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Bipedal locomotion is a basic motor activity that requires simultaneous control of multiple

muscles. Physiological experiments suggest that the nervous system controls bipedal

locomotion efficiently by using motor modules of synergistic muscle activations. If these

modules were merged, abnormal locomotion patterns would be realized as observed in

patients with neural impairments such as chronic stroke. However, sub-acute patients

have been reported not to show such merged motor modules. Therefore, in this study,

we examined what conditions in the nervous system merges motor modules. we built a

two-dimensional bipedal locomotion model that included a musculoskeletal model with 7

segments and 18 muscles, a neural system with a hierarchical central pattern generator

(CPG), and various feedback inputs from reflex organs. The CPG generated synergistic

muscle activations comprising 5 motor modules to produce locomotion phases. Our

model succeeded to acquire stable locomotion by using the motor modules and reflexes.

Next, we examined how a pathological condition altered motor modules. Specifically, we

weakened neural inputs tomuscles on one leg to simulate a stroke condition. Immediately

after the simulated stroke, the model did not walk. Then, internal parameters were

modified to recover stable locomotion. We refitted either (a) reflex parameters or (b) CPG

parameters to compensate the locomotion by adapting (a) reflexes or (b) the controller.

Stable locomotion was recovered in both conditions. However the motor modules were

merged only in (b). These results suggest that light or sub-acute stroke patients, who

can compensate stable locomotion by just adapting reflexes, would not show merge of

motor modules, whereas severe or chronic patients, who needed to adapt the controller

for compensation, would show the merge, as consistent with experimental findings.

Keywords: motor module, CPG, locomotion, neuromusculoskeletal model, pathological locomotion

1. INTRODUCTION

Bipedal locomotion is a basic motor activity. Several studies suggest that animal locomotion is
controlled by central pattern generators (CPGs) in the spinal cord (Grillner, 1975). CPGs provide
a rhythmic motor activity across multiple muscles in a coordinated manner in both space and time
(Guertin, 2009). Specifically, they generate coordinated flexor-extensor muscles’ activity, and adapt
gait patterns to environmental changes by using sensory feedback. The motor modules hypothesis
(Dominici et al., 2011; Lacquaniti et al., 2012) proposes that the motor system groups muscles into
a smaller number of functional modules based on CPGs. Physiological experiments suggest that
human locomotion may involve the motor modules of synergistic muscle activations. In healthy

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00079
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00079&domain=pdf&date_stamp=2019-09-20
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:finr19@neuralgorithm.org
https://doi.org/10.3389/fnbot.2019.00079
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00079/full
http://loop.frontiersin.org/people/720867/overview
http://loop.frontiersin.org/people/54676/overview


Ichimura and Yamazaki Pathological Locomotion Model

adults, 4 or 5 motor modules are activated independently while
walking (Ivanenko et al., 2004, 2005). Each module corresponds
to a key phase of the gait cycle (Neptune et al., 2009). The 1st
module acts to support the body in the early stance. The 2nd
module acts to support both the body and propulsion in the
later stance. The 3rd module contributes to decelerating the leg
in the early and later part of the leg swing. The 4th module
absorbs leg energy in the late part of the leg swing. Patients
with neural disorders showed different combinations of motor
modules, including the decrease of the number of motor modules
(Ting et al., 2015). Previous studies demonstrated that locomotor
rehabilitation improved walking ability in stroke patients while
increasing the number of motor modules (Routson et al., 2013;
Ting et al., 2015; Ferrante et al., 2016). Chronic stroke patients
exhibit abnormal locomotion patterns, and 2 or more motor
modules are merged in a single module, creating a timing overlap
(Clark et al., 2010; Routson et al., 2013). These results suggest
that motor modules are demonstrated as physiological markers
of the status of patients with neural disorders (Cheung et al.,
2012; Ting et al., 2015). On the contrary, some studies showed
that locomotion recovery was not associated with changes in the
number of motor modules (Hashiguchi et al., 2016; Tan et al.,
2018). Stroke patients in the sub-acute phase showed a pattern of
motor modules similar to those of healthy controls (Gizzi et al.,
2011). Thus, how the nervous system in chronic stroke patients
alters the motor modules remains unclear.

To address this question, we employed computer simulation
of bipedal locomotion model (Taga et al., 1991; Taga, 1995;
Ogihara and Yamazaki, 2001; Hase and Yamazaki, 2002; Jo
and Massaquoi, 2007; Aoi et al., 2010, 2012; Allen et al.,
2013). Specifically, we aimed to examine how the nervous
system alters the organization of motor modules by building
a two-dimensional bipedal locomotion model consisting of a
musculoskeletal system and hierarchical CPGs. First, we built a
normal locomotion model with 5 motor modules and various
feedback inputs. By setting internal parameters by a genetic
algorithm (GA) appropriately, the model succeeded to walk
robustly. Then, we simulated a pathological condition. Motor
evoked potentials (MEPs) are widely used to investigate the
physiology of corticospinal condition (Hendricks et al., 2002). A
previous study has shown a correlation between weaker lower-
limb MEPs and lower gait ability (Piron et al., 2005). Therefore,
we weakened output signals to the muscles on one leg to simulate
the weak lower-limb MEPs. By this manipulation, the model
failed to walk anymore. Then, we refit parameters by running
additional GAs. Specifically, we modified one of the two sets of
parameters by GAs: (a) reflex parameters to simulate patients
who can compensate locomotion only by adapting reflexes, and
(b) CPG parameters to simulate patients who need to adapt
the controller itself for compensation. In both cases, the model
succeeded to walk again, and found the only in the latter case,
motor modules were merged.

2. MATERIALS AND METHODS

2.1. Skeletal Model
Our two-dimensional skeletal model consists of 7 rigid links that
represent the head, arms, torso (HAT), thighs, shanks, and feet

(Figure 1A). The length, mass and moment of inertia for each
segment are taken from Jo and Massaquoi (2007) as in Table 1.

Each joint is modeled as a pin joint and has a linear viscous
element. The coefficients of viscosity for the hip, knee, and
ankle joints are 1.09, 3.17, and 0.943 Nms/rad, respectively (Aoi
et al., 2010). The knee and ankle joint are locked to prevent
hyperextension or hyperflexion.

The spring and damper coefficients are 2.0× 103Nm/rad and
5.0×102 Nms/rad for the knee joints, as well as 2.0×103Nm/rad
and 5.0×102 Nms/rad for the ankle joint. When the heels or toes
make contact with the ground, they receive the ground reaction
forces produced by springs and dampers. The spring and damper
coefficients are 5.0 × 103N/m and 1.0 × 103 Ns/m horizontally
and 2.5× 104N/m and 5.0× 102 Ns/m vertically.

The equations of motion are derived by means of the Newton-
Euler method (Taga et al., 1991; Taga, 1995). The general form of
the equations is described as

ẍ = P(x)F+Q(x, ẋ,GRF(x, ẋ),Tr(Fm)), (1)

where x is a (21× 1) vector of the inertial positions of 7 links and
the inertial angles of 7 links, P is a (21× 12) matrix, F is a (8× 1)
vector of constraint forces,Q is a (20×1) vector,GRF is a (8×1)
vector of ground reaction forces on the feet; Tr is a (6× 1) vector
of torques, and Fm (18 × 1) is a vector of the muscle tensions to
be explained in the next section.

Constraint forces on the joints are eliminated by using
equations of kinematic constraints given as follows:

C(x)ẍ = D(x,ẍ) (2)

where C is a (12 × 21) matrix and D is a (12 × 1) vector. By
eliminating F from Equations (1) and (2), we obtain

ẍ = P(x)[C(x)P(x)]−1[D(x,ẍ)

− C(x)Q(x, ẋ,GRF(x, ẋ),Tr(Fm))]

+Q(x, ẋ,GRF(x, ẋ),Tr(Fm)).

(3)

This equation can be numerically integrated, given the muscle
tensions Fm.

2.2. Muscular Model
Weused 18 principalmuscles; 9 for each legs (Figure 1A): gluteus
maximus (GM), iliopsoas (IL), biceps femoris long head (BFL),
rectus femoris (RF), biceps femoris short head (BFS) vastus (VA),
gastrocnemius (GC), soleus (SO), tibia anterior (TA). A muscle
receives a signal from the corresponding α-motoneuron and
generates muscle tension depending on the force-length and
force-velocity relationship. We used the mathematical model
described by Ogihara and Yamazaki (2001), as follows:

Fm = F̄CEm · k(ξm) · h(ηm) · αm + FPDm + FPEm

k(ξm) = 0.32+ 0.71 exp[−1.112(ξm − 1)] sin[3.722(ξm − 0.656)]

h(ηm) = 1+ tanh(3.0ηm)

FPDm = cPDm L̇m

FPEm = kPEm {exp[15(Lm − L̄m)]− 1}, (4)
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FIGURE 1 | Model overview. (A) Schematic representation of the proposed neuromuscloskeletal model. Left panel: Musculoskeletal model. (1) gluteus maximus (GM);

(2) iliopsoas (IL); (3) biceps femoris long head (BFL); (4) rectus femoris (RF); (5) biceps femoris short head (BFS); (6) vastus (VA); (7) gastrocnemius (GC); (8) soleus (SO);

(9) tibia anterior (TA). HAT, head, arms, and torso. Right panel: the neural system is a central pattern generator (CPG) model, which is organized hierarchically with a

rhythm generator (RG) network and a pattern formation (PF) network. Two out of the four oscillators in RG (surrounded by the left dashed circle) induce phasic and

rhythmic activity patterns for five motor modules in PF that activate muscles for the left leg (colored arrows from the right to left panels), whereas the other two

oscillators in RG (surrounded by the right dashed circle) induce another five motor modules in PF for the right leg (arrows are not shown). (B) Hierarchical relationship

between RG and PF. Two neurons in RG network generate five activity patterns with different phases in PF network. When the outputs of the RG network reach

certain values (dashed circles), PF neurons are activated. One PF neuron represents one motor module.

where Fm is the muscle tension generated at the mth muscle,
F̄CEm is the maximum muscle tension by contractile element
(CE), k(ξm) is the force-length relationship, h(ηm) is the force-
velocity relationship, αm is the stimulation signal from the
corresponding α-motoneuron (0 ≤ αm ≤ 1), FPDm and FPEm
are the forces generated by the damping and elastic elements.
ξm and ηm are the normalized muscle length and contractile
velocity divided by the muscle optimal length L̄m and maximum

muscle contractile velocity ¯̇Lm, that is, where ξm = Lm/L̄m, ηm =

L̇m/ ¯̇Lm, Lm, and L̇m are the muscle length and the contractile
velocity, respectively. cPDm is the viscous coefficient, and kPEm is the
coefficient of the elastic element.

2.3. Nervous System Model
We used Matsuoka neuron model (Matsuoka, 1987) as follows:

τiu̇i = −ui +

n
∑

j=1

wCPG
ij yj − βvi + uθ + Feedi,

τ ′i v̇i = −vi + yi,

yi = max(0, ui),

(5)

where ui is the inner state of the ith neuron, vi is a variable
that represents the self-inhibition effect of the ith neuron. τi
and τ ′i are time constants, β is a coefficient, wij is a connecting

TABLE 1 | Skeletal model parameters.

HAT Thigh Shank Foot

Length (m) 0.800 0.4165 0.418 0.066

Mass (kg) 44.070 6.500 3.055 0.975

Moment of inertia (kgm2) 5.823 0.117 0.048 9.347× 10−5

weight from the jth neuron to the ith neuron. uθ is an external
input with a constant rate, and Feedi is a feedback signal
from the musculoskeletal system. Parameter values are show
in Appendix.

We built a CPG model that is a two-layer hierarchical
network composed of a rhythm generator (RG) network and
a pattern formation (PF) network based on Li et al. (2013)
(Figure 1A). The RG is composed of four Matsuoka neurons
mutually inhibited to generate rhythm, whereas, a PF network
contains five Matsuoka neurons with mutual and self-inhibition
that corresponds to five motor modules. In response to
rhythmic activation of the RG as an external input, the five
modules are activated one by one sequentially with different
phases (Figure 1B). PF neurons issue motor commands to α-
motoneurons, which in turn activate muscles. α-motoneurons
also receive feedback signals from various reflexes such as posture
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reflex and crossed extension reflex. α-motoneuron output αm and
reflex output Reflexm are given as follows:

αm = wcondition
m

1

1+ exp(−4(
∑5

i=1 w
α
miPFi + Reflexm))

, (6)

Reflexm =

{

∑

j(cmjθj + c′mjθ̇j)+ POSm GRF > 0,

0 otherwise,
(7)

where wcondition
m , wα

mi, cmj, and c′mj are the weight coefficients, PFi
is the output of PF neuron. θj is the joint angle (j ∈ {hip, knee,
and ankle} for each leg), POSm is a posture control, and GRF is
the vertical ground reaction force.

2.4. Parameter Search
Our model has 56 free parameters (wα

mi, cmj, c
′
mj, POSm, Feedi)

need to be fixed for stable locomotion. We employed standard
genetic algorithms (GAs) for searching these parameters (Noori
et al., 2017). GAs are search algorithms based on the biological
genetic mechanisms such as selection, crossover, and mutation
(Hase and Yamazaki, 2002). The search mechanism is built on the
interaction between individuals and the external environment.
GAs comprise a set of individuals (the population) and a set of
the genetic operators. The individuals have genes that are the
potential solutions for the problem. GAs generate a sequence
of populations by using genetic operators (selection, crossover,
and mutation) among individuals. Individuals that achieved the
highest evaluation can survive and generate children. The block
diagram of a GA is presented in Figure 2. For the evaluation
function, we used the following equation:

wdD+ wsS → max (8)

where wd and ws are the weight coefficients, D is the distance
until the model falls down, and S is the number of steps
taken while walking. We initialized 50 individuals randomly.
We chose a one-point crossover with a probability of 0.7 and
mutation with a probability of 0.1. We carried out impairment
simulation for 5 times with 5 different seeds of the random
number generator to examine the simulation results are unique.
We confirmed that the model achieved stable bipedal locomotion
for 5 s, and locomotion patterns with different seeds did not differ
qualitatively. Essentially, humans acquire walking by trial and
error. We mimicked this using GAs.

2.5. Normal and Pathological Locomotion
Model
Normal locomotion was simulated by fitting the 56 free
parameters by GAs while setting wcondition

m = 1.0 in Equation
(3) for any m. After the model acquired normal locomotion, we
simulated a pathological condition such as stroke. Specifically,
we set wcondition

m = 0.8 for m = 1, · · · , 6 and 0.6 for m =

7, · · · , 9 to simulate weakening ofMEP signals observed in stroke
patients (Piron et al., 2005). Immediately after this manipulation,
the model did not succeed to walk even for one step. Then,
we examined two “simulated rehabilitation” scenarios for the
model. The first scenario is that under the assumption of that

FIGURE 2 | Block diagram of genetic algorithms. Initialization creates a

population of random individuals. The evaluation phase tests individuals in the

population for fitness. After that, a new generation is created through

selection, crossover and mutation. This process is then repeated the required

number of times was completed.

the patients could recover the locomotion by compensating their
reflexes, we refitted the 28 parameters for reflexes (cmj, c

′
mj).

We call this scenario “reflex-compensation model.” The other
scenario is that under the assumption of that the patients restore
the locomotion by adapting the controller itself, we refitted the
48 parameters for feedback inputs to the CPG (Feedi). We call
this scenario “CPG-compensation model.” In both scenarios, the
model reacquired the locomotion successfully, whereas themotor
modules exhibited different dynamics.

2.6. Implementation
We implemented GAs using a message passing interface (MPI),
which is a library for parallel computing. All programs were
written in C language, and the fourth-order Runge-Kutta
method was used to solve differential equations numerically.
The step-size of time was set as 0.1 ms. In addition, HAT is
controlled by both muscles and proportional-derivative control
to maintain the model upright. The proportional-derivative
control is determined by the angular velocity and the difference
of the vertical angle. The angular velocity and angle coefficients
are 1.0× 102 and 1.0× 103, respectively.

3. RESULTS

3.1. Acquisition of Normal Locomotion
Pattern
After 3,000 generations of GAs, themodel acquired stable bipedal
locomotion, as shown in Figure 3A. The locomotion pattern
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FIGURE 3 | The normal locomotion model. (A) Stick diagram of the generated normal locomotion. This is a snapshot of every 0.1 s. (B) Muscle tension (vertical axis)

of each muscle during the gait cycle (horizontal axis). A gait cycle is the time period of movement during locomotion from the time when the heel of one foot hits the

ground to when the heel of that same foot hits the ground again. Abbreviations as in the main text. (C) Joint angles in relation to the gait cycle for the left (left panel)

and right (right panel) legs. HC and TO indicate the times for heel contact and toe off, respectively.

resembles that of the human biped qualitatively. Figure 3B

displays the muscle activations. The iliopsoas (IL) produced the
activities in the middle of the gait cycle. The gluteus maximus
(GM) and vastus (VA) achieved muscle activity at the beginning
and end of the gait cycle. The tibia anterior (TA) obtained
the activities at the beginning and middle to the end of the
gait cycle. The soleus (SO) and gastrocnemius (GC) produced
synchronous activity in the middle of the gait cycle. These muscle
activations are consistent with themeasured data (Ivanenko et al.,
2005). Figure 3C shows the joint kinematics. The waveforms are
similar to those previously reported in Ivanenko et al. (2005).
The stance phase of the left leg and that of the right leg in
gait cycle are 55.6% and 54.5%, respectively, showing that the
kinematics of both legs are nearly symmetric. However, several
differences between the simulation results and measured data
were observed. For example, the RF produced the peak of the
muscle activities in the middle of the gait cycle in the measured
data. The period of the flexor angle on the knee joint was longer
than the measured data.

3.2. Walking Pattern of Pathological
Condition
To build the pathological locomotion model, we weakened
the output neural signal to the muscle on the left leg in
the normal locomotion model. The pathological locomotion
model fell down immediately when the model attempted to
walk. After 200 generations of GA, the reflex-compensation
model acquired bipedal locomotion by changing the reflex
parameters (Figure 4A). After 1,000 generations of GA, the CPG-
compensation model acquired bipedal locomotion by changing
the CPG parameters (Figure 5A). In the reflex-compensation

model, the step size was smaller than that in the normal
locomotion (Figure 4A). In the muscle activations for the
affected (left) leg, the activity in IL, SO, and GC observed in
the normal locomotion disappeared (Figure 4B). In addition, the
activities of the muscles shifted later in the IL, GM, RF, VA, BFS,
and TA. The joint angles of the left leg (affected leg) is larger
than that of the right leg (unaffected leg) (Figure 4C). The stance
phase of the left leg and the right leg in the gait cycle are 60.9%
and 50.9%, respectively, suggesting that the locomotor pattern is
symmetric. On the other hand, in the CPG-compensation model,
the step size varied across gait cycles compared with the normal
locomotion (Figure 5A). In other words, the walking pattern of
the pathological locomotion model was unstable. In the muscle
activations for the affected (left) leg, the initial activity in VA,
TA, and BFL observed in the normal locomotion disappeared.
In contrast, the initial activity in the GM, RF, and BFS became
larger than that in the normal locomotion model. Those muscle
activities were generated by the reflex (Equation 7) to compensate
for the disappearance of the initial activity in the muscles. In
addition, the phases of the activities were advanced in the VA,
BFL, TA, SO, and GC (Figure 5B). Related to the phase advances,
the stance phase of the left leg (affected leg) became shorter
than that of the right leg (unaffected leg) (49.9% and 75.2%,
respectively), showing an asymmetric locomotion (Figure 5C).

3.3. Comparison of Joint Angles Between
Normal and Pathological Walking
Figure 6 illustrates angle-angle plots to confirm the error of
gait trajectories obtained from the normal locomotion model
and pathological locomotion models. These figures show
that the trajectories for the reflex-compensation model were
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FIGURE 4 | The reflex-compensation model. (A) Stick diagram of the generated reflex-compensation locomotion. (B) Muscle tension of each muscle during the gait

cycle in the reflex-compensation model (red-shaded area) and the normal locomotion model (gray line). Arrows indicate the disappearance of muscle activity. Triangles

exhibit that the activities of the muscles shifted later. Abbreviations as in the main text. (C) Joint angles in relation to the gait cycle for the left (left panel) and right (right

panel) legs in the reflex-compensation model (solid lines) and the normal locomotion model (dashed lines). Conventions as in Figure 3A.

FIGURE 5 | The CPG-compensation model. (A) Stick diagram of the generated CPG-compensation locomotion. (B) Muscle tension of each muscle during the gait

cycle in the CPG-compensation model (red-shaded area) and the normal locomotion model (gray line). Arrows indicate the disappearance of initial muscle activity.

Asterisks show that the initial activity of muscles is larger than that in the normal locomotion model. Triangles exhibit that the activities of the muscles shifted earlier.

(C) Joint angles in relation to the gait cycle for the left (left panel) and right (right panel) legs in the CPG-compensation model (solid lines) and the normal locomotion

model (dashed lines). Arrows indicate the shifted stance phase compared to the normal locomotion model. Both legs are asymmetrical throughout the gait cycle.

Conventions as in Figure 3A.

similar to these for the normal locomotion model (Figure 6B),
whereas these for the CPG-compensation model was not
(Figure 6C), especially ankle-hip and ankle-knee coordinates.
Moreover, these error plots for the CPG-compensation model
display that the angles of ankles were not periodic. The
unnatural movements imply compensation for acquiring

bipedal locomotion. Such a different ankle control strategy
seems necessary for stroke patients to walk. In fact, various
ankle-foot orthoses have been developed to adjust ankle
movements for stroke patients (Ohata et al., 2011). Our
simulation result on the CPG-compensation model supports
this observation.
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FIGURE 6 | Angles of each joint for left and right legs (left and right panels, respectively) during locomotion in the (A) normal, (B) reflex-compensation, and

(C) CPG-compensation models. The horizontal axis and vertical axis are joint angles (radian). Gray lines represents the angles for the normal locomotion model

for comparison.

3.4. Comparison of Motor Modules
Between Normal and Pathological Walking
Finally, we compared the activity patterns of the motor modules,
5 for left and 5 for right legs, in the normal and pathological
conditions. Figure 7A illustrates them in the normal condition.
All modules exhibit rhythmic activity with different phases; and

thus, they become active one by one sequentially. In particular,

the offset of the activity in the 5th module (the end of a

locomotion cycle) is followed by the onset in the 1st module

(the start of the next cycle) continuously. Figure 7B shows
them in the reflex-compensation model. In this case, all the

modules exhibited activities one by one sequentially as in the
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FIGURE 7 | Activity patterns of the motor modules for left and right legs (left and right panels, respectively) during locomotion in the (A) normal,

(B) reflex-compensation, and (C) CPG-compensation model. The horizontal axis is time (s) and the vertical axis activity (arbitrary units). Gray lines represents the

activity for the corresponding module in the normal model for comparison.

normal condition, although the phase of the 2nd module in both
legs was delayed than that in the normal condition. Figure 7C
shows the activity patterns in the CPG-compensation model.
In this case, the 1st module for the affected (left) leg did
not show marked activity. Moreover, in the 3rd, 4th, and 5th
modules, the phases were advanced. We analyzed how long 2
motor modules were activated simultaneously, and plotted the
durations between the 2nd and 3rd modules, those between
the 3rd and 4th modules, and those between the 4th and 5th
modules (Figure 8). The duration in the CPG-compensation

model was the longest, whereas these were comparable in the
Reflex-compensation model and the normal model (Figure 8B),
suggesting that the activations of motor modules in the CPG-
compensationmodel overlap temporally as if they aremerged as a
singlemodule (Figure 8B). However, the overlapmight be caused
by a prolonged activity of each motor module. To address this,
we analyzed the duration of 2nd, 3rd, and 4th modules for each
condition by fitting the activities of the modules by a Gaussian
function (Figure 8C). The Full-width at half maximum (FWHM)
of the waveforms in the normal model, reflex-compensation
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FIGURE 8 | Analysis of activity patterns of the motor modules. (A) Schematic representation of activity patterns of the motor modules. One locomotion cycle is an

activity period during the 1st to 5th motor modules. The locomotion cycle was set to 2π radian (dashed lines) to compare different locomotion cycles in each model. A

duration of co-activation was defined when each module was active at the same time (the duration for modules 3 vs. 4 was shown). (B) The average of the

co-activation for 3 locomotion cycles in each model. The horizontal axis is a comparison of motor modules and the vertical axis is the duration of co-activation. The

colors of gray, blue, and red indicate normal model, reflex-compensation model, and CPG-compensation model, respectively. (C) The waveforms by a Gaussian

function for the 3 locomotion cycles on the 2nd, 3rd, and 4th motor modules are displayed as normal model (gray), reflex-compensation model (blue), and

CPG-compensation model (red).

model, and CPG-compensation model were 12.467, 13.730, and
13.528, respectively. Thus, the motor modules in the CPG-
compensation model showed the same duration with those in
the normal model, suggesting that the active durations are not
extended. These results conclude that in the CPG-compensation
model, motor modules are co-activated in time more than those
in the normal and Reflex-compensationmodels, as if themodules
act as a “merged” single module. The merging of motor modules
is also observed in the unaffected leg, suggesting that the deficit
in one leg affects the other leg.

4. DISCUSSION

In this study, we carried out computer simulation of bipedal
locomotion in normal and pathological conditions. In normal
condition, our neuromuscloskeletal model, composed of a lower
body with 7 links and 18 muscles, and a CPG controller with RG
and PF organized hierarchically, walked successfully after fitting
the internal parameters through a GA algorithm. In pathological
conditions, input signals from the controller to one side of the leg
were weakened, according to experimental results (Piron et al.,
2005). This manipulation led to the immediate failure of stable
walking. Then, we examined two scenarios to recover the stable
walking. In one situation, parameters for proprioceptive feedback
inputs were refitted, which simulates patients compensating
locomotion by adapting reflexes against proprioceptive feedback
signals. In this scenario, the model successfully acquired the
stable walking again, and the activity patterns of motor modules
were unaffected against the manipulation, although there were
some marked differences in muscle activity patterns. In the
other scenario, in which parameters for the CPG were refitted
to simulate patients compensating the locomotion by adapting
the controller, phases were advanced across multiple modules,
and the modules tended to became active with identical phases,
as if they were “merged” as a single module. These results
suggest that if the compensation was made by adapting the reflex

against feedback signals as light on sub-acute stroke patients
would do, the motor modules were unaffected, whereas if the
compensation was made by adapting the controller as severe on
chronic patients would do, the modules were merged (Figure 9).
These observations are consistent with experimental findings
(Clark et al., 2010; Gizzi et al., 2011).

4.1. Normal Locomotion Model
The model is built based on a musculoskeletal model (Taga et al.,
1991; Taga, 1995; Ogihara and Yamazaki, 2001) and a CPGmodel
(Jo and Massaquoi, 2007; Aoi et al., 2010, 2012). The resulting
model contains 56 free parameters to be fitted to acquire stable
walking. Previous studies have fitted these parameters by hand
(Jo and Massaquoi, 2007), reinforcement learning (Matsubara
et al., 2006; Li et al., 2013), and GAs (Ogihara and Yamazaki,
2001; Hase and Yamazaki, 2002). Notably, Aoi et al. (2019)
compared gait patterns of healthy subjects with a computer
simulationmodel with a CPG controller, where the 69 parameters
were hand-tuned. We employed a GA algorithm for fitting the
parameters that maximizes the walking distance and the number
of steps. The GA succeeded to find the appropriate values for
the 56 parameters. Eventually, our model acquired a symmetrical
locomotion pattern (Figure 3A), which is consistent with normal
human locomotion pattern (Ivanenko et al., 2005).

4.2. Pathological Locomotion Model
We then examined two possible scenarios for stroke patients
to recover stable locomotion, reflex-compensation and CPG-
compensation, where the former assumes that patients modify
the reflexes while the latter they modify controller. We observed
that in the former, the motor modules were not merged, whereas
in the latter they were. Where does the different come from?
Allen et al. (2013) built a pathological gait model based on
the stroke patient data (Clark et al., 2010), and analyzed how
different module patterns affect the locomotion. Specifically,
they demonstrated that different merge combinations of motor
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FIGURE 9 | Hypothetical scheme of compensation in human locomotion. The left side is the reflex feedback loop. When the pathological patients acquired bipedal

locomotion by modifying the reflex loop, their motor modules were not merged similar to sub-acute stroke patients (Gizzi et al., 2011). The right side is the CPG

feedback loop. If these motor modules were merged, this suggests the patients that had changed their CPG feedback loop to acquire bipedal locomotion, as

observed in chronic stroke patients (Clark et al., 2010).

modules results in difference locomotion impairments. However,
they did not consider how such merging of motor modules
would occur in stroke patients. On the other hand, we observed
that CPG-compensation model showed the merge of motor
modules to reacquire stable locomotion, suggesting that the
merge occurs internally through the reacquisition process of
locomotion. Meanwhile, we also observed that our reflex-
compensation model did not merge the motor modules. This
results seems consistent with the experimental findings by Gizzi
et al. (2011), showing that sub-acute stroke patients did not
show the merge of motor modules. These results suggest that
depending on the duration after stroke, the patients would take
different strategies to compensate their locomotion behaviors
through the reacquisition process. The spinal cord network has
the functions of adaptation by the feedback signals (Rossignol
et al., 2006). In stroke patients, spinal cord is intact in general. For
this reason, we propose that when the post-stroke period is short,
the reflex feedback loop is affected, whereas when the duration is
long, the CPG feedback loop is affected (Figure 9).

4.3. Implications for Adaptive Robot
Locomotion
CPG-based bipedal robots change their locomotion patterns
adaptively against environmental changes to some extent owing
to the entrainment of the dynamical systems. For example,

CPG-based robots can keep walking on a flat ground as well
as a slope (Taga et al., 1991; Taga, 1995; Ishiguro et al., 2003;
Matsubara et al., 2006; Aoi et al., 2010; Li et al., 2013, 2017)
by sensing the acceleration change provided by proprioceptive
feedback inputs to the controller. However, this ability requires
an intact musculoskeletal system.When the systemmalfunctions,
stable locomotion pattern would not be expected anymore. In this
study, we demonstrated that even if the system malfunctions, as
simulated stroke conditions, the system could recover the stable
locomotion again by modifying internal parameters. However,
depending on the choice of parameters to update, additional
parameter search takes longer relearning time, and the strategy
for restoring the locomotion patterns differs. In particular,
motor modules are merged so that robots would exhibit only
poor locomotion patterns in a certain condition. These results
suggest that not all parameters should be updated to restore the
locomotion ability.

4.4. Impact on Online Rehabilitation
Previous studies have shown that online rehabilitation has
potentially useful attributes (Velliste et al., 2008). Therefore,
various methods have been suggested for detecting motions of
patients easily and accurately (Naseer et al., 2014; Holtzer et al.,
2015; Khan et al., 2018). In particular, Khan et al. (2018) proposed
a novel methodology that controls a prosthetic leg computing
model using functional near-infrared spectroscopy (fNIRS)
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signals with little errors. This result can be effectively used for the
rehabilitation of lower-limb amputees and patients with paralysis.
This system currently supports only a few commands to generate
motor torques to move forward or backward because of a crude
resolution of fNIRS signals. In spite of this, more commands will
be desirable. The fNIRS signals are measured during locomotion
on a treadmill, and so the signals would reflect activities of CPGs
within the brain. We could use our CPG model as a model of the
generator of the fNIRS signals to enhance the signal resolution.

4.5. Limitations of This Study
Our musculoskeletal model is restricted in 2D, and the CPG
model is abstracted mathematically. Thus, the model would not
be suitable to study more detailed locomotion movements in a
3D space, as demonstrated by Kim et al. (2011) for example, or
neuronal activity during locomotion in the brain. Rather, our
model provides a crude closed-loop system model for human
locomotion that can be somehow manipulated to simulate
pathological situation. We will release the source code of our
model under a opensource license to let researchers to elaborate
the present model in future.

4.6. Suggestions for Rehabilitation Therapy
Hashiguchi et al. (2016) reported that the reduced number of
motor modules in stroke patients was recovered to the original
level by the rehabilitation for one month, and the tendency of
the restoration was correlated with the improvement of muscle
strengths and gait patterns by the rehabilitation. When the
muscle strengths were weak, the patients would be impossible
to compensate locomotion only by the reflexes, and so would
need to change the motor strategy by changing the CPGs
itself. This observation seems consistent with the present study,
because compensation by the reflex did not affect motormodules,
whereas that by the CPG did. Robot assisted locomotor training
is a useful means for treatment of impaired locomotion (Jezernik
et al., 2003; Kawamoto et al., 2013; Molteni et al., 2017; Watanabe
et al., 2017) and the devices have been drastically improved to
date (Beckerle et al., 2017; Gandolla et al., 2018; Mummolo et al.,
2018). Tan et al. (2018) reported that robotic-assisted locomotor
training for stroke patients improves walking speed, step cadence,
stance duration percentage of gait cycle, but does not increase
the number of motor modules. This implies that if more motor
modules are recruited, the realized locomotion will be more
sophisticated. Summarizing, stroke patients should be engaged

with muscle exercises as well as gait training so that they could
compensate the locomotion only by the reflex.

5. CONCLUSION

In this study, we investigated what conditions in stroke patients
would result in the merge of motor modules. We built
a musculoskeletal bipedal locomotion model with a neural
controller. In a simulated stroke condition, the motor modules
in the controller were merged functionally, suggesting that
chronic stroke patients would modify internal parameters for
the controller to recover locomotion. These results would thus
provide insights on how the motor modules are merged in stroke
patients for better rehabilitation. These findings also help to
provide ameans for robots to recover locomotion adaptively after
malfunctioning of the controller.
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