
ORIGINAL RESEARCH
published: 31 July 2019

doi: 10.3389/fnbot.2019.00060

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2019 | Volume 13 | Article 60

Edited by:

Hong Qiao,

University of Chinese Academy of

Sciences, China

Reviewed by:

Caixia Cai,

Agency for Science, Technology and

Research (A*STAR), Singapore

Zhijun Zhang,

South China University of Technology,

China

*Correspondence:

Zhen Deng

deng@informatik.uni-hamburg.de

Received: 17 May 2019

Accepted: 15 July 2019

Published: 31 July 2019

Citation:

Deng Z, Gao G, Frintrop S, Sun F,

Zhang C and Zhang J (2019) Attention

Based Visual Analysis for Fast Grasp

Planning With a Multi-Fingered

Robotic Hand.

Front. Neurorobot. 13:60.

doi: 10.3389/fnbot.2019.00060

Attention Based Visual Analysis for
Fast Grasp Planning With a
Multi-Fingered Robotic Hand

Zhen Deng 1*, Ge Gao 1, Simone Frintrop 1, Fuchun Sun 2, Changshui Zhang 2 and

Jianwei Zhang 1

1Department of Informatics, University of Hamburg, Hamburg, Germany, 2Department of Computer Science and

Technology, Tsinghua University, Beijing, China

We present an attention based visual analysis framework to compute grasp-relevant

information which helps to guide grasp planning using a multi-fingered robotic hand. Our

approach uses a computational visual attention model to locate regions of interest in a

scene and employ a deep convolutional neural network to detect grasp type and grasp

attention point for a sub-region of the object in a region of interest. We demonstrate

the proposed framework with object grasping tasks, in which the information generated

from the proposed framework is used as prior information to guide grasp planning. The

effectiveness of the proposed approach is evaluated in both simulation experiments and

real-world experiments. Experimental results show that the proposed framework can not

only speed up grasp planning with more stable configurations, but also handle unknown

objects. Furthermore, our framework can handle cluttered scenarios. A new Grasp Type

Dataset (GTD) which includes six commonly used grasp types and covers 12 household

objects is also presented.

Keywords: grasp planning, grasp type, visual attention, deep learning, multi-fingered robotic hand

1. INTRODUCTION

Imagine a toddler is in front of a table top with several objects, very likely he or she would interact
with those objects by trying to pick up the red mug either by the handle or the rim, or trying to
grasp the green ball. The ability to rapidly extract relevant information from visual input is an
important mechanism and natural behavior for humans to conduct various activities. The majority
of visual analysis approaches for grasp planning with multi-fingered robotic hands follow a pipeline
containing object localization, recognition and representation (Schwarz et al., 2017). For most
existing approaches, finding a target object in a scene is the first step for robotic grasping. However,
reliable object detectors, such as deep-learning based approaches require vast amounts of training
data, as well as good hardware to achieve a reasonable time performance for robotic applications,
while handcrafted feature based approaches can not handle the dynamics in real life scenarios.

This paper proposes an attention based visual analysis framework which directly locates
sub-regions of objects as regions of interest (ROIs), and generates grasp-relevant information
from visual data inside the ROIs for grasp planning with a multi-fingered robotic hand. The
proposed learning framework is inspired by psychological studies which demonstrated that humans
combine early bottom-up processing with later top-down processing to visually analyze the scene
(Theeuwes, 2010; Awh et al., 2012). The bottom-up process starts with sensor input data and is
completely stimulus-driven, while the top-down process extracts relevant information, which may
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be influenced by prior experience and semantics. In particular,
a computational attention model is used to process visual data
and outputs a pixel-precise saliency map, from which salient
regions are selected for further processing. Inside those salient
regions, the grasp type and grasp attention point are predicted
by a network. The grasp attention point indicates the location on
the object surface where the robot plans the grasp. Finally, this
information is used to guide grasp planning with amulti-fingered
robotic hand.

Grasp type and grasp attention point convey useful
information for planning the configuration of a robotic
hand. In the computer vision community, most previous
works sample human hand pose with a motion tracking system
and use it to detect hand grasp types (Rogez et al., 2015;
Cai et al., 2017). In the robotics community, there are few
previous approaches that try to integrate grasp type detection
into robotic grasp planning (Harada et al., 2008; Vahrenkamp
et al., 2018). In those works, only two kinds of grasp types,
i.e., power and precision (Napier, 1956), are considered, which
is not sufficient for exploring the potential of multi-fingered
robot hands. Moreover, the desired grasp type is determined
manually for robotic hands. In terms of visual analysis, there
are approaches which use visual analysis to define heuristics
or constraints for grasp planning (Hsiao et al., 2010; Aleotti
and Caselli, 2012; Vahrenkamp et al., 2018). In comparison
to those approaches, there are three main differences: (1) our
approach learns features directly from raw sensor data, while
most of the previous approaches use handcrafted features; (2) six
grasp types are considered while the previous approaches only
consider two grasp types. (3) Most of the previous works only
focus on visual analysis by using computer vision techniques.
This work uses the results of the visual analysis for grasp
planning with multi-fingered robotic hands. The effectiveness
of the proposed framework is evaluated in a real-world object
grasping experiment.

In this paper, we address the problem of visual analysis of
natural scenes for grasping by multi-fingered robotic hands. The
objective is to compute grasp-relevant information from visual
data, which is used to guide grasp planning. A visual analysis
framework which combines a computational visual attention
model and a grasp type detection model is proposed. A new
Grasp Type Dataset (GTD) which considers six commonly used
grasp types and contains 12 household objects is also presented.

The rest of the paper is organized as follows: section 2 presents
related work. Section 3 introduces the architecture and main
components of the proposed visual analysis framework. Grasp
planning is described in section 4. Experimental results are
presented in section 5. Finally, the conclusion and future work
are discussed in section 6.

2. RELATED WORK

Stable grasping is still a challenge for the robotic hands,
espectically multi-fingered robotic hand, since it usually require
to solve a complex non-conex optimization problem (Roa and
Suárez, 2015; Zhang et al., 2018). Information extracted from

visual analysis can be used to define heuristics or constraints
for grasp planning. Previous grasp planning methods can be
divided into geometric-based grasping and similarity-based
grasping. In geometric-based grasping (Hsiao et al., 2010; Laga
et al., 2013; Vahrenkamp et al., 2018), geometric information
of the object is obtained from color or depth images, and it
is used to define a set of heuristics to guide grasp planning.
Hsiao et al. (2010) proposed a heuristic which maps partial
shape information of objects to grasp configuration. The direct
mapping from object geometric to candidate grasps is also used
in Harada et al. (2008) and Vahrenkamp et al. (2018). Aleotti
and Caselli (2012) proposed a 3D shape segmentation algorithm
which firstly oversegments the target object, and candidate
grasps are chosen based on the shape of the resulted segments
(Laga et al., 2013). In similarity-based approaches (Dang and
Allen, 2014; Herzog et al., 2014; Kopicki et al., 2016), the
similarity measure is calculated between the target object and
the corresponding object model from human demonstrations
or simulation. The candidate grasp is then queried from
datasets based on similarity measures. Herzog et al. (2014)
defined an object shape template as the similarity measure.
This template encodes heightmaps of the object observed from
various viewpoints. The object properties can also be presented
with semantic affordance maps (Dang and Allen, 2014) or
probability models (Kroemer and Peters, 2014; Kopicki et al.,
2016). Geometric-based approaches usually require a multiple-
stage pipeline to gather handcrafted features through visual data
analysis. Due to sensor noise, the performance of the geometric-
based grasping is often unstable. Meanwhile, similarity-based
methods are limited to known objects and can not handle
unknown objects. In contrast to previous methods, our method
increases grasp stability by extracting more reliable features from
visual data using deep networks, meanwhile, it is able to handle
unknown objects.

Many saliency approaches have been proposed in the
last two decades. Traditional models are usually based on
the feature integration theory (FIT) (Treisman and Gelade,
1980) to compute several handcrafted features which were
fused to a saliency map, e.g., the iNVT (Itti et al., 1998;
Walther and Koch, 2006) and the VOCUS system (Frintrop,
2006). Frintrop et al. (2015) proposed a simple and efficient
system which computes multi-scale feature maps using
Difference-of-Gaussian (DoG) filters for center-surround
contrast and produces a pixel-precise saliency map. Deep
learning based saliency detection mostly relies on high-level
pre-trained features for object detection tasks. Those learning-
based approaches require massive amounts of training data
(Huang et al., 2015; Li et al., 2016; Liu and Han, 2016).
Kümmerer et al. (2015) used an AlexNet (Krizhevsky et al.,
2012) pretrained on Imagenet (Deng et al., 2009) for object
recognition tasks. The resulting high-dimensional features are
used for fixation prediction and saliency map generation. Since
most of the deep-learning based approaches have a central
photographer bias which is not desired in robotic applications,
we choose to use a handcrafted feature based approach which
gathers local visual attributes by combing low-level visual
features (Frintrop et al., 2015).
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FIGURE 1 | The proposed attention based visual analysis framework. With an input RGB image, a ROI is selected using the saliency map produced by a Saliency

detection model. Inside the ROI, grasp type and grasp attention point are computed based on the six probability maps produced by the Grasp type detection

network. The obtained information containing grasp type and grasp attention point is then used as a prior to guiding grasp planning. The planned grasp is executed

by a robotic hand to verify its quality.

3. ATTENTION BASED VISUAL ANALYSIS

The proposed framework contains two main components, a
computational visual attention model which gathers low-level
visual features and selects ROIs for further processing, and a
grasp type detection model which learns higher level features
and produces grasp-relevant information in the ROIs. Figure 1
illustrates an overview of the proposed attention based visual
analysis framework.

3.1. Computational Visual Attention Model
The pixel-level saliency map is computed using the
computational visual saliency method VOCUS2 (Frintrop
et al., 2015). In principle, any saliency system which has a real-
time capability and does not have a center-bias could be used.
Center bias gives preference to the center of an image, which is
not desired in robotics applications. Unfortunately, this excludes
most deep-learning based approaches since they are usually
trained on large datasets of Internet images, which mostly have
a central photographer bias. Therefore, the VOCUS2 system
was chosen, which belongs to the traditional saliency systems
with good performance on several benchmarks. In VOCUS2,
an RGB input image is converted into an opponent-color space
including intensity, red-green and blue-yellow color channels.
DoG contrasts are computed with twin pyramids, which consist
of two Gaussian pyramids—one for the center and one for the
surround of a region—which are subtracted to obtain the DoG
contrast. Finally, the contrast maps are fused across multiple
scales using the arithmetic means to produce the saliency map.

Given the produced saliency map, the pixels of the saliency
map are clustered using Mean Shift (Comaniciu and Meer, 2002)
to form saliency regions. The salient region with the highest
average salient value is selected as the ROI, and it is passed to
the next stage for further processing. Figure 2 shows an example
of the saliency region detection. The visual attention model takes
the RGB image shown in Figure 2A as input and produces the

saliency map shown in Figure 2B. After clustering, the desired
saliency region is determined, as shown in Figure 2C.

3.2. Grasp Type Detection
Grasp type is a way of representing how a hand handles
objects. Typically, the robotic grasps are divided into power and
precision grasp (Napier, 1956). Power grasp uses the fingers
and palm to hold the object firmly, while precision grasp
only uses fingertips to stabilize the object. However, this two-
categories grasp taxonomy is not sufficient to convey information
about hand configuration. Feix et al. (2016) introduced a
GRASP taxonomy in which 33 different grasp types used by
humans are presented. All the 33 different grasp types are
classified into four groups: prismatic power, circular power,
intermediate, prismatic precision, circular precision. Considering
the kinematic limitations of the robotic hand as well as Feix’s
GRASP taxonomy, we extend the above two-categories grasp
taxonomy into six commonly used grasp types: large wrap, small
wrap, power, pinch, precision, and tripod. Figure 3 illustrates the
proposed grasp taxonomy.

In order to detect grasp types directly from visual data, we
refer to the architecture proposed by Chen et al. (2018). This
architecture is based on a deep convolutional neural network
[VGG-16 (Simonyan and Zisserman, 2015)] and uses atrous
convolution for signal down sampling. Since an object may
support multiple feasible grasp types (Feix et al., 2016), the grasp
type detection is a multi-label detection. Hence, we modify the
output layer of the network and do not use the additional fully
connected Conditional Random Field (CRF). Corresponding to
the six grasp types, the modified network predicts six pixel-level
probability maps with the same resolution as the input image.
In order to train the modified network for grasp type detection,
this paper introduces a grasp type detection (GTD) dataset, in
which 12 household objects are used and all the instances are
annotated following the proposed six grasp types. The details
of the GTD dataset are provided in section 5.1. This work uses
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FIGURE 2 | Saliency region detection with the visual attention model. (A) The input RGB image, (B) the pixel-level saliency map, (C) the result after clustering, (D) the

output. The red rectangle denotes the selected ROI which has the highest average saliency value. The blue rectangles denote the candidate ROIs for objects. The

numbers are indices for bounding boxes.

FIGURE 3 | The proposed six commonly used grasp types.

FIGURE 4 | The detection process of grasp type and grasp attention point. Six pixel-level probability maps corresponding to the six grasp types are first computed

from the grasp type detection network. Given the object location computed by the visual attention model, these probability maps are clustered. Then the predicted

probability of each grasp type and the location of its grasp attention point are computed. Finally, the grasp type with the highest probability and its grasp attention

points are determined.
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a cross-entropy function to define the loss function which is
defined as

L(θ) =

h∑

i=1

w∑

j=1

∑

s∈S

logP(ysi,j|I, θ) (1)

where ysi,j ∈ {0, 1} indicates if the pixel yi,j belongs to the grasp

type s ∈ S or not. S = [1, 2, · · · , 6] is the index of the six grasp
types. I denotes an RGB image with height h and widthw. θ is the
weight of the proposed detection model.In this work, the cross-
entropy based on the sigmoid function is defined in Equation (2),
where f is the trained network.

P(ysi,j|I; θ) = 1/(1+ exp(−f (ysi,j|I; θ))) (2)

Given an RGB image I with height and width h × w as input,
our network outputs pixel-level probability maps P(Y|I) for each
grasp type s ∈ S, where Y = {ysi,j}i=1 : h,j=1 :w. The predicted

probability of pixel {[i, j]i=1 : h,j=1 :w} belonging to the grasp
type s is denoted by ysi,j. With the pixel-level probability maps,

the probability P(Ys|O) is computed by summing the predicted
probabilities of all the pixels inside the ROI O (defined in section
3.1), as shown in Equation (3). The grasp type with the highest
probability is used as the final grasp type s∗.

P(Ys|O) =
1

hO × wO

hO∑

i=1

wO∑

j=1

P(ysi,j|xi,j),∀s ∈ S. (3)

After determining the best grasp type s∗, we need to localize the
grasp attention point for the grasp type s∗ inside O. In order
to find a stable grasp attention point p, subregions with higher
predicted probabilities are clustered. Mean Shift (Comaniciu and
Meer, 2002) is used to find a grasp attention point p inO. Multiple
clusters withmultiple centers are produced, and the cluster center
with the highest probability is selected as the grasp attention
point p. Finally, the grasp relevant information � = {O, s∗, po},
i.e., ROI O, the grasp type s∗ and the grasp attention point
po, are generated from the proposed visual analysis framework.

Figure 4 illustrates the detection process of grasp type and grasp
attention point.

4. GRASP PLANNING WITH
GRASP-RELEVANT INFORMATION

The objective of grasp planning is to find the feasible grasp
configuration for a stable grasping. Hence, grasp planning in this
work is formulated as an optimization problem. A search based
algorithm exploiting grasp-relevant information � generated
from the proposed visual analysis framework is proposed to find
the grasp configuration with high grasp quality. In this work, the
search of the feasible grasp configuration is processed from two
steps: (1) the formation of the initial grasp configuration based
on the grasp-relevant information, (2) the determination of the
feasible grasp configuration by the local transformation.

In the first step, we take advantage of the grasp-relevant
information � = {o, s∗, po} to determine the initial grasp
configuration and the number of the required finger. The initial
grasp configuration of the robotic hand is defined as follows:
(1) The number of needed fingers is selected according to the
grasp type s∗ and the gripper; (2) The grasp center ph is set to
be a point that deviate a initial offset dinit from the 3D grasp
attention point p′o which is obtained from 2D grasp attention
point p0 using frame transformation; (3) The hand palm is
controlled to approach the grasp attention point. Using a multi-
fingered robotic hand to grasp objects typically requires the
relative pose between the object and the robotic hand, as well
as the hand joint configuration. Due to the high dimensionality
of the robotic hand and partially observability of objects, it is

TABLE 1 | Performance on GTD dataset (IoU).

L-wrap S-wrap Power Pinch Precision Tripod Average

Ours 0.63 0.58 0.71 0.56 0.61 0.52 0.60

Segnet-based 0.51 0.56 0.41 0.61 0.46 0.48 0.50

Bold numbers denote better accuracies.

FIGURE 5 | Illustration of GTD dataset. (A) Twelve household objects contained in the GTD. (B) The original image. (C) A labeled image with large wrap. (D) A labeled

image with precision. Pixels that belong to a grasp type are marked with color and others are background.
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FIGURE 6 | The confusion matrix of the six grasp types.

FIGURE 7 | Examples of object grasping by the Shadow Dexterous Hand in the simulator.

challenging to find the optimal contact points on the object
surface to form a grasp configuration. In this work, we exploit
the concept of Opposition introduced by De Souza et al. (2015)
to execute the grasp configuration. The robotic hand is controlled
to reach the target pose and close the two finger groups to grasp
an object.

Next, A local search method is used to find the grasp
configuration with the highest quality in a grasp search space.
Due to the existence of uncertainties, the defined pre-grasp
configuration may fail to grasp objects. Hence, a local search is

used to find the grasp configuration with higher quality. During
searching, the pre-grasp configuration is used as the initial
grasp configuration. We sample a set of candidate grasps with
coordinate transformation. The search space is a 4 dimensional
space, S = {d,α,β , γ }, where d = dinit ± 1d is the offset of
the 3D grasp attention point p′o. 1d is a pre-defined searching
range. {α,β , γ } denote the searching ranges of the rotate angles in
the X, Y and Z axes of the hand coordinate, respectively. During
the search process, all the candidates are evaluated by using
force-closure method (Suárez et al., 2006). The force-closure
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method has been widely used in grasp planning, which measures
the grasp quality through the evaluation of certain geometric
relations of the contact points. A grasp is force-closure if a
hand can exert arbitrary force on the grasped object through
a set of the contact point. After the grasp quality measure, the
grasp configuration with the highest quality is chosen for object
grasping. Finally, during executing candidate grasps, the fingers
move to contact with the object surface and hold it. The robotic
arm lifts the object to finish the grasping task.

Algorithm 1 shows the process of the grasp planning
procedure.

Algorithm 1 : Attention based visual analysis for grasp planning

1: Requires: a computational saliency model, a grasp type
detection model

2: Acquire an RGB image I of the table scene.
3: Visual analysis framework returns the grasp-relevant

information � = {O, s∗, po}.
4: Using the information � to initialize the pre-grasp

configuration of the hand.
5: Using a local search method to find a list of feasible candidate

grasps.
6: Find the grasp configuration with the highest quality from all

the feasible grasps
7: Execute the grasp operation by using robotic hands.

5. EXPERIMENTAL RESULTS

5.1. Dataset and Implementation
Existing datasets, such as the Yale human grasping datasets
(Bullock et al., 2015) and the UT grasp dataset (Cai et al.,
2015), are used for the analysis of human hand behavior. These
datasets are not suitable for the grasp planning with robotic
hands. Hence, we introduce a new grasp type detection (GTD)
dataset specified for robot grasping. The GTD dataset contains
RGB-D1 images and ground-truth grasp type labels. There are
11,000 annotated images with resolution 640 × 480. In this
dataset, six commonly used grasp types were considered and 12
household objects with various shape attributes were chosen, as
shown in Figure 5A. A MATLAB GUI is designed to manually
annotate grasp types on collected data. According to the GRASP
taxonomy defined in Feix et al. (2016), object parts in images
were labeled with different grasp types which enable multi-label
detection, as shown in Figures 5B,C. The GTD dataset was split
randomly into a training set (90%) and a testing set (10%).
The training parameters of the grasp type detection model are
set as follows: the initial learning rate was 0.00001, and a step
delay policy is used to lower the learning rate as the training
progresses.Stochastic gradient descent (SGD) method with a
momentum rate of 0.9 is used.

1We use only RGB data in this paper, and plan to exploit the depth data in the

future.

TABLE 2 | Performance of the proposed grasp planning.

Ours Veres et al. (2017)

Object Success

rate

Search

attempt

Success

rate

Search

attempt

Tomato soup can 8/10 2.5 8/10 20

Tuna fish can 9/10 8.7 5/10 23.6

Banana 9/10 2.1 5/10 21.6

Apple 9/10 2.5 8/10 27.5

Orange 8/10 2.8 7/10 19.4

Chips can 10/10 2.7 10/10 11.4

Average 88.3% 3.5 71.6% 20.5

5.2. Evaluation of Grasp Type Detection
We first evaluated the accuracy of the grasp type detection on
the proposed GTD dataset. For comparison, another network
based on the Segnet architecture introduced in Badrinarayanan
et al. (2017) is trained and evaluated. Segnet has an encoder-
decoder architecture and is widely used for image segmentation.
For pixel-level multi-label detection, we modified the output
layer of the Segnet network as introduced in subsection 3.2. The
same training and testing procedures are used for both networks
described in section 5.1. Table 1 shows the Intersection-over-
union (IoU) of the two networks. Our approach achieves a higher
average detection accuracy and outperforms the segnet-based
network by 10%.

A confusion matrix (Figure 6) is used to evaluate the overall
quality of detected the grasp type. Since the network predicts six
labels corresponding to six grasp types for each pixel, each row
of the matrix shows the predicted probabilities of each grasp type
for one ground truth label. It shows that the proposed method
is able to predict correct grasp types with the highest probability
since the diagonal elements have the highest values. It is worth
mentioning that several off-diagonal elements also have rather
high values. For example, the prediction results for Power type
also show a high probability for Precision, which means those
two grasp types are easily mislabeled by the proposed method.
The reason is that those two types have a high correlation and
share many similar characters. Hence, the confusion matrix can
also help to discover the similarity among grasp types.

5.3. Grasp Planning in Simulator
The proposed visual analysis framework was further evaluated
in object grasping tasks. We implemented a grasping simulation
based on the V-REP2, which is a physical simulator that
supports rapid verification, to conduct this experiment.
The grasping experiments were performed on a Shadow
Dexterous Hand3, a five-fingered robotic hand which is
an approximation of a human hand. During simulations,
the hand configuration and the contact force between the
Shadow Dexterous Hand and objects were simulated in
real-time, which were used for measuring the qualities of

2http://www.coppeliarobotics.com/
3https://www.shadowrobot.com/products/dexterous-hand/
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FIGURE 8 | Examples of object grasping. (A) Objects grasped by the Barrett hand. (B) An object grasped by the Baxter gripper.

FIGURE 9 | Experimental setup with a UR5 arm and a three-fingered robotic

hand.

candidate grasps. In order to evaluate the performance of the
visual analysis framework for grasp planning, we compared the
proposed planning method with the method proposed by Veres
et al. (2017). Veres et al. used a method which randomly samples
a set of candidate grasps based on the normal of the object surface
and then ranked all the candidates to find the best one. Since there
is no grasp type provided in this method, we use the commonly
used power type for the ShadowDexterous Hand to grasp objects.
In this comparison experiment, six objects were selected, as
shown in Figure 7. Ten trials are tested for each object. For each
trial, an object is placed on the table top and a depth sensor is
used to capture the RGB-D image of the table scene. Then, the
grasp configuration of the Shadow Dexterous Hand is planned in
the simulator. The maximum number of search attempts for both
methods is limited to 40. For each object, the success rate of object
grasping and the average number of search attempts needed for
finding a feasible grasp are shown in Table 2.

It can be seen that the proposed method obtained a higher
success rate of grasping than the random search method.
Moreover, the number of search attempts by the proposed
planning method is only 17.0% of the search attempts by

FIGURE 10 | Eight different objects for robotic experiments.

the random search method. It shows that the grasp-relevant
information generated helps to reduce the search time needed
for grasp planning and to more accurately find the feasible grasp
configuration in the search space. It is worth mentioning that the
random search method with a power type easily fails at grasping
some small objects, such as the banana and the tuna fish can.
This limitation does not occur in the proposed planning method
since a feasible grasp type is predicted before grasping. Hence, for
multi-finger robotic hands, objects with different shape attributes
should be handled with different grasp types.

We also noticed that there are several failures of object
grasps using the proposed planning method. The main reason
for the failures is because the predicted grasp attention point
on the object surface is too close to the table top. Since the
environmental constraints are not considered in this work, the
Shadow Dexterous Hand will collide with the table and fail to
grasp the object. In the future, it will be beneficial also to consider
the environment and task constraints.

In order to further evaluate the generalization of the proposed
framework, we also tested our framework with a 3-fingered
Barrett hand4 and a 2-fingered Baxter gripper5, Figure 8 shows
some results of object grasping. In this experiment, the 2-fingered
Baxter gripper only used the pinch type to grasp objects. On

4https://www.barrett.com/about-barrethand/
5https://www.rethinkrobotics.com/baxter/
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FIGURE 11 | Example of the visual analysis on various objects. The first column is the input RGB image. The second column is the pixel-level saliency map, in which

the red rectangle denotes the selected ROI. The third column is six pixel-level probability maps which describe the results of grasp type detection. The six probability

maps from top left to bottom right corresponds to the six grasp types (i.e., large wrap, small wrap, power, pinch, precision, and tripod). The cross in the probability

maps denote the cluster centers which is considered as the grasp attention point. The last column is the output of the visual analysis.

average, Barrett hand has 90% success rate with four search
attempts while Baxter gripper has 100% success rate with 1.4
search attempts.

To further verify the effectiveness of the grasp planning with
prior information, we compared with the work from Ciocarlie
and Allen (2009). This work searches a grasp configuration for
dexterous robotic hands in a hand posture subspace which is
determined by using grasp synergies. In their work, the grasp

planner only results in a power type, which means their grasp
planner may fail to grasp small objects. Another limitation of
their grasp planner is that it needs a long search time for finding
a feasible solution, with over 70,000 attempts for each plan, and
an average running time of 158 s (Ciocarlie and Allen, 2009).
Compared with their work, our method requires fewer search
attempts and enables the robotic hand to grasp objects with
different grasp types.
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FIGURE 12 | Examples of object grasping using the UR5 robot. In each subfigure, the left showed the analyzed results and the right showed the robot grasped the

object. (A) Grasping of a chip can With Precision grasp type, (B) grasping of a coffee bottle with power grasp type, (C) grasping of a bottle with Tripod grasp type, (D)

grasping of an apple with precision grasp type.

5.4. Real-World Robotic Experiment
The robotic experiments were conducted using the six DOF
UR5 robot6 and the three-fingered Robotiq gripper7. Figure 9
shows the experimental setup for the object grasping tasks. A
Kinect sensor was used to capture the RGB-D image of the
table scenes. Eight objects selected from YCB object set (Calli
et al., 2015) were used for the evaluation, as shown in Figure 10.
It contains six unknown objects comparing to our dataset
(Figure 5). In the object grasping experiments, we adopted the
following procedure. Multiple objects were randomly selected
and placed on the table. The proposed visual analysis framework
took the image captured by Kinect as input and outputted the
grasp-relevant information. Then, the grasp configuration was
planned by taking advantage of this computed information and
sent to the UR5 robot for grasping. A video is provided as
Supplementary Material.

Figure 11 shows the process of attention based visual analysis.
Given an input RGB image, the ROI denoted by a rectangle
in the saliency map is firstly selected by the attention model.
Meanwhile, six pixel-level probabilitymaps are obtained from the
grasp type detection model. The grasp attention point denoted
by the cross in each probability map is obtained by clustering.
Finally, the grasp type with the highest probability in the ROI
is selected. As it is shown in Figure 11, our system is also
able to produce grasp type and grasp attention point results on
unknown objects.

6https://www.universal-robots.com/products/ur5-robot/
7https://robotiq.com/products/3-finger-adaptive-robot-gripper

The performance of the whole system is evaluated based on
object grasping tasks. Four trails were tested for each object
and a total of 32 trails were implemented. Because the robotic
gripper only had three finger, we consider large wrap and small
wrap equivalent, and consider precision and tripod equivalent.
So the numbers of the used finger for precision and tripod
were same. The experimental results were that 28 successful
graspings out of 32 trails (87.5%). Basically, the proposed method
enabled the robotic hand to find the feasible grasp configuration
and successfully grasp it. Figure 12 shows some examples of
the object grasping using the proposed framework. As we can
see, the grasp-relevant information generated from the proposed
framework was used as prior information to guide the grasp
formation. For each frame, ROI localization takes 1.8 s, grasp
type detection takes 6.5 s and the complete process takes 8.5 s
on average. The proposed framework is implemented in python
and runs on a 2.50 GHz Intel i5 CPU.

It is worth mentioning that several failures of object grasping
have occurred. As in simulation experiments, when grasping the
small object (e.g., an apple), the planned grasp pose was too close
to the table, the UR5 robot failed to find a feasible kinematic
solution. Another cause was that the proposed visual attention
method sometimes only locate a small region of an object and
a feasible grasp configuration cannot be found. This is caused
by low color contrast between the object and its background. It
also occurred that the object fell out of the gripper during lifting.
It was caused by the uncertainty from the object weight. In the
future, it will also be beneficial to incorporate grasp adaptation
into the proposed framework.
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6. CONCLUSION

This paper proposes an attention based visual analysis
framework, which computes grasp-relevant information
directly from visual data for multi-fingered robotic grasping.
By using the visual framework, an ROI is firstly localized by
a computational attention model. The grasp type and grasp
attention point on object segment presented in the ROI is then
computed using a grasp type detection model, which is used as
prior information to guide grasp planning. We demonstrated
that the proposed method is able to give a good prediction
of grasp type and grasp attention point. Furthermore, the
performance of the proposed visual analysis framework has
been evaluated in object grasping tasks. Compared to previous
methods without prior, the information generated from the
visual analysis can significantly speed up grasp planning.
Moreover, by using a feasible grasp type, the success rate of
the grasping is also improved. Results show that the proposed
framework helps the robotic systems to know how and where to
grasp objects according to attributes of sub-regions of objects.
Since our method does not rely on object detection, it can also
handle unknown objects.

For future work, several aspects will be considered:
first, the current framework is goal-driven, and it only
learns how to grasp an object, so it will be interesting
to extend the proposed framework into a task-driven
framework, e.g., grasping in human-robot handover task.
Second, currently the choice of grasp type and grasp
attention point only depends on the attributes of sub-
regions of objects. Since grasp planning is also affected by
environment and task constraints, those constraints will be taken
into consideration.
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