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The problem of generating structured Knowledge Graphs (KGs) is difficult and open but

relevant to a range of tasks related to decision making and information augmentation. A

promising approach is to study generating KGs as a relational representation of inputs

(e.g., textual paragraphs or natural images), where nodes represent the entities and

edges represent the relations. This procedure is naturally a mixture of two phases:

extracting primary relations from input, and completing the KG with reasoning. In

this paper, we propose a hybrid KG builder that combines these two phases in a

unified framework and generates KGs from scratch. Specifically, we employ a neural

relation extractor resolving primary relations from input and a differentiable inductive

logic programming (ILP) model that iteratively completes the KG. We evaluate our

framework in both textual and visual domains and achieve comparable performance on

relation extraction datasets based on Wikidata and the Visual Genome. The framework

surpasses neural baselines by a noticeable gap in reasoning out dense KGs and overall

performs particularly well for rare relations.

Keywords: relation learning, relation prediction, information extraction, knowledge graphs, inductive logic

programming

1. INTRODUCTION

For human infants, it is seemingly easy to learn to reason about the relation between any two
objects. Infants show this capability because they learn to understand the world, and they acquire
language by integrating cross-modal information. In particular, they do not only learn referents in
language by statistically matching words with occurrences of objects in the environment, but also
begin to understand the characteristics and affordances of the objects. AI systems, however, are
usually developed based on single modalities or tasks with limited access to the context. Since a
crucial aspect of current AI systems is to learn appropriate representations for designated tasks, it
seems particularly important to reflect cross-modal learning also in learning these representations.
For learning relational representations, let’s consider the following example. In The Little Match
Girl’s dream, Hans Christian Andersen wrote:

On the table was spread a snow-white tablecloth; upon it was
a splendid porcelain service, and the roast goose was steaming
famously with its stuffing of apple and dried plums.

From either the text, or an image capturing the scene (Figure 1), it is effortless to conclude that
Tablecloth is On the Table, while the Apple is Inside a Goose which is On a porcelain
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FIGURE 1 | The scene1.

FIGURE 2 | Resulting semantic graph of the scene in Andersen’s The Little

Match Girl’s dream.

dish put on the Tablecloth. Now, let us ask another question:
what is the relation between Apple and Table? Figure 2

indicates the reasoning chain.
For us human beings this requires little reasoning efforts, even

infants can get the answer On. However, current computational
architectures barely support it, not even for restricted purposes.

The process above can be more broadly described as relation
extraction, which is to determine the relationship between objects
(entities) that appear in a textual paragraph or in a visual scene.
We focus on the problem of conditional relation extraction,
which generates a graph regarding a specific paragraph or
an image, with each edge representing a relation instance
(subject, object, relation) such as (Apple,Table,On). We
call the resulting graph “Semantic Graph” for textual paragraphs
(Sorokin and Gurevych, 2017), and “Scene Graph” for visual
images (Xu et al., 2017), respectively. By bringing together textual
and visual relation extraction, we are particularly interested
in dependencies between both modalities and how synergies
lead to more robust representation learning. Relation extraction
additionally has many potential applications, including question
answering (Xu et al., 2016), fact checking (Vlachos and Riedel,

1Image sources. Goose: pngimg.com/download/58532, license CC 4.0 BY-NC.

Table: commons.wikimedia.org, author Tangopaso, released into public domain.

2014), word sense disambiguation (Okamoto and Ishizaki, 2007),
and document summarization (Hachey, 2009).

In most recent literature (Sorokin and Gurevych, 2017; Xu
et al., 2017), the generation of knowledge graphs (KGs) is
decomposed into two phases: (1) detecting the entities (or
objects) as nodes, and (2) extracting relations between entities
as edges. The first phase can be reduced to a Named Entity
Recognition for textual paragraphs (Lample et al., 2016) or
Object Detection for images (Ren et al., 2015). Usually, the more
challenging part receivingmore attention is how to determine the
relations between entities and is usually cast as a classification
problem. A critical difference between relation extraction
and typical classification problems [e.g., image classification
(Krizhevsky et al., 2012) or natural language inference (Bowman
et al., 2015)] lies in the existence of dependencies between
relation instances. That is, two entities, even when separated
spatially, may form a relation when they are both related to one or
more other entities (in the above case, Apple and Table both
interact with Tablecloth, Dish, etc.).

In order to deal with this challenge, we extend the second
step—extracting relations between entities—by applying a set of
differentiable logic rules to extract further relations based on the
current KG. We note that the process of predicting unknown
relations based on the current (incomplete) KG shares some
commonalities with knowledge graph completion (KGC). The
reasoning module of our model predicts unknown relations
by applying first-order logic rules, which can be naturally
replaced with previous KGC methods. However, most of the
previous approaches for KGC make the completion by learning
representations of entities and relations and viewing relations as
translations between entities (Bordes et al., 2013; Wang et al.,
2014; Ji et al., 2015; Lin et al., 2015). In contrast, we apply
logical, rule-based reasoning in order to find unknown relations,
similarly to Yang et al. (2017). However, while the model by
Yang et al. (2017) works only for global KGC our approach finds
unknown relations in a contextual manner.

Informally, given the set of entities, determining the relation
between them can be viewed as a mixture of two sub-tasks: (1)
extracting primary relations from the input and (2) completing
the KG with reasoning. Primary relations are mostly literal
ones such as, in the match girl’s example (Tablecloth,
Table, On). The completion of the KG, on the other hand,
requires reasoning over these primary relations and resolving the
dependencies or correlations.

In the past, methods based on neural networks have been
shown to be successful on a large range of tasks in various
fields (LeCun et al., 2015). Particular approaches try to resolve
the dependencies between relation instances by modeling other
relations as the “context” of specific pair entities. A number of
researches have been done in this direction, such as attention-
based encoding (Sorokin and Gurevych, 2017) or graph-based
message passing (Xu et al., 2017). Figure 3, left, shows a general
framework for neural network-based relation extractors. There
are multiple drawbacks of such contextual encoders:

1. From a systematical point of view, although neural networks
are Turing-complete (Siegelmann and Sontag, 1995), and
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FIGURE 3 | An illustration on the comparison between typical neural network-based relation extractors and the proposed hybrid relation extractor. (Left) A general

framework for typical neural network-based relation extractors. Dependencies or correlations between relation instances are modeled by viewing other relations as the

“context.” Dashed connections denote the cross-pair connections, which may involve an attention mechanism (Sorokin and Gurevych, 2017) or message passing (Xu

et al., 2017). (Right) The proposed hybrid relation extractor (HRE) working in an iterative manner. With a pair selector collaborating with a predictor, it naturally resolves

the dependencies or correlations between relation instances. The pair prediction module works with a relation induction model based on explanatory logical rules. See

section 3 for details.

can be wired to mimic any computer circuit, in practice,
they are more suitable for processing associations rather than
rules. For example, starting from (Fodor and Pylyshyn, 1988),
there has been a long-lasting debate over the problem of
systematicity (such as understanding recursive systems) in
such connectionist models (Fodor and McLaughlin, 1990;
Hadley, 1994; Jansen andWatter, 2012). In the case of relation
extraction, reasoning is usually performed in a chained, or
recursive way (e.g., consider the relation between Apple and
Table in the match girl’s example), which the contextual
autoencoders do not reproduce.

2. From an implementational point of view, relation
extraction requires the processing of high-order
relational data and quantifiers. For example, to apply
the transitivity: (Tablecloth, Table, On) ∧

(Porcelain, Tablecloth, On) H⇒ (Porcelain,
Table, On), we need to consider the relation among a
triple of symbols (Table, Tablecloth,
Porcelain). This is beyond the scope of typical
graph-structured neural networks (Kipf and Welling,
2016).

3. In most datasets, the distribution of relations is uneven and
has a long tail of rarely occurring relations between specific
objects. Approaches based purely on neural networks have
problems to learn these rare object-relation triplets due to the
limited number of occurrences in the training data and can
often not generalize them to objects not seen during training.
In contrast, by using inductive reasoning we can incorporate
previous knowledge about the characteristics of relations into
the KG generation process to help extract rare relations and to
increase generalizability. Inductive reasoning can be especially
powerful for transitive relations [e.g., geometric (left, right) or
possessive (is-part-of) relations] which make up most of the

relations in many datasets (Zellers et al., 2018). Many datasets
actually miss labels for relations that occur in the data due
to incomplete labeling (Wan et al., 2018), which means that
models that are trained purely on the (labeled) data do not
learn about these relations.

4. Recent work also indicates that purely neural approaches
do not generalize learned relations (e.g., spatial ones), at
least not in the vision domain (Kim et al., 2018; Bahdanau
et al., 2019). This means that simple learned relations
such as “left of” do not usually generalize to novel object
combinations. Currently, the only way for these neural
architectures to generalize is by using a perfect model
architecture specifically tailored for the domain (dataset), such
as optimally constructed Neural Module Networks (Andreas
et al., 2016). This is challenging because we need perfect
knowledge about the data and the relations for this, which

is not possible for real-world datasets. Our hypothesis is that

logical reasoning is implicitly better suited to handle the

generalization of relations since it is a symbolic approach and

models the relations independently of the objects they refer to.
5. Another challenge is that in the vision domain the processing

is usually done with convolutional neural networks (CNNs),
which only perform local pixel-level reasoning (Chen et al.,
2018), making it difficult to extract relations between objects

that are far apart. However, especially for transitive relations
(which can be extracted with logic rules), large distances (in

pixel-space) between objects are very common.

To address the above issues, in this paper we propose a

hybrid KG builder that combines two procedures into a unified

framework and generates KGs from scratch using visual or

textual information. As described in section 3 in more detail,

we employ (1) a neural relation extractor detecting primary
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relations from the input and (2) a differentiable inductive
logic programming (Muggleton, 1991) model that iteratively
completes the KG. We suggest the neural relation extractor as a
key element because relations between entities are usually tightly
interwoven within high dimensionality and neural networks are
particularly good in learning distributed representations. The
programmable logic induction system element, on the other
hand, is especially strong in extracting the structure of facts
from natural language and images. In this framework, relations
between entities are detected by the joint effort of the neural
module as well as the logic module.

Through extensive experiments in section 4, we compare our
framework against strong relation extraction baselines in both
textual and visual domains, on a Wikidata-based dataset and the
Visual Genome dataset, respectively. Empirical results show the
superiority and flexibility of our proposed method. Moreover, we
show a significant gain over baselines and other prior works in a
subset of the database that contains dense graphs2, i.e., a higher
than average number of relations per entity pair. We discuss
related works in section 2 and conclude in section 5.

2. RELATED WORK

Relation extraction is an important task and necessary to obtain
a detailed understanding of texts or images. In the following
we first describe current approaches for relation extraction from
textual data, before continuing to describe relation extraction
from images.

2.1. Relation Extraction From Texts
Relation extraction has been widely used to obtain structured
knowledge from plain text. The resulting structured relational
facts are crucial to understanding large-scale corpora and can
be utilized to automatically complete missing facts in KGs.
Early neural relation extraction methods generally attempted a
supervised paradigm (Zeng et al., 2014; Nguyen and Grishman,
2015; Santos et al., 2015) and heavily rely on human-
labeled datasets. However, the annotation of these datasets is
labor-intensive and time-consuming. Recent relation extraction
methods address the problem by creating large-scale training
data via distant supervision. However, the assumption of distant
supervision is very strong and often introduces noise. Much
work has been invested in order to alleviate the wrong-labeling
problem in distant supervision and to extract global relations
between two entities from multiple supporting sentences (Riedel
et al., 2010; Zeng et al., 2015; Lin et al., 2017; Feng et al., 2018;
Qin et al., 2018). Recently many approaches also explore the
extraction of relations between entities on the sentence level in
rich context (Sorokin and Gurevych, 2017; Zeng et al., 2017;
Christopoulou et al., 2019; Zhu et al., 2019).

Mintz et al. (2009) propose distant supervision to
automatically generate a large-scale dataset for relation
extraction by aligning plain text with knowledge graphs. The
assumption of distant supervision is that all sentences containing

2Mathematically, given a graph G = (V ,E), the density can be computed as

|E|
/

|V|2 .

an entity will express the corresponding relation in KGs. Zeng
et al. (2015) further formulate distantly supervised relation
extraction as a multi-instance learning problem, where instance
bags consist of multiple sentences containing an entity pair,
and take the uncertainty of instance label into consideration by
selecting the most confident supporting instance for relation
prediction. Lin et al. (2017) propose to obtain bag representations
by semantic composition of instances, where instance weights are
determined by selective attention. Feng et al. (2018) propose to
filter false positive relation instances via reinforcement learning.
Qin et al. (2018) propose an adversarial framework that jointly
learns a generator and discriminator to distinguish false positive
relation instances from distant supervision.

Sorokin and Gurevych (2017) identify sentence-level relation
between entity pairs in a rich context. They predict relations
between each entity pairs by considering all other possible
entity pairs in the same sentence as context and modeling the
correlation of relations via attention mechanism. Christopoulou
et al. (2019) model the context of an entity pair by iteratively
aggregating walk paths between the target entity pair on the
graph, and achieve comparable results without using external
linguistic tools. Zhu et al. (2019) model implicit reasoning via
message passing among context entity pairs. In this work, we also
focus on extracting sentence-level relations. A crucial difference
is that we extract relations within a sentence or paragraph
sequentially to explicitly model the relation reasoning structure.
Zeng et al. (2017) explicitly use a special first-order logic rule
to model the dependencies of relations within a sentence. A
crucial distinction of our model is that we are capable of
modeling general and also long reasoning chains by recursively
applying rules.

2.2. Relation Extraction From Images
In order to understand and reason about the context of an image
we need not only information about objects within the scene, but
also about relations between these objects. Therefore, extracting
the relations between objects (e.g., in/on/under, support, etc.)
yields a better scene understanding compared to just recognizing
objects and their individual properties (Elliott and de Vries,
2015). While relations can be predicted pair-wise (Chao et al.,
2015; Ramanathan et al., 2015), most current work focuses on
the generation of a directed graph generally referred to as scene
graph (Johnson et al., 2015; Xu et al., 2017; Zhang et al., 2017).
Scene graphs are a way of representing the context of an image
in a structured way to improve the performance of tasks such
as visual question answering or image retrieval. Existing scene
graph generators usually extend an object detection framework
that first detects bounding boxes for objects, then extracts visual
features and classifies objects inside bounding boxes, and finally
predicts relations between objects in a parallel manner. One of
the challenges is that the number of possible relations grows
exponentially with the number of objects in an image. This makes
it computationally challenging to evaluate all possible relations.
Therefore, many approaches work on ways to prune unlikely
relations from the graph or to only focus on the most probable
relations from the beginning.
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Li et al. (2017) combine three tasks—object detection, scene
graph generation, and region captioning—and show that learning
all three tasks at once leads to an overall better performance
since learned features can be shared across tasks. Xu et al.
(2017) propose an end-to-end trainable approach for creating an
image-grounded scene graph that consists of object categories,
bounding boxes for the individual objects, and relationships
between pairs of objects by iteratively refining its predictions.
Liang et al. (2017) perform prediction together with a traversal
of the graph, essentially in a sequential manner. However, it
takes only the last two prediction results into account and thus
is unable to perform general logic inductions based on a partial
inference result.

Li and Gupta (2018) learn to transform 2D image
representations into a graph representation where the nodes
represent image regions and edges model similarity between
these image regions while Chen et al. (2018) introduce a graph
structure specifically to facilitate reasoning between regions that
are far apart in the image. Yang et al. (2018) make the scene
graph generation more tractable and efficient by using a relation
proposal network that identifies likely edges in the scene graph
and a Graph Convolutional Network to update objects and their
relationships based on the objects’ neighbors. Woo et al. (2018)
propose a relational embedding module to jointly represent
connections among all objects instead of focusing on objects
in isolation.

Related to our approach, Wan et al. (2018) work on
completing existing scene graphs given an image and a
corresponding scene graph. However, they do not use logic
reasoning, but instead, use a neural network to extract
unidentified relations between existing nodes in the scene graph
to obtain improved scene graphs with more accurate relations.
The approach, however, is still completely data-driven and, as
such, it is not clear how it handles the long tail of sparsely
occurring relations and how it generalizes to novel object-
relation triplets.

Zellers et al. (2018) observe that object labels are highly
predictive of relation labels (but not vice versa) and use this
insight to develop both a new baseline and a network that takes
this into consideration by staging bounding box predictions,
object identities (in the bounding boxes), and relations in a
hierarchical manner. Chen et al. (2019) show that using the
knowledge about correlations between objects and associated
relations can be explicitly represented in a KG. A novel routing
network then facilitates scene graph generation by using prior
statistical knowledge about the interplay of objects and relations.

Gu et al. (2019) incorporate commonsense knowledge into
the generation process of a scene graph by using an external
KG while Qi et al. (2019) use linguistic knowledge to improve
the performance on detecting semantic relations by using a
semantic transformation module to map visual features and
word embeddings into a common semantic space. So far,
most work on extracting scene graphs from images is based
purely on data-driven learning with neural networks. This
creates challenges in scalability (especially for images with many
objects) and suffers from the long tail of relations in the
training data, which is difficult to learn for neural network-based

approaches. Additionally, it is not clear whether these approaches
are able to generalize learned relations to novel settings. In
contrast, our approach combines data-driven neural networks
with a differentiable model that applies logic rules for relation
extraction. This enables us to insert prior knowledge about
certain relations (e.g., transitivity) into our model which can help
with generalizability (since relations are now decoupled from the
objects), scalability (we can efficiently evaluate the learned rules),
and the long tail of relations in the training data (once a rule
encodes one of these relations we can easily apply it to other
objects, too).

3. METHODS

We build our hybrid relation extractor (HRE) by combining a
neural relation extractor detecting primary relations from inputs
and an inductive logic-based model that iteratively completes the
KG. Illustrated in Figure 3, right, the framework works in an
iterative manner and detects the relations by the joint work of the
neural module and the logic module. As discussed in the above
section, there are two major challenges for modeling the relation
reasoning:

1. Chaining or recursions. We resolve the dependencies among
relations by iteratively detecting edges. Specifically, we
propose to use a pair selector working jointly with the relation
predictor.

2. High ordering and quantifiers. We model relation reasoning
with a differentiable inductive logic programming (ILP)model
(Muggleton, 1991). The model discovers probabilistic rules
from examples by inductive reasoning.

In the rest of the paper we write (subject, object, relation) to
denote a specific relational triplet, while rel(object, subject) is used
to refer to the distribution over relations for an entity pair, and
rel(object, subject)i is the probability of relation i to be true. We
now begin the introduction of the model with an overview.

3.1. Overview of the Framework
We build our framework on the top of the extracted entities
by either named entity recognition algorithms (Lample et al.,
2016) or object detectors (Ren et al., 2015). Specifically, for each
paragraph or image, we first use entity detectors to find all of
the entities and localize them. In the textual paragraph case, we
match all tokens and phrases in the paragraphs with the entities
appeared in the Wikidata dataset. In the visual image case, we
employ Faster-RCNN (Ren et al., 2015), a modern CNN-based
object detector to find all entities and determine their class labels.
For a detailed analysis of the dataset and the pre-processing,
please refer to section 4.

After the pre-processing, the relation extractor takes all
possible entity pairs as input, and assigns proper relations to
each pair. As shown in Figure 3, the HRE contains two units,
a pair selector and a relation predictor, and runs in an iterative
way. At each time step, the pair selector takes a look at all pairs

P− = (si, oi)
k−
i=0 of (subject, object) that have not been associated

with a relation and chooses the next pair of entities p∗ = (s∗, o∗)
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whose relation is to be determined. The relation predictor utilizes

the information contained in all pairs P+ = (si, oi, r)
k+
i=0 whose

relations have been determined and the contextual information
(from raw texts or images) of the pair p∗ to make the prediction
on the relation. The prediction result is then added to P+ and
benefits future predictions.

The pair selector and relation predictor work jointly and
focus on different sub-problems of the task. The predictor’s
objective is to make use of the relations that have already been
determined in order to make a valid prediction for the next entity
pair. The selector, on the other hand, works as the predictor’s
collaborator with the goal to figure out the next relation which
should be determined. Ideally, the choice p∗ made by the selector
should satisfy the condition that all relations that will affect the
predictor’s prediction on p∗ should be sent to the predictor ahead
of p∗.

3.2. Relation Predictor
The relation predictor is composed of two modules: a neural
module predicting the relations N between entities based on
the given context (i.e., a textual paragraph or a visual image)
and a differentiable inductive logic module L performing
reasoning on P+ (the set of pairs whose relations have already
been determined). Both modules predict the relation between
a pair of objects s∗ and o∗ individually as relN(s

∗, o∗) and
relL(s

∗, o∗). These predictions are classifications over a categorical
distribution of all relations: relN(s

∗, o∗)i = Pr[relN(s
∗, o∗) = i]

and relL(s
∗, o∗)i = Pr[relL(s

∗, o∗) = i]. The output prediction for
the pair p∗ is a mixture3 of the two individual predictions:

rel(s∗, o∗)i ∝ relN(s
∗, o∗)i × relL(s

∗, o∗)i.

The neural relation extractor relN is domain-specific. We leave
the implementation of relN to the experiment section (section
4). In real-world applications, this module can be replaced by
any compatible implementation. In the following, we present our
model L for KG reasoning, which is a differentiable variant of
inductive logic programming (Muggleton, 1991).

We design a programmable module for KG reasoning,
which is highly motivated by previous works on inductive
logic programming (ILP) (Muggleton, 1991) and its modern
extensions (Kersting et al., 2000; Richardson and Domingos,
2006; Kimmig et al., 2012). ILP focuses on the problem of how
to discover rules from known facts and applies them to deduce
unknown facts.

To get an intuitive idea on how ILP works, we take The Little
Match Girl’s dream as an example. We want a model that is able
to perform logic deduction:

(Tablecloth, Table, On) ∧ (Porcelain,

Tablecloth, On) H⇒ (Porcelain,Table,On).

This logic rule can be generally written as a definite clause:

(x, y,On) ∧ (y, z,On) H⇒ (x, z,On),

3We normalize the distribution.

where x, y, and z are variables that can be replaced (grounded) by
any entities such as Tablecloth, Table, and Porcelain.

ILP is a general programming framework, which provides a
higher level of abstraction on logic rules. For example, the above
logic rule can be derived (instantiated) by the followingmeta-rule
in ILP:

r1 = rel(s∗, x) ∈ P+∧ r2 = rel(x, o∗) ∈ P+ H⇒ rel(s∗, o∗) = r3.
(1)

In the instantiation of the meta-rule, r1, r2, and r3 will be
instantiated as (On,On,On). Another possible instantiation can
be (Inside,On,On). Intuitively, the entity triple (s∗, x, o∗)
essentially forms a “relation triangle,” and we use two of the edges
which we already know — (s∗, x) and (x, o∗) — to determine the
last edge (s∗, o∗).

Practically, the underlying logic is a probabilistic logic. That is,
we will say

Pr[r3 = rel(s∗, o∗)] ∝ Pr[r1 = rel(s∗, x)]× Pr[r2 = rel(x, o∗)]

×confidence(r1, r2, r3),

where confidence(r1, r2, r3) is the confidence (a floating number)
associated with the applied rule. We implement the logic
induction programming in a differentiable manner. Unless
explicitly specified, all rules are derived from Equation (1)
in this paper. During inference, relations between all entity
pairs are predicted. Thus, a long reasoning chain (e.g., Table,
Tablecloth, Dish, Goose in The Little Match Girl’s dream)
can be resolved by multiple primitive logic deduction steps.
In this case, the simple “triangular” logic rule (Equation 1) is
sufficient to resolve a long reasoning chain.

Given a set of rules R instantiated from a pre-programmed
set of meta-rules, we enumerate all rules and compute the final
prediction from inductive logic module L as:

relL(s
∗, o∗)i ∝ max

rule∈R
rule(s∗, o∗;P−)i

∝ max
j,k,x

(

rel(s∗, x)j × rel(x, o∗)k × confidence(j, k, i)
)

The tensor confidence, as the representation of logic rules, is
optimized through back-propagation during the training.

Given a set of relation instances, the aforementioned logic
rule is just one choice to perform induction. In practice, one
can design own rules based on the characteristic of the dataset
or the underlying application. We show in the experiments
section that the system is compatible with other rules and yields
different results.

3.3. Pair Selector
The pair selector works together with the relation prediction
module and chooses subject-object pairs for prediction. At each
time step, the pair selector takes a look at all relation pairs in

P− = (si, oi)
k−
i=0 whose relations have not been determined and

outputs an index i ∈ [k−] = {0, 1, · · · k−} as the index for the
entity pair whose relation will be added to P+ by the predictor in
this time step.
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FIGURE 4 | Encoder for textual entity pairs. We use the concatenation of

marker embedding and word embedding with an LSTM model (Hochreiter and

Schmidhuber, 1997; Greff et al., 2016) to encode the feature.

We implement the pair selector as a greedy selector which
always chooses the entity pair from P− to be added to P+ as the
entity pair of which the relation predictor is most confident in
its prediction. The relation predictor’s output probability Pr(r =
rel(s∗, o∗)) (section 3.2) can be interpreted as its confidence for
assigning the relation r to the pair (s∗, o∗):

conf (s∗, o∗) = max
r

Pr(r = rel(s∗, o∗)).

Thus, in order to choose the pair of which the relation predictor
is most confident, the pair selector chooses i such that:

i = max
i

conf (si, oi).

4. EXPERIMENTS AND RESULTS

We evaluate our model on tasks for two modalities: textual and
visual relation extraction. Our aim is to study how the hybrid
relation extraction is affected by different encoding and how it
scales for different complexity. Our experiments show that it
outperforms other approaches by a noticeable gap when dealing
with dense entity graphs.

4.1. Textual Relation Extraction
4.1.1. Entity Pair Encoding in Text
Recall that we need to predict a relation for each possible entity
pair. For the textual relation extraction task, we encode the
features of an entity pair following Sorokin and Gurevych (2017)
as shown in Figure 4. First, we pre-process the sentence and run
named-entity-recognition to find all relevant entities. We then
add an extra embedding as a marker indicating all appearances
of the given head (subject, with es) and tail (object, with eo) of
the entity pair. All other context symbols are marked with ec.
The embeddings {es, eo, ec} are initialized randomly and jointly
optimized with the model.

The marker embedding is concatenated with the word
embedding (Pennington et al., 2014) and passed to a bi-
directional LSTM (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005; Greff et al., 2016). We use a standard
bi-directional LSTM with one layer, 256 LSTM units, the TANH
activation function, and 0.5 dropout rate Srivastava et al. (2014).
The final outputs of the LSTM of both forward and backward

TABLE 1 | Statistics of the dataset generated from Wikidata.

#Sent #Fact #Avg ent. #Avg pos. rel.

Train 124,212 70,598 5.51 2.47

Test 31,054 29,148 5.56 2.33

#Avg ent. stands for the average number of entities per paragraph, while #Avg pos. rel.

refers to the average number of positive relations per paragraph.

passes are concatenated as the final encoding for this entity
pair. We apply a two-layer multi-layer perceptron followed by
a softmax layer on the feature for neural relation extraction:
relN . This process is repeated for each possible entity pair in the
sentence, i.e., n× (n− 1) times for a sentence with n entity pairs.

4.1.2. Data Generation With Distant Supervision
We introduce a new dataset generated fromWikidata (Vrandečić
and Krötzsch, 2014) to evaluate our framework on the
task of textual relation extraction. Wikidata is a KG which
stores knowledge as structured triplets (e.g., Earth, Mount
Everest, highest point). We align Wikidata with
English Wikipedia articles via distant supervision (Mintz et al.,
2009; Zeng et al., 2015; Sorokin and Gurevych, 2017). We
select the 86 most frequent properties (relations) to form the
property set.

We generate paragraphs by concatenating two sentences
which are chosen from the same article. The selected sentences
should share at least one common entity. This partially alleviates
the sparsity of relations. For entity pairs without relation, we
manually mark their relation as N/A (a special relation). We also
filter out paragraphs that contain fewer than 2 positive relation
instances. Following the setting of previous work (Lu et al., 2016;
Xu et al., 2017), in our experiments, we randomly split the dataset
into training and test sets, and tune the hyper-parameters of all
models on the test set. We manually evaluate 500 sentences from
the test set and find 83.2% of them are correctly labeled with
distant supervision. Table 1 shows the statistics of our dataset.

The dataset generated from Wikidata is very sparse with
respect to relation instances: each sentence contains only 2.7
relation instances on average and the fraction of relation
instances over the entity pairs is less than 0.12. To better focus
on evaluating the reasoning ability of ourmodel, we select a dense
test set where semantic graphs can be deduced4. Within the dense
subset reasoning chains are substantially more common which
requires the model to perform both primary relation detection
and relation reasoning. The dense test set covers ∼ 2% of the
whole dataset. We adopt the precision-recall curve, a widely
used metric in textual relation extraction. The k-th point in
the curve is computed by the precision and recall of the top k
confident predictions. We also report the F1 score (Goutte and
Gaussier, 2005), which is computed by the harmonic average of
the precision and recall of the most confident predictions of each

4A semantic graph can be deduced if it contains at least three connected entities,

i.e., at least 1 reasoning chain.
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FIGURE 5 | Precision-recall on the dense test set.

FIGURE 6 | Precision-recall on the entire test set.

entity pair. The special relationN/A does not affect recall but only
precision.

We train our model on the entire training set and evaluate
the performance on the dense test set. In Figure 5 and
Table 2, experimental results show that our model significantly
outperforms baseline methods (with only relN) on the dense
test set. To further zoom in, we compare the recall score of all
frameworks under a moderate precision (e.g., 0.8) inTable 3. The
strong baseline is identical to, and is a re-implementation of, the
model used by Sorokin and Gurevych (2017).

We also show a comparable result on the entire test set
(Figure 6 and Table 4). In this case, logic deduction seems to
bring both accurate predictions and noise to the result (note the
drop in precision, as themodel will be penalized if it detects a false
positive). The better way to incorporate logic rules in applications
on large and sparse KGs is left for future work.

TABLE 2 | F1 scores on the dense test set.

Model Micro F1

P R F1

Baseline 0.75 0.56 0.640

Ctx Attention 0.77 0.52 0.621

HRE 0.72 0.63 0.675

The best results are highlighted in bold.

TABLE 3 | Recall at different precision levels on the dense test set.

Baseline Ctx Attention HRE

R@0.60 0.741 0.674 0.740

R@0.70 0.633 0.574 0.661

R@0.80 0.488 0.444 0.505

The best results are highlighted in bold.

TABLE 4 | F1 scores on the entire test set.

Model Micro F1

P R F1

Baseline 0.64 0.61 0.634

Ctx Attention 0.72 0.56 0.637

HRE 0.60 0.67 0.634

The best results are highlighted in bold.

Incorporating New Rules
We also try to incorporate new rules into the induction system.
Specifically, we add the meta-rule: r1 = relation(s∗, x) ∈

P+ H⇒ relation(s∗, o∗) = r2. Intuitively, this models the logic
that if an object s∗ has a relation r1 with another object x,
then there is an increased probability for another relation r2 to
any other object o∗. For example, if a man is riding a horse,
there is an increased probability that he is wearing a hat. More
generally, when an object maintains one relation, it is more
likely to maintain further relations. The experimental results
showed a large increase in recall but a decrease in precision of
the framework. This leads to the conclusion that the logic rules
used by the system should be carefully designed based on the
underlying application.

4.2. Visual Relation Extraction
4.2.1. Entity Pair Encoding in Images
Figure 7 illustrates the overall architecture of the visual entity
pair encoder. Each object appears as a bounding box in a visual
image. The detection, classification, and localization is done with
the Faster-RCNN framework (Ren et al., 2015). We extend the
method proposed by Lu et al. (2016) to extract the featuresF(s, o)
of the object pair (s, o). To obtain the neural relations relN we

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2019 | Volume 13 | Article 93

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Mao et al. Bootstrapping Knowledge Graphs

FIGURE 7 | Encoder for visual entity pairs. We extend the union box encoder proposed by Lu et al. (2016) and add the entity’s features (what is it) and its location

(where is it) into the embedding vector.

apply a two-layer perceptron followed by a softmax layer on the
extracted features F(s, o).

To effectively encode features of an entity pair into distributed
representations F(s, o), we extract features of the subject,
the object, and their interaction environment. We denote
feat as the extracted features of the whole input image.
These features are extracted with a VGG-16 network pre-
trained on MS-COCO (Xu et al., 2017). The features of
a given region specified by a bounding box are denoted
as feat[box]. These features are obtained with the Region-
Of-Interest (ROI) pooling operation introduced by Girshick
(2015). feat[box{s,o}] then denotes the features of an individual
entity (subject or object), extracted from the image features
feat at the given bounding box location with the ROI
pooling operation.

Wemodel the interaction environment of an entity pair by the
union box of their bounding boxes boxs, boxo. The features of the
interaction environment are then denoted as feat[boxu]. Similar
to themarker embedding in textual relation extraction, we specify
the locations of subject and object in the interaction environment
by adding a mask to the features after ROI pooling. The mask is a
binary matrix in the same shape as the feature after ROI pooling
of the union box. Each element of the feature after ROI pooling
corresponds to a grid region in the original image. Each non-zero
element of the mask then corresponds to the Intersection-over-
Union (IoU) of the entity bounding box and the bounding box
of the bin. Formally, the indices of non-zero elements Ind{s,o} are
given by:

Ind
{s,o}
i,j = IoU

(

Region(boxu)i,j, box{s,o}
)

,

where Region(boxu)i,j is the corresponding region on the image of
the grid located at row i and column j in the ROI Pooling window
of boxu.

Formally, given the subject features feat[boxs], object features
feat[boxo], and union features feat[boxu], the features F(s, o) of
an entity pair are then calculated as follows:

F(s, o) = feat[boxs]

⊗ feat[boxo]

⊗ feat[boxu]

⊗ feat[boxu]⊙ Inds

⊗ feat[boxu]⊙ Indo,

where ⊗ is the feature concatenation operation and ⊙ is the
element-wise multiplication.

4.2.2. Visual Genome
Visual Genome (Krishna et al., 2016) is a dataset consisting
of 108, 077 images. On average, each image contains 21.2
objects and 17.7 relation instances. Due to the poor quality of
annotations, we follow Xu et al. (2017) to manually clean up the
dataset. We further remove the duplicate relations in each image.
The final dataset contains 11.0 distinct objects and 6.0 relation
instances per image on average. The average fraction of relations
over entity pairs is∼ 6%. We also generate a dense test set which
is a subset of the entire test set, where the fraction of relations
over entity pairs is at least 15%. The dense test set contains 2, 361
images, with an average of 4.2 distinct objects and 5.3 relations
per image.

Following (Lu et al., 2016; Xu et al., 2017) we use Recall@k
(R@k) to evaluate models on the task of visual relation extraction.
R@k measures the fraction of correct predictions in the top k
confident predictions. We do not adopt AP (average precision,
which can be viewed as the area under precision-recall curve)
as our evaluation metric because relations are not exhaustively
labeled, as analyzed in Lu et al. (2016).

As shown in Table 5, equipped with a logic deduction module,
we gain a significant improvement over the baselines (only relN)
as well as other existing methods. The baseline is identical to
the baseline model used in Xu et al. (2017) except the feature
extractor. The performance of our baseline model demonstrates
the effectiveness of our entity pair embedding.

Interestingly, we observe that our model achieves almost
identical performance in terms of Recall@k metric on the
dense and the entire test set. Since the Recall@k metric does
not penalize false positive predictions of the relation, the
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TABLE 5 | Experimental results of visual relation extraction on the entire Visual

Genome test set.

R@50 R@100

UnionBox 0.279 0.350

MsgPass 0.448 0.531

Baseline 0.489 0.570

HRE 0.502 0.577

We compare our model with UnionBox (Lu et al., 2016) and MsgPass (Xu et al., 2017).

The best results are highlighted in bold.

noise brought by the induction module is significantly reduced
compared to the text case.

4.3. Implementation Details
For visual relation extraction models, Fentity has 512 channels,
and Funion has 256 channels. The window size of ROI Pooling
is set to 7× 7. All fully-connected layers except the ones used by
attention model have 4,096 channels following the typical VGG-
16 structure. We use a 512-dim vector to represent the attention
vector ei.

For textual relation extraction models, we use GloVe50
(Pennington et al., 2014) as the word embedding and 256 as the
value for the hidden size of LSTMs and of fully-connected layers.

We implemented themodel based on the open-source package
PyTorch (Paszke et al., 2017). We optimize the model, including
the entity pair encoder and relation predictor, in an end-to-
end manner with Adam (Kingma and Ba, 2014) and use cross-
entropy loss for the relation classification. The average training
time is 0.17 s for a single sentence, and 0.48 s for an image on a
GeForce GTX 1080 Ti.

5. CONCLUSION AND FUTURE WORK

We proposed a novel sequential prediction model for conditional
neural relation extraction, which explicitly takes the previously
determined or known relations of entity pairs into consideration
for better future relation prediction. We achieved this by an
induction system based on explanatory logic rules. Experimental
results show the superiority of the proposed model in
both textual and visual relation prediction tasks. Our model
outperforms other existing works when the entity graphs
become denser.

An interesting observation of our experiments is that the
prediction model shows a stable improvement of performance
independent of whether using a textual or visual entity encoder.
Since both encoders rely on a high dimensional representation
space that inherently encodes the semantic closeness of entities
(Lu et al., 2016; Sorokin and Gurevych, 2017), it seems that the
relation predictor is in many cases able to derive a prediction for
a data point that includes novel or uncommon entities. Similarly
to infant learning, the encoders learned the characteristics of
entities statistically from the data. As a consequence, this work
does not only improve relation extractors but also builds a bridge

between brain-inspired neural networks and logic induction
systems as well as other KG completion models. For application
purposes, the resulting framework is highly customizable and
programmable, which opens a new path toward a better machine
reasoning system.

Compared to most previous approaches our method can
deal better with the long tail in the distribution over relations.
Through the use of logic rules and the pair prediction module
our approach is able to deal with rare relations and apply
them correctly to previously unseen object pairs. This is a
key advantage since dealing with the skewed distribution over
relations and generalizing relations to unseen object pairs
is a key requirement for successful relation extraction from
text or images. Furthermore, through the use of differentiable
inductive logic our model is trainable in an end-to-end manner,
meaning only minimal human involvement and only few
hand-crafted rules.

However, the addition of the pair selector increases the size of
our model and the number of parameters. Additionally, the rules
for the inductive logic still have to be handcrafted and we only
evaluated the model with one meta-rule. Future work should,
therefore, evaluate how well the approach works with multiple
complex logic rules or if it is even possible to learn new, valid
rules. Another limitation is that our approach currently only
works on either textual or visual relation prediction. In future
work, we want to combine textual and visual relation prediction.
Our model easily allows to combine multimodal features, e.g., by
feeding concatenated visual and textual features to the HRE input
(Figure 3, right). This is relevant for human-robot interaction,
where dialogue contains not only purely linguistic entities, but
where references to entities in the surrounding scene are being
made. Aligning textual input, e.g., from transcribed speech,
with visual input will enable better linguistic understanding
by an embedded agent that matches the verbally perceived
relations to the scene, e.g., for disambiguation of an object
among others.
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