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The hardness recognition is of great significance to tactile sensing and robotic control.

The hardness recognition methods based on deep learning have demonstrated a good

performance, however, a huge amount of manually labeled samples which require lots

of time and labor costs are necessary for the training of deep neural networks. In order

to alleviate this problem, a semi-supervised generative adversarial network (GAN) which

requires less manually labeled samples is proposed in this paper. First of all, a large

number of unlabeled samples are made use of through the unsupervised training of

GAN, which is used to provide a good initial state to the following model. Afterwards,

the manually labeled samples corresponding to each hardness level are individually used

to train the GAN, of which the architecture and initial parameter values are inherited from

the unsupervised GAN, and augmented by the generator of trained GAN. Finally, the

hardness recognition network (HRN), of which the main architecture and initial parameter

values are inherited from the discriminator of unsupervised GAN, is pretrained by a large

number of augmented labeled samples and fine-tuned by manually labeled samples. The

hardness recognition result can be obtained online by importing the tactile data captured

by the robotic forearm into the trained HRN. The experimental results demonstrate that

the proposed method can significantly save the manual labeling work while providing an

excellent recognition precision for hardness recognition.

Keywords: tactile sensing, hardness recognition, deep learning, semi-supervised, generative adversarial networks

INTRODUCTION

The tactile sensing is an important direction in artificial intelligence (AI) research, and is especially
useful for the robotic arms to mimic human hands in grasping and other movements (Xiaonan,
2011). In order to achieve human-like robotic arms, two tactile recognition studies need to be
carried out. One study focuses on using visual and tactile data together to recognize the object (Gao
et al., 2016; Falco et al., 2017; Levine et al., 2017; Liu et al., 2017). The other study focuses on using
the tactile sensing data to obtain the physical parameters of the object, such as texture, hardness
(Ahmadi et al., 2010; Kaboli et al., 2014; Hoelscher et al., 2015; Yamazaki et al., 2016). The hardness
is one typical parameter essential to the grasping force control for the robotic forearm (Schill et al.,
2012; Huang et al., 2013; Lichao, 2016), which is the focus of this paper. The existing hardness
recognition methods can be broadly classified into two categories: (1) non-machine learning based
methods, (2) machine learning based methods.
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A majority of previous hardness recognition methods can
be classified into the first category. Huang et al. (2012) used
the pressure data and the grasping position of the robotic hand
to test the hardness of the object. Yussof et al. (2008) let the
robotic hand touch the object several times using various small
forces, obtaining the hardness based on the force feedback.
Boonvisut and Cavusoglu (2014) used the shape change of the
object to recognize the hardness. The non-machine learning
based methods usually did not use the complex algorithms but
require sophisticated hardware and complex testing procedures.

The hardness recognition works belonging to the second
category can be further classified into two types according to
whether or not the deep learning techniques are employed. The
first type is based on traditional machine learning approaches.
Chu et al. (2015) used BioTac sensors to obtain tactile data.
Then, the hidden markov model (HMM) is used to extract
the feature vectors of tactile data. Finally, the support vector
machine (SVM) is trained and used to recognize the hardness.
Other methods based on traditional machine learning include:
decision tree based method (Bandyopadhyaya et al., 2014), k-
nearest neighbors (KNN) based method (Drimus et al., 2011),
and SVM based method (Kaboli et al., 2014), etc. Recently, the
deep learning technique has made great progress and has been
successfully applied in many fields (Han et al., 2013, 2015; Wu
et al., 2015, 2017; Li et al., 2016; Zhang et al., 2017; Hou et al.,
2018). Some hardness recognition works based on deep learning
included are as follows: Yuan et al. (2017) used a GelSight sensor
to obtain the tactile data sequence, and adopted the long short-
term memory (LSTM) algorithm to recognize the hardness of
the object. Bhattacharjee et al. (2018) also used LSTM to process
the time-variant tactile sensing data to classify the hardness
of the object. The visual and tactile features are extracted by
convolution neural network (CNN), and combined for hardness
recognition (Gao et al., 2016).

The deep learning based methods have shown their
superiority among aforementioned methods, however, the
existing deep learning based methods require a large number
of manually labeled samples which need significant time and
labor costs. In order to alleviate this problem, a hardness
recognition method based on semi-supervised GAN is proposed
in this paper. The proposed method not only makes use of
a large number of unlabeled samples, but also augments the
labeled samples.

The framework of the proposed method is shown in Figure 1.
In the training stage of GAN, first of all a large number
of unlabeled samples are used to train a GAN which is
denoted as USTGAN (unsupervised training GAN). Secondly,
the manually labeled samples corresponding to each hardness
level are separately used to train L (number of hardness level)
GANs which are denoted as STGAN (supervised training GAN),
where the architecture and initial parameter values of STGAN
are inherited from USTGAN. The L levels manually labeled
samples are separately augmented by the L trained STGANs. In
the training stage of HRN, a large number of augmented samples
are used to pretrain the HRN of which the main architecture and
initial parameter values are inherited from the discriminator of
USTGAN, and then the manually labeled samples are used to

fine-tune the HRN. In the testing stage, the captured tactile data
obtained by the robotic forearm are directly imported into the
HRN to obtain the hardness recognition results. The DeLiGAN
(Gurumurthy et al., 2017) is used as the GANmodel in this paper
because it requires less labeled samples. It’s worth noting that the
other published GANmodels, such as GM-GAN (Ben-Yosef and
Weinshall, 2018), can also be adopted and the selection of GAN
model is not the focus of this paper.

As a matter of fact, some semi-supervised GANs have been
proposed (Odena, 2016; Salimans et al., 2016), however, the role
of the proposed semi-supervised GAN is different in previous
methods. The discriminator of previous semi-supervised GANs
is used as the classifier which outputs L+1 probabilities (L
probabilities for the L real classes and one probability for the
fake classes), therefore, the trained discriminator can be directly
used to recognize the hardness level. However, the proposed
semi-supervised GAN is used to augment the manually labeled
samples rather than classification of hardness level. Asmentioned
before, after the unsupervised training of USTGAN which is
used to provide initial model parameters to STGAN and HRN,
L level manually labeled samples are used to train L STGANs
and are subsequently augmented by the L trained generators of
STGANs. As a matter of fact, the discriminator of STGAN is the
traditional real-fake binary classifier which is not used for the
classification of hardness level, and the classification of hardness
level is implemented by the HRN which outputs L probabilities.
A large number of samples augmented by STGANs are used to
pretrain the HRN, which is the key contribution of STGAN.

The major contributions of the proposed method can be
summarized as follows:

(1) A semi-supervised scheme is proposed for hardness
recognition in order to save the time and labor cost of
human labeling. A large number of unlabeled samples are
made use of through the unsupervised training of USTGAN,
of which the main architecture and parameter values are
shared with the following STGAN and HRN, and the
manually labeled samples are used to train STGAN and
automatically augmented by the trained STGAN.

(2) A HRN of which the main architecture and initial parameter
values are inherited from the discriminator of USTGAN is
employed to recognize the hardness level of objects touched
by robotic forearm online. The large amount of augmented
samples and manually labeled samples are separately used to
pretrain and fine-tune the HRN.

PROPOSED METHOD

The proposed method can be classified into three steps. Firstly,
the USTGAN is trained by a large number of unlabeled samples
in order to provide a good initial state to the following STGAN
and HRN. Secondly, L STGANs of which the generators are
used to augment the labeled samples are individually trained
by L-level manually labeled samples. Finally, the HRN which is
pretrained by augmented samples and fine-tuned by manually
labeled samples is employed to recognize the hardness level of
captured tactile data obtained from the robotic forearm.
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FIGURE 1 | Framework of proposed method.

As mentioned before, the architecture of DeLiGAN is adopted
by STGAN and USTGAN in this paper, therefore, some of the
details of DeLiGAN will be presented in the following section for
the completeness of description. The details of above three steps
are given as follows.

Unsupervised Training of USTGAN
In order to alleviate the shortage of labeled samples, the large
number of unlabeled samples are made use of by sharing the
architecture and parameter values of trained USTGAN with the
following STGAN and HRN.

The architecture and training scheme of USTGAN is similar to
DeLiGAN, the only difference is the training samples. Therefore,
the details of the training scheme of USTGAN is no longer
presented in this section.

Labeled Samples Augmentation Based on
STGAN
The architecture of STGAN is the same as USTGAN and the
initial parameter values are also given by the trained USTGAN,
however, the training of STGAN is supervised. As shown in
Figure 1, the probability density of input noises of ith STGAN
which is used to augment the ith hardness level samples is defined
as follows (Gurumurthy et al., 2017):

p(zi) =
K
∑

k=1

πk
i N (zi|µ

k
i , 6k

i ), i ∈ [1, L]

s.t.
K
∑

k=1

πk
i = 1

(1)

where, zi ∈ Rn denotes the input noises corresponding to
ith hardness level, n is the dimension of the input noises, K
denotes the number of Gaussian component contained in GMM,
N (·) denotes the Gaussian distribution, µk

i ∈ Rn and 6k
i ∈

Rn×n denotes the mean vector and covariance matrix of the kth
Gaussian component of zi, respectively, πk

i denotes the weight
of kth Gaussian component of zi, which can be quantified by
ratio of the number of noisy signals generated from kth Gaussian
component to all noisy signals.

To obtain the zi, the “reparameterization trick” introduced
by Kingma and Welling (2014) is employed to sample
from each Gaussian component. We assume that 6k

i is a

diagonal covariance matrix which is denoted as 6k
i = diag

(σ k1
i σ

k2
i · · · σ

kn
i ), then the input noise derived from the kth

Gaussian component which is denoted as zki ∈ Rn can be
obtained by:

zki = µk
i + σ k

i η

σ k
i = [σ k1

i σ
k2
i · · · σ

kn
i ] ∈ Rn

s.t. η ∼ N (0, 1) (2)

where, η is an auxiliary noise variable following normal
distribution, σ k

i denotes the diagonal elements of 6k
i . As shown

in Equation (2), obtaining the zki will translates to sampling

η ∼ N (0, 1) if the values of µk
i and σ k

i are obtained. Finally,
the zi can be obtained by repeating the above processing of each
zki k ∈ [1,K].

Obviously, the values of µk
i and σ k

i should be determined in

order to obtain the input noise. The µk
i and σ k

i are learned along
with the training of ith STGAN of which the details are as follows.
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Training of STGAN
A total of L STGANs are trained by L level manually labeled
samples, respectively. The loss function of discriminator of ith
STGAN is as follows (Goodfellow et al., 2014; Radford et al.,
2016):

min
θD





∑

zi∼ p(zi)

log(D(G(zi, θ
G
i ), θ

D
i ))−

∑

xi∼ pdata(xi)

logD(xi, θ
D
i )





(3)

where, θDi and θGi denote the model parameters of discriminator
and generator of ith STGAN, xi denotes the manually labeled
samples of ith hardness level, pdata(xi) denotes the probability
density distribution of xi,G(·) denotes the samples generated
from zi, D(·) ∈ [0, 1] denotes the probability that the input
samples belong to the real labeled samples. As shown in Equation
(3), θGi is regarded as constants when discriminator is trained
using Equation (3).

The loss function of generator is as follows (Goodfellow et al.,
2014; Radford et al., 2016):

max
θG





∑

zi∼ p(zi)

log(D(G(zi, θ
G
i ), θ

D
i ))



 (4)

Similarly, θDi is regarded as constants when the generator is
trained using Equation (4).

As shown in Equation (2), zi = [z1i · · · z
k
i · · · z

K
i ] is the

function of µk
i and σ k

i , therefore, the µk
i and σ k

i will be trained
simultaneously along with θGi . According to Equation (2), the
Equations (3, 4) can be respectively reformulated as:

min
θD









∑

η∼ N(0,1)
k∈[1,K]

log(D(G(η, θGi ,µ
k
i , σ

k
i ), θ

D
i ))

−
∑

xi∼ pdata(xi)

logD(xi, θ
D
i )



 (5)

max
θG ,µk

i ,σ
k
i









∑

η∼ N(0,1)
k∈[1,K]

log(D(G(η, θGi ,µ
k
i , σ

k
i ), θ

D
i ))









(6)

It’s worth noting that generator tries to decrease the σ k
i in order

to obtain more noisy signals from the high probability regions
which are around the µk

i , consequently, the σ k
i will collapse to

zero. Therefore, a L2 penalty terms is added to the loss function
of generator in order to prevent this from happening:

max
θG ,µk

i ,σ
k
i









∑

η∼N(0,1)
k∈[1,K]

log(D(G(η, θGi ,µ
k
i , σ

k
i ), θ

D
i ))− λ(1− σ k

i )
2









(7)

Finally, the discriminator and generator of STGAN is trained
alternatively according to Equations (5) and (7) for obtaining the
θDi , θ

G
i , µ

k
i , and σ k

i .

Samples Generation
According to Equation (2), Nk

i noise signals can be generated

from the kth Gaussian component when µk
i and σ k

i have been

learned in the last section. Subsequently, the Nk
i generated

samples are obtained by sending the Nk
i noise signals to the

generator of ith STGAN. Finally, the Ni = 6K
k=1

Nk
i generated

samples corresponding to the ith hardness level are obtained and
denoted as gxi.

Hardness Recognition
As shown in Figure 1, the architecture of HRN is the same
as the discriminator of USTGAN except for the classification
layer. Specifically, the classification layer of USTGAN and HRN
is the real-fake binary classifier and L-class softmax classifier,
respectively. The HRN is firstly pretrained using GX and is
subsequently fine-tuned using X, where, GX = {gxi}

L
i=1 and

X = {xi}
L
i=1 denote the assemble of gxi and xi, respectively.

As mentioned before, the initial model parameters of HRN
are inherited from the discriminator of trained USTGAN. The
rationality of the parameters sharing can be analyzed in terms
of loss function. In fact, the discriminator of USTGAN can be
regarded as a combination of real-fake classifier and CNN which
is used to extract the deep feature of generated data and real data.
Consequently, the loss function of discriminator of USTGAN can
be reformulated as:

min
βD





∑

ε∼ p(ε)

log(P(f (ε,βG) ∈ real|βD))

−
∑

xu∼ pdata(xu)

log(P(f (xu) ∈ real|βD))



 (8)

where, ε denotes the input noise of generator of USTGAN, xu
denotes unlabeled samples, and βG and βD denote the model
parameters of discriminator and generator, respectively. f (ε,βG)
and f (xu) denote the extracted features of generated samples
and unlabeled samples, respectively. As shown in Equation (8),
the traditional formulation of probability distribution can be
reformulated as the probability that extracted features belong to a
real class. Considering the fact that the xu includes a large number
of unlabeled samples with various hardness levels, the CNN
contained in discriminator can extract the common feature of
tactile data with different hardness levels after the unsupervised
training of USTGAN.

Similarly, the HRN can be regarded as the combination
of L-class classifier and CNN which is inherited from the
discriminator of USTGAN, and the loss function of HRN can be
formulated as:

min(−
1

NTR

NTR
∑

n=1

L
∑

i=1

δ(yTRn = i) log(P(f (xTRn ) ∈ ith-class|θ))) (9)
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where, xTRn and yTRn denote the training samples and
corresponding labels, respectively, (xTRn ,yTRn )∈X or GX, NTR

denotes the number of training samples, θ denotes the model
parameters of HRN, f (xTRn ) denotes the extracted features of
xTRn . Similar to equation (8), P(f (xTRn ) ∈ ith-class|θ) denotes the
probability that f (xTRn ) belongs to ith class. Obviously, on the
basis of the capability to extract common features, the CNN can
also extract discriminative features after the supervised training
of HRN.

In summary, the HRN and discriminator of USTGAN can
be regarded as the combination of CNN and classifier. The
CNN can extract the common features of tactile data with
different hardness levels through the unsupervised training
of USTGAN, and the capability is inherited by the CNN
contained in HRN through the parameters sharing. Furthermore,
the CNN contained in HRN can extract the discriminative
features of tactile data with different hardness levels through the
supervised training of HRN. In other words, the unsupervised
and supervised training are jointly used to improve the capability
of feature extraction of HRN through the parameters sharing.

After the training of HRN, the hardness recognition is
implemented as following:

HL(y) = argmaxY(i)
i

, i ∈ [1, L]

Y = HRN(y), Y ∈ RL (10)

where, y denotes the tactile data which is captured online by
robotic forearm,HL(y) denotes the hardness level of y, Y denotes
the output of HRNwhen y is imported into the trainedHRN,Y(i)
denotes the probability that y belong to ith hardness level.

The whole procedure of hardness recognition can be
summarized in Algorithm 1.

Algorithm 1 | Hardness recognition.

Input:Online captured tactile data: y, manually labeled samples: X =
{

xi
}L
i=1,

unlabeled samples: xu

Use xu to train USTGAN according to (Gurumurthy et al., 2017);

Share model parameters: STGAN← USTGAN;

For i=1 to L do

Use xi to train ith STGAN according to equation (5) (7);

Use trained generator of ith STGAN to obtain gxi ;

End for

Share model parameters except classification layer: HRN← USTGAN;

Pretrain the HRN using GX = {gxi}
L
i=1.

Fine-tune the HRN using X.

Import y into the trained HRN to obtain HL(y) according to equation (10).

Output: HL(y)

EXPERIMENT

Experiment Setting
Acquisition of Tactile Data

Tactile sensor
A tactile sensor JX255N manufactured by I-Motion is a thin film
pressure sensor which has an array of 28 × 28 sensing elements,

and is integrated in the robotic forearm. The size of the tactile
sensor is 98 × 98mm, and consequently the spatial resolution
of the sensor is 3.5 × 3.5mm. The minimum discrimination
of the tactile sensor is 0.2N. The maximum scanning rate of
the sensor is 100 frames/s while a rate of 5 frames/s is used in
our experiments.

Data acquisition
The tactile sensor assembled at the end of the robotic forearm
is used to press the testing objects which are placed on the flat
experimental table to obtain a sequence of tactile data frame. We
directly place the testing objects below the sensor, and the sensor
moves vertically to touch the objects. The moving speed of the
sensor is set to 5 mm/s. The sensor surface is always parallel to
the surface of experimental table during the pressing process. The
testing objects are placed on the experimental table with at least
six postures and pressed by the sensor with at least eight forces
(1∼25N). The number of times that each object is pressed is set to
50 in our experiment. The tactile data frame of which the contact
area is maximum is selected as the final input data.

Dataset for Evaluation
As shown in Table 1, the hardness is divided into four levels
according to Shore hardness. Two kinds of material with similar
hardness are selected as the reference materials for each hardness
level. One is used to generate samples for training and another
one is used for testing, which can avoid unfair evaluation
caused by same reference material. Specifically, the wood,
rubber, plasticine, and sponge which separately correspond to
the hardness level-1, level-2, level-3, and level-4 are selected as
the reference material for collecting training samples. Similarly,
hard plastic, foam, soft candy, yoga matt are used to obtain
testing samples. There are 50 (5) sampled objects are selected
for each training (testing) reference material, and the number
of times that each object is pressed is set to 50, as mentioned
before. Therefore, 2,500 (250) samples can be obtained for each
training (testing) reference material. Consequently, the dataset
is consisted of 11,000 manually labeled samples, where 10,000
samples are used for training and 1,000 samples are for testing.

As shown in Figure 2, eight samples are selected from the
proposed dataset and shown in the form of pressure image, each
sample belongs to different hardness levels of training (testing)
set. Due to the high hardness, the wood blocks and hard plastics
are not easy to deform, therefore, their pressure images seem to
be scattered since their surface is not seriously flat. The pressure
image of hardness level-2∼4 can be approximately considered as
a Gaussian distribution with the increasing standard deviation.

Implementation Details

Training of STGAN and USTGAN
Following the setting of dataset, the number of hardness levels
L is four. The µk

i is initialized by sampling from a uniform

distributionU(−1, 1), σ k
i is assigned to a fixed initial value 0.15 in

this paper, n = 30, K = 50, πk
i = 1/50 which indicates that all of

the Gaussian components are equally important and the number
of noises generated from each Gaussian component is equal. In
Equation (7), λ= 0.1. The optimization algorithm for training the
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TABLE 1 | Details of proposed dataset.

Hardness

level

Shore hardness

range

Reference materials

for training

Shore

hardness

Number of

samples

Reference materials

for testing

Shore

hardness

Number of

samples

Level-1 >70◦ Wood 87◦ 2,500 Hard plastic 88◦ 250

Level-2 61◦-70◦ Rubber 66◦ 2,500 Foam 63◦ 250

Level-3 51◦-60◦ Plasticine 52◦ 2,500 Soft candy 55◦ 250

Level-4 ≤50◦ Sponge 32◦ 2,500 Yoga matt 38◦ 250

FIGURE 2 | Illustration of eight samples of proposed dataset. Each sample belongs to different hardness level of training (testing) set, and is shown in the form of

pressure image. The color bar indicates the relative force values, where red denotes the maximum force value of pressure image, blue denotes the minimum force

value except zero value, purple denotes zero value.

STGAN is Adam (Kingma and Ba, 2015). The learning rate of
STGAN is 0.001, the number of iterations is 500, the batch size is
100. The parameter setting of USTGAN is same as STGAN.

In order to demonstrate the effectiveness of the proposed
method, only 1,500 labeled samples (375 samples per hardness
level) among 10,000 samples are used to train the STGAN for
samples augmentation, the other 8,500 samples are regarded as
the unlabeled samples for training of USTGAN.

Training of HRN
The learning rate is 0.001, the number of iterations is 200, and the
batch size is 100. The optimization algorithm for training of HRN
is stochastic gradient descent (SGD). The samples augmentation
is implemented following the scheme introduced in section
Labeled samples augmentation based on STGAN. The expansion
ratio is 1:30, in other words, 45,000 labeled samples are generated
(375∗30 = 11,250 samples per hardness level) and employed to
pretrain theHRN, aforementioned 1,500 labeled samples are used
to fine-tune the HRN.

Comparison Methods
First of all, three full supervised HRNs separately trained by
1,500, 5,000, and 10,000 manually labeled samples are denoted
as HRN15, HRN50, HRN100, respectively, and are used to
compared with proposed method in order to evaluate the
capability of proposed method relative to fully supervised
methods. Secondly, two existing semi-supervised GANs which
are separately denoted as SGAN (Odena, 2016) and IGAN
(Salimans et al., 2016) are compared with our method to
evaluate the effectiveness of proposed semi-supervised GAN. The

unlabeled samples and manually labeled samples used by SGAN
and IGAN are same as proposed method for fair comparison.
Thirdly, two variants of proposed methods which are separately
denoted as NAHRN andNIHRN are employed for comparison in
order to validate the effectiveness of samples augmentation and
model initialization based on USTGAN. Specifically, the samples
augmentation is not involved in NAHRN, NIHRN adopts
random initialization for HRN, the rest of NAHRN and NIHRN
is same as proposed method except aforementioned changes.

Evaluation Metrics
Four evaluation metrics are employed to evaluate the effective of
propose method: category accuracy, overall accuracy, confusion
matrix, and Kappa coefficients.

The category accuracy is defined as:

Pi =
Zi

Ni
× 100%, i ∈ [1, L] (11)

where, Pi denotes the category accuracy of ith hardness level, Ni

denotes the number of all the testing samples of ith hardness
level, Zi denotes the number of correctly identified testing
samples of ith hardness level. The Pi is proportional to the
recognition accuracy of each hardness level.

The overall accuracy is defined as:

Poverall=
Z

N
× 100% (12)

where, Poverall denotes overall accuracy, N denotes the total
number of testing samples, Z denotes the total number of
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TABLE 2 | Comparison results in terms of category accuracy and overall accuracy.

`
`
`
`
`

`
`
`
`̀Hardness level

Methods
HRN15 HRN50 HRN100 SGAN IGAN NAHRN NIHRN Ours

Hardness level-1 67.2% 89.6% 97.6% 89.2% 91.6% 89.2% 92.4% 96.4%

Hardness level-2 61.2%. 84.4% 94.4% 84% 85.2% 83.2% 88.4% 92.8%

Hardness level-3 56.8% 80.8% 92.4% 80.4% 81.6% 78.8% 84.8% 90%

Hardness level-4 71.6% 91.6% 99.2% 91.2% 92.8% 91.6% 94.8% 98.4%

Overall accuracy 64.2% 86.6% 95.9% 86.2% 87.8% 85.7% 90.1% 94.4%

correctly identified testing samples. The Poverall is proportional
to the overall recognition accuracy.

The yhw which denotes the element located in hth row andwth
column of confusion matrix is defined as:

yhw =
Nhw

Nh
, h,w ∈ [1, L] (13)

where, Nh denotes the total number of testing samples of hth
hardness level, Nhw denotes the number of samples which belong
to hth hardness level and are falsely recognized as wth hardness
level. The yhw is inversely proportional to the degree of confusion
between each hardness level.

The Kappa coefficient which is denoted as Ka can be obtained
from confusion matrix:

Ka =
L

∑L
j=1 yjj −

∑L
j=1 (aj · bj)

L2 −
∑L

j=1 (aj · bj)
(14)

where, yjj denotes the jth diagonal element of confusion matrix,
aj denotes the sum of elements located in jth row, bj denotes the
sum of elements located in jth column. The Kappa coefficient is
inversely proportional to the overall degree of confusion.

Experimental Results
Comparison in Terms of Category Accuracy and

Overall Accuracy
The comparison results between the proposed method and other
methods in terms of category accuracy and overall accuracy is
shown in Table 2.

Compared with three full supervised methods, the
performance of the proposed method is apparently superior to
HRN15 and HRN50, and is comparable with the HRN100. As
a matter of fact, the architecture of the hardness recognition
model adopted by the proposed method is the same as HRN100,
and the number of original training samples used by proposed
method is also equal to HRN100, the only difference being
the composition of samples. As mentioned before, only 1,500
manually labeled samples are used by the proposed method
and the other 8,500 samples are unlabeled, while the 10,000
samples used by HRN100 are all manually labeled. Therefore, the
performance of HRN100 can be considered as the upper bound
of proposed method. As shown in Table 2, the performance of
proposed is comparable with HRN100, which can validate the
effectiveness of proposed semi-supervised scheme.

Compared with two existing semi-supervised methods,
the performance of the proposed method is superior to
SGAN and IGAN. As described in section Comparison
methods, the unlabeled samples and manually labeled
samples used by SGAN and IGAN are the same as
the proposed method for fair comparison, and the key
difference is the samples augmentation. To some extent,
the comparison between the proposed method and SGAN,
IGAN, can validate the effectiveness of the proposed samples
augmentation scheme.

Compared with two variants of the proposed method, the
performance of proposed method is superior to the NAHRN and
NIHRN. The comparison between NAHRN and the proposed
method indicates that the samples augmentation can apparently
improve the performance of hardness recognition. As a matter
of fact, the training samples used by SGAN and IGAN are
completely identical with NAHRN which do not adopt samples
augmentation, and consequently the overall accuracy of NAHRN
is close to SGAN and IGAN. The comparison between NIHRN
and the proposed method indicates that the initialization based
on USTGAN can improve the accuracy of hardness recognition.
In fact, the comparison between NAHRN and HRN15 can
demonstrate the effectiveness of initialization based on USTGAN
more clearly. The architecture of NAHRN and HRN15 is
identical, the same 1,500 manually labeled samples are used
for the training of two models, and the only difference is
the model initialization based on USTGAN which is trained
by 8,500 unlabeled samples. The reason why the gap between
NIHRN and proposed method is not obvious may be that a
large number of augmented samples are used by NIHRN for
model pretraining.

Comparison in Terms of Confusion Matrixes and

Kappa Coefficients
The confusion matrixes and Kappa coefficients of various models
are shown in Table 3, and similar conclusions to the previous
section can be drawn from the Table 3. The overall degree of
confusion of the proposed method is better than the other six
methods and is comparable with the HRN100 in terms of kappa
coefficients. It can be seen that the probability of confusion
between hardness level-2 and level-3 is higher than others, as
shown in the confusion matrixes. The reason may be that the
difference of Shore hardness of reference materials between
hardness level-2 and level-3 is smaller than other adjacent
hardness levels, as shown in Table 1, therefore, the degree of
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TABLE 3 | Comparison results in terms of confusion matrixes and Kappa coefficients.

HRN models
P
P
P

P
P
P

Target

Prediction
Hardness level-1 Hardness level-2 Hardness level-3 Hardness level-4 Kappa coefficient

HRN15 Hardness level-1 0.672 0.204 0.076 0.048 0.5227

Hardness level-2 0.120 0.612 0.212 0.056

Hardness level-3 0.076 0.224 0.568 0.132

Hardness level-4 0.044 0.100 0.140 0.716

HRN50 Hardness level-1 0.896 0.060 0.028 0.016 0.8213

Hardness level-2 0.052 0.844 0.068 0.036

Hardness level-3 0.044 0.096 0.808 0.052

Hardness level-4 0.008 0.020 0.056 0.916

HRN100 Hardness level-1 0.976 0.020 0.004 0 0.9453

Hardness level-2 0.020 0.944 0.028 0.008

Hardness level-3 0.024 0.040 0.924 0.012

Hardness level-4 0 0 0.008 0.992

SGAN Hardness level-1 0.892 0.076 0.020 0.012 0.816

Hardness level-2 0.048 0.840 0.072 0.040

Hardness level-3 0.044 0.104 0.804 0.048

Hardness level-4 0.008 0.028 0.052 0.912

IGAN Hardness level-1 0.916 0.056 0.020 0.008 0.8373

Hardness level-2 0.048 0.852 0.064 0.036

Hardness level-3 0.04 0.096 0.816 0.048

Hardness level-4 0.008 0.020 0.044 0.928

NAHRN Hardness level-1 0.892 0.068 0.028 0.012 0.8093

Hardness level-2 0.052 0.832 0.076 0.040

Hardness level-3 0.048 0.108 0.788 0.056

Hardness level-4 0.012 0.020 0.052 0.916

NIHRN Hardness level-1 0.924 0.044 0.024 0.008 0.868

Hardness level-2 0.036 0.884 0.060 0.020

Hardness level-3 0.036 0.084 0.848 0.032

Hardness level-4 0.004 0.020 0.028 0.948

Ours Hardness level-1 0.964 0.024 0.012 0 0.9253

Hardness level-2 0.020 0.928 0.040 0.012

Hardness level-3 0.024 0.072 0.900 0.004

Hardness level-4 0 0 0.016 0.984

deformation between hardness level-2 and level-3 is closer than
other adjacent hardness levels.

In summary, the performance of proposed method is superior
to other six methods and is comparable with HRN100, the
effectiveness of samples augmentation and initialization based on
USTGAN is also validated through the comparison.

CONCLUSION

A semi-supervised scheme which only need a small amount
of training samples is proposed for hardness recognition of a
robotic forearm. The proposed method can make use of a large
number of unlabeled samples through unsupervised training of
GAN of which the architecture is shared with following model.
The proposed method can also augment the manually labeled
samples through the supervised training of GAN of which the

initial state is inherited from the unsupervised GAN. The HRN
of which the initial state is also inherited from the unsupervised
GAN are pretrained by the large number of augmented labeled
samples and fine-tuned by small amount of labeled samples.
The experimental results on the proposed dataset demonstrate
that the proposed samples augmentation andmodel initialization
schemes are effective.

The GAN model adopted in this paper is DeLiGAN, in
principle, any other GAN which can generate 2D data from
the noise can be adopted in our semi-supervised scheme,
however, some weakness of existing GAN models has not been
overcome, e.g., model collapsing, therefore, the performance
may be improved by applying a more powerful GAN model.
In addition, it’s worth noting that the proposed semi-supervised
scheme can be applied in other tactile AI applications based on
machine learning methods.
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