). An accurate vergence policy for large positive 1ξ
would require a training setup where such vergence errors are
encountered regularly.

For a qualitative impression of the behavior we show in
Figure 7 good examples of movement trajectories of an agent
for one stimulus. For the pan and tilt dimension the stimulus
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FIGURE 4 | Input image reconstruction. Depicted are column wise from left to right the original whitened camera image, the cropped, down-sampled, and normalized

input image for the coarse scale (top row) and fine scale (bottom row) sparse coders. Right to the preprocessed images are the respective images reconstructed with

random Gabor wavelets at initialization time and the images reconstructed with learned basis functions at the end of training.

speed changed and the respective joint speed was reset to
0 deg/s every 10 iterations. For the vergence dimension the eyes
were initialized with varying 1ξ errors every 10 iterations. We
demonstrate the agent’s performance additionally in a video
(see Supplementary Material) for various stimuli andmovement
speeds. The object tracking is driven by the movement of the
object, as the agent can best encode the visual input stream of the
moving object if the object remains static on the retina (camera
images). The agent manages to establish a static retinal image by
moving its eyes with the same speed as the fixated object moves.

In two additional experiments we investigated the limits of our
model. Both were conducted the same way as described before.
In the first experiment we reduced the camera resolution by
providing no fine scale sparse coder (NFS) to the agent. In the
second experiment we reduced themotor resolution by providing
a coarser action set (CAS) to the agent. The coarser action set
was defined by A = {−16,−8,−4,−2,−1, 0, 1, 2, 4, 8, 16} for all
actors, i.e., the actions ±0.5 have been removed. Figure 8 shows
the results of this analysis. A student’s t-test was used to compare
the performance between the agents with NFS and CAS and an
agent with standard configuration (STD). The difference between
NFS and STD was significant (p-values < 10−57) with an effect
size of Cohen’s d > 0.622 for all joints. The comparison between
the agent with the CAS and STD showed significant differences
for the tilt and vergence actor (p-values < 10−57) with effect
sizes of d > 0.219. The difference between the pan actors was
also significant (p = 0.003), but the effect size of d = 0.041
was relatively small. These results demonstrate that the agent
keeps improving until it hits physical constraints such as camera
or motor resolution, or limits on its internal coding capacity as
shown in Figure 5B.

3.1. Analysis of Basis Function Properties
We investigated whether the learned basis functionsmaintained a
Gabor-like structure and compared their properties to biological
data. For that we fitted 2D Gabor functions (see Equations 3–
6) to the four sub-fields of the basis functions. The squared
norm of the residual of the basis functions r had a mean
of µ = 0.003 ± 0.006 SD at initialization time. After
training the mean of r was µ = 0.038 ± 0.034 SD for
the coarse scale and µ = 0.011 ± 0.016 SD for the fine
scale basis functions. Basis functions initialized with white
noise have a mean of r of µ = 0.188 ± 0.022 SD. Hence,
the basis functions remained Gabor-like. The histograms of
orientation preferences θ of the coarse scale (blue) and fine
scale (red) basis functions are depicted in Figure 9A. Vertical
(∼ 42%) and horizontal (∼ 22%) orientations are most common.
This is in line with biological findings on the so-called
oblique effect, which show an over-representation of vertical
and horizontal RFs in many species such as cats, monkeys
and humans (Appelle, 1972; Li et al., 2003). This bias is
strongly shaped by the stimulus statistics the agent is facing
during training, as there is a prevalence of horizontal and
vertical edges. We have investigated RF properties which arise
from normal and abnormal rearing conditions in more detail
in Klimmasch et al. (2018).

We further analyze the disparity preferences d̂ of the basis
functions for the respective basis sub-parts representing time t
for both scales (see Figure 9B). The disparity preference at time t
is computed by

d̂ =
λ(ψt,left − ψt,right)

2π cos θ
. (16)
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FIGURE 5 | (A) Testing performance vs. training iteration. Depicted are the respective errors in the pan 1v (yellow), tilt 1v (purple), and vergence 1ξ (green) joint of

the testing procedures for all test stimuli and movement speeds over 10 trials at the respective points in time during the training procedure. The lines represent the

median errors and the shaded areas show one inter quartile range. (B) Testing performance at the end of training for agents with different sizes of sparse coding

dictionaries over 3 experiment repetitions. Significant differences (p < 0.05) between two sets of data are assessed by a t-test and marked (*). Horizontal bars indicate

effect size as measured by Cohen’s d.

FIGURE 6 | Learned policy distributions averaged over 10 agents and 50 stimuli. Depicted are action probabilities for the respective pan, tilt and vergence actor as a

function of state errors.

The distribution of preferred disparities is centered
at zero degrees and covers a range of about ±2◦

for the fine scale and ±8◦ for the coarse scale. This
is consistent with the biological finding that the
majority of receptive fields in macaque V1 and middle
temporal (MT) visual cortex are tuned to near zero
disparities (Prince et al., 2002; DeAngelis and Uka, 2003).

The velocity preference v̂ for a given eye, say, the left eye, is
computed by

v̂ =
λ|ψt,left − ψt−1,left|

2π
. (17)

Figure 9C shows that the basis functions have a preference for
encoding low velocities at both coarse and fine scale. Orban
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FIGURE 7 | Movement trajectories of an agent for one stimulus. For pan and tilt the respective joint speed was reset to 0deg/s every 10 iterations as indicated by the

red bars. For the vergence joint the fixation angle ξ was initialized with varying vergence errors every 10 iterations. The actual policy π is plotted, respectively, in yellow

(pan), purple (tilt), and green (vergence) and the desired policy π∗ in black.

FIGURE 8 | Testing performance at the end of training for agents with different configurations. Depicted are the respective errors in the pan 1v (yellow), tilt 1v (purple)

and vergence 1ξ (green) joint for all test stimuli and movement speeds. The configurations span the situations when there is no fine scale sparse coder (NFS), a

coarser action set (CAS), and when the standard configuration is used (STD). Horizontal bars indicate comparisons between two sets of data as assessed by a t-test.

Significant differences (p-values < 0.05) are marked (*) and effect sizes are indicated as measured by Cohen’s d.

et al. (1986) analyzed the velocity preference of V1 and V2
neurons in macaque monkeys and Felleman and Kaas (1984)
have shown for the further visual processing path in cortex of
owl and macaque monkeys that neurons in the MT cortex are
also encoding stimulus velocities but typically higher velocities
than neurons in V1 and V2. This is most likely due to the
increased receptive field size ofMT neurons compared to RF sizes
of neurons in lower areas. The stimulus selectivity of our basis
function sub-parts show similar v̂ distributions to V1 and V2

velocity preference of neurons encoding the central visual field
(compared to Orban et al., 1986). Therefore, our results provide
support for interpreting the sub-parts of our basis functions, i.e.,
the columns, as RFs of binocular simple cells in V1/V2 and a
complete basis as the response of a complex cell pooling activities
from multiple simple cells.

Figure 10A shows the disparity preference d̂ of the basis
functions at time t vs. t − 1. This illustrates that the agent
has learned representations for all situations it was confronted
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FIGURE 9 | Basis functions’ stimulus preferences for the coarse scale (blue) and fine scale (red) from a typical experiment. (A) Histogram of orientation preferences θ .

(B) Histogram of disparity preferences d̂. (C) Histogram of velocity preferences v̂.

with during the training phase. Specifically, 45.5% of the basis

functions are representing a disparity of |d̂| ≤ 1.125 deg =̂ 1 px
in the coarse scale and 40% of the basis functions encode
|d̂| ≤ 0.281 deg =̂ 1 px in the fine scale, respectively. These basis
functions represent the situations where the agent was fixating
the stimulus within 1 px accuracy at time t−1 and kept on fixating
it at time t. Other basis functions show, e.g., tuning for close to
zero disparity at time t− 1 but not at time t. Such basis functions
can detect object movement in depth, where the object leaves the
current fixation plane.

In general, various kinds of motion can be encoded with
our basis functions, such as fronto-parallel and 3-D motion.
In case of equal velocity representation for left and right eye,
a fronto-parallel motion is encoded. Whereas different velocity
preferences in both eyes represent a motion in depth (Czuba
et al., 2014). Figure 10B depicts the results of this analysis
for both scales. The linear correlation between the basis parts
representing the left and right eye shows a correlation coefficient
of ρ = 0.215 for the coarse and ρ = 0.289 for the fine scale.
This indicates that most basis functions are encoding motion in
depth, nevertheless a considerable amount of basis functions are
representing fronto-parallel motion.

Electrophysiological recordings from neurons in the MT area
of macaque visual cortex show that most MT neurons are
tuned to both binocular disparity and the direction of stimulus
motion, and many MT neurons have their disparity and motion
tuning independent of each other (DeAngelis and Newsome,

2004). A more recent study of Sanada and DeAngelis (2014) has
shown that about a half of the neurons in macaque MT cortex
are selective for the direction of motion in depth with some
contribution of disparity cues. In this context we analyzed the
average velocity preference of both eyes vs. the average disparity
preference for t and t − 1 in Figure 10C to study the results of
joint encoding of both velocity and disparity. It is evident from
Figure 10C that the velocity and disparity preferences have no
linear correlation and thus they respond to a combination of
specific disparity andmotion. Despite a peak in near zero velocity
and disparity, as already seen in Figure 9, one can clearly observe
that the learned basis functions are encoding a wide range of
velocities and disparities.

The distribution of preferred disparities in the model
(see Figure 9B) has less variance compared to biological
data (DeAngelis and Uka, 2003; Sprague et al., 2015). We
investigated whether the agent encounters a too narrow range
of disparities during training, as the range of object distances
is small and the objects are planar textures. Hence, we trained
our agent as described before, but at each training interval
the stimulus was at random either tilted or slanted by an
angle uniformly drawn from ±45 deg and the stimulus distance
was uniformly drawn from [0.3, 1.5]m. As suspected, this
manipulation resulted in a larger variance of the distribution of
preferred disparities of the basis functions for both scales. We
verified this by applying a Brown-Forsythe test on distributions
of preferred disparities trained in the standard and the afore

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 49

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Lelais et al. Development of Active Binocular and Motion Vision

FIGURE 10 | (A) Basis functions’ disparity preference d̂ at time t vs. t− 1 from a typical experiment. Each dot represents one basis function of the coarse scale (blue)

or the fine scale (red). (B) Basis functions’ velocity preference v̂ at left eye vs. right eye. (C) Basis functions’ velocity v̂ vs. disparity d̂ preference averaged over left and

right eye and time t and t− 1, respectively. Here we show the basis functions’ joint encoding of velocity and disparity. The basis functions are sensitive to a wide range

of combinations of preferred velocities and preferred disparities. The velocity and disparity preferences of basis functions are not correlated.

mentioned modified scenario. For both the coarse scale (p =

1.39 · 10−3) and the fine scale (p = 2.81 · 10−2) the test indicated
a significant increase in the variance of the distributions of
preferred disparities. The testing performance over 10 repetitions
with different randomization seeds in this modified scenario
was similar to the standard scenario. Hence, with our approach
the agent can encode and track non-fronto-parallel objects as
well. The study of Zhu et al. (2017) has demonstrated that
within our AEC framework an agent can also learn to fixate
3D objects. In an additional control experiment we tested the
standard agent with a sphere-shaped object instead of the fronto-
parallel plane and projected the same natural textures on top of
the sphere as in the standard testing procedure. In a video (see
Supplementary Material) we demonstrate that an agent which
was trained with a fronto-parallel plane can also fixate and track
a sphere-shaped object.

The shape of the stimulus does not limit our approach, but the
size of the stimulus does. The extent of the FOV of the agent (see
Seq. 2.3), the amount of patches in the coarse and fine scale, the
formalization of the reconstruction error (see Equation 2) and
the resulting reward signal determine the minimum size of the
stimulus which can still be tracked by our agent. As the agent
strives to minimize the total reconstruction error E, it is fixating
and tracking the image regions that contribute most to E. Hence,
if the stimulus is covering more of the FOV than the background,

it is encoded by more patches of the sparse coders and therefore
the stimulus contributes more to E than the background does.
Hence, if <50% of E is accounted for by the stimulus, the agent
will focus on the background instead. Considering the number of
patches in the fine and coarse scale regions and their overlap, one
can estimate that successful tracking requires that the stimulus
covers ∼ 80% of the area of the fine scale. This means that if the
stimulus width is 0.5m it is not rewarding for the agent to fixate
and track it when the distance to the stimulus is≥ 1m. We show
in a video (see Supplementary Material) the agent’s behavior in
the discussed situations where it is confronted with a 1.5m, 1.2m,
and a 0.3m wide object.

4. DISCUSSION

The fixation of an object in depth and its pursuit with the eyes
when it moves are two elementary visual capabilities that emerge
early during human development. We have demonstrated that
Active Efficient Coding is well suited as a model for the
joint learning of these two basic visual abilities, which were
learned separately in our previous works. Our model learns an
efficient representation of depth andmotion via sparse coding. In
parallel, a reinforcement learning component learns to generate
a behavior which facilitates the efficient encoding of the scene
by the sparse coding component via an intrinsic motivation
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for coding efficiency. Thereby the agent simultaneously learns a
representation of the visual scene and the fixation and pursuit
behavior in a completely autonomous fashion. To the best of
our knowledge, the joint learning of both sensory representation
and behavior is unique to our approach. For example, the recent
approach by Konda and Memisevic (2014) also learns disparity
and motion representations, but it does so from a fixed set of
training videos via supervised learning and it does not include
the learning of any behavior which would change the statistics
of the sensory signals. Conversely, the approach by Gibaldi et al.
(2015) learns to execute vergence eye movements, but the set
of filter banks which are used to process the input images is
predefined and does not adapt to the statistics of the visual input.
Indeed, the majority of existing models for learning vergence or
smooth pursuit have a much narrower focus than our work. Early
models detected only specific velocities or disparities (Rashbass
and Westheimer, 1961; Krishnan and Stark, 1977). Some works
only used synthetic and not natural images (Patel et al., 1997;
Gibaldi et al., 2010). The studies of Hoyer and Hyvärinen (2000),
Hunter and Hibbard (2015), and Chauhan et al. (2018) used
unsupervised approaches to learn binocular disparity selectivity
from natural stereoscopic images. In the work of Burge and
Geisler (2014) disparity selectivity was learned by optimizing
disparity discrimination in natural images. Importantly, the focus
of these studies was on learning representations of still images
and these models do not learn or produce any behavior and
none addresses motion selectivity. Beyeler et al. (2016) show a
model how the motion signal from MT cortex could be further
processed by medial superior temporal (MSTd) cortex. They
present an alternative approach how sparse basis functions,
which show similar tuning properties asmacaqueMSTd neurons,
could emerge fromMT units through a dimensionality reduction
technique. In contrast to our work, their MT units are predefined
and the model does not generate any behavior. Other works
required the engineering of specific image features, knowledge of
the intrinsic parameters of the camera, or a predefined model of
object velocity or disparity. In addition, most works on motion
vision do not address the issue of binocular vision, because they
only consider monocular visual input.

The tasks learned by our model, vergence control and smooth
pursuit, are similar to those learned by the model of Zhang
et al. (2016), vergence control and the optokinetic nystagmus
(OKN). Both smooth pursuit and the OKN are minimizing
the retinal slip, but smooth pursuit is associated with smaller
targets and more voluntary eye movements. The architectures
presented here and in Zhang et al. (2016) are similar in that
they show the same sparse coding based perceptual stage and
the same reinforcement learner for the vergence commands.
However, they differ in the learning of the smooth pursuit/OKN.
Here we use reinforcement learning, but Zhang et al. (2016) use
Hebbian learning combined with scaffolding by a subcortical
pathway. The work here provides a more parsimonious model,
but Zhang et al. (2016) is more consistent with the observed
developmental interactions between the cortical and subcortical
pathways underlying the OKN.

Many experimental studies on binocular disparity tuning
in the brain have found evidence suggesting that the primary
visual cortex (V1) optimally processes the natural binocular

disparity statistics. In this regard, the efficient coding hypothesis
conjectures that the disparity tuning of V1 binocular neurons
reflects the natural range of disparities (Read and Cumming,
2004; Liu et al., 2008) and that eye movement strategy is
such that it minimizes the binocular disparity and motor
inefficiency (Tweed, 1997; Schreiber et al., 2001). These findings
are consistent with our model.

The work of Yu et al. (2005) has shown that neurons in
primary visual cortex exhibit higher coding efficiency when
responding to correlated signals compared to uncorrelated ones.
Our AEC framework similarly exploits correlations in sensory
signals that are generated through its own motor behavior.
Specifically, as our model learns vergence eye movements it
learns to reduce disparities between the eyes and therefore
increases the redundancy between left and right camera
input. Similarly, our model increases the redundancy between
successive images of its cameras as it learns to perform pursuit
eye movements. The agent’s actions ultimately result in a more
efficient encoding of the visual scene, because the model adapts
its basis functions to efficiently exploit the redundancies in
the sensory signals that it is creating through its own learned
motor behavior.

It has been well established in the neuroscience literature
that the RFs in primary visual cortex of certain mammalian
species already have a Gabor-like structure before visual
experience is gathered, i.e., before eye opening. Therefore, we
also initialized the basis functions in our model to already
have Gabor shapes at the start of learning. Importantly,
however, as seems to be the case in biology, the left and right
subfields of the basis functions were statistically independent.
In addition to the experiments presented above, we also
tested if the model can still learn successfully without such a
Gabor initialization of the basis functions. We observed that
the model still learns successfully, when the basis functions
are initialized as independent Gaussian white noise (see
Supplementary Material).

The analysis of the basis functions confirms the findings of
Qian (1994) and Smolyanskaya et al. (2013) that disparity and
motion tuning are largely independent of each other. Czuba et al.
(2014) have shown that MT neurons encode 3-D motion and in
this regard we also observe the presence of basis functions which
have different velocity preferences between left and right eye, thus
being sensitive to 3-Dmotion. Furthermore, some basis functions
are also encoding fronto-parallel movement and overall a broad
range of velocities and disparities. Therefore, they resemble the
encoding properties of real neurons in the visual system.

To the best of our knowledge, apart from our work (Zhang
et al., 2016), research on vergence eye movements and research
on pursuit eye movements and the optokinetic nystagmus
has been progressing independently. In stark contrast to this
tradition, our new model suggests that these phenomena can be
unified and seen as special cases of the general idea of Active
Efficient Coding, i.e., the idea of a sensory system exploiting its
motor degrees of freedom to support the efficient encoding of
information from the environment. In fact, recent work suggests
that torsional eye movements (Zhu et al., 2018) and the control
of accommodation (Triesch et al., 2017) are just two further
instances of this very general idea.
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In previous studies we have shown that our AEC approach
also works on the iCub robot in a real life scenario (Lonini et al.,
2013a; Teulière et al., 2015). As our model presented in this study
shows good performance on the simulated iCub, we are confident
that future studies will prove its robustness on the real iCub. This
should be tested in future work.

The present model may also have implications for
developmental disorders of the visual system such as strabismus
and amblyopia (Eckmann et al., 2018). As a first model of
how sensory and motor aspects of binocular and motion
vision jointly develop and self-calibrate, it may be a useful
testbed for studying what factors can derail this development in
developmental disorders and what treatments may bring it back
on track.
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