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Neurally inspired robotics already has a long history that includes reactive systems

emulating reflexes, neural oscillators to generate movement patterns, and neural

networks as trainable filters for high-dimensional sensory information. Neural inspiration

has been less successful at the level of cognition. Decision-making, planning, building

and using memories, for instance, are more often addressed in terms of computational

algorithms than through neural process models. To move neural process models beyond

reactive behavior toward cognition, the capacity to autonomously generate sequences

of processing steps is critical. We review a potential solution to this problem that is

based on strongly recurrent neural networks described as neural dynamic systems.

Their stable states perform elementary motor or cognitive functions while coupled to

sensory inputs. The state of the neural dynamics transitions to a new motor or cognitive

function when a previously stable neural state becomes unstable. Only when a neural

robotic system is capable of acting autonomously does it become a useful to a human

user. We demonstrate how a neural dynamic architecture that supports autonomous

sequence generation can engage in such interaction. A human user presents colored

objects to the robot in a particular order, thus defining a serial order of color concepts.

The user then exposes the system to a visual scene that contains the colored objects

in a new spatial arrangement. The robot autonomously builds a scene representation by

sequentially bringing objects into the attentional foreground. Scene memory updates if

the scene changes. The robot performs visual search and then reaches for the objects

in the instructed serial order. In doing so, the robot generalizes across time and space, is

capable of waiting when an element is missing, and updates its action plans online when

the scene changes. The entire flow of behavior emerges from a time-continuous neural

dynamics without any controlling or supervisory algorithm.

Keywords: neural dynamic modeling, autonomous robot, sequence generation, scene perception, reaching

movement
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1. INTRODUCTION

Neurally inspired robotics already has a long history.
To position our work in this history and review our
conceptual commitments, we discuss three strands of neurallly
inspired robotics.

1.1. Reactive Behaviors
One strand goes back to Grey’s electronic turtle (Grey, 1950)
and Braitenberg’s thought experiments on vehicles (Braitenberg,
1984). This line of work reached maturity in behavior-based
robotics (Brooks, 1991; Mataric, 1998) in which flexibility
emerges from the coordination of elementary behaviors, each
establishing a direct link from sensory inputs to actuators,
in the manner of reflex loops. This is particularly suited to
conceptual “vehicles,” robotic systems in which the sensors are
mounted on the moving actuator. This enables closed loop
situations that greatly reduce the demands on representation
and abstraction. For instance, a visual sensor mounted in a
robot hand makes it possible to achieve reaching by visual
servoing without an explicit representation of objects in the
world (Ruf and Horaud, 1999).

By organizing closed action-perception loops in architectures,
most famously the subsumption architecture (Brooks, 1986),
this form of reactive robotics may generate behaviors of a
certain complexity (Proetzsch et al., 2010). The behavior is
generated autonomously in the sense that sensory information
from a structured environment may trigger the activation of
elementary behaviors, which may lead to chains of activation and
deactivation events through the architecture, inducing sequences
of behavioral decisions, without the need for an explicit internal
plan, schedule, or program. The organization of such behaviors is
implicitly encoded in the architecture itself.

Avoiding representation and abstraction is a feature of the
approach (Brooks, 1990), but also points to a limitation of this
line of neurally inspired robotics: Behavior-based robots are not
very good at cognition. Minimally, cognition is engaged when
the link between sensing and acting becomes less direct. Building
and exploiting memory is an example (Engels and Schöner,
1995). So when an action is based on sensory information that
is no longer directly available on the sensory surface at the time
the action unfolds, relevant information must be represented in
memory. Memories are useful only if they are represented in a
form in which they remain invariant under changes the system
experiences between the acquisition of the memory and its use.
For instance, the memory representation of a movement target
for a vehicle needs to be invariant under rotation of the vehicle
(Bicho et al., 2000). A more demanding form of cognition is
the capacity to perceive sequences of events and store them in a
memory for serial order so that a sequence with a matching serial
order can then be acted out (such as hearing a phone number and
then dialing it). Again, the information needs to abstract from the
sensor data to be useful for the required actions.

Our approach is historically based on behavior-
based thinking, which we extended by adding neural
memory representations and neural mechanism of decision
making (Schöner et al., 1995). Here we will study how memory

for serial order can be built and used to act sequentially in
new environments.

1.2. Neuronal Oscillators and Pattern
Generators
A second strand of neurally inspired robotics is based on the
idea that neural oscillators may generate rhythmic movement
patterns. That idea has been used to generate legged locomotion
in biologically inspired robots (Holmes et al., 2006; Ijspeert,
2008). Such neural oscillator ideas can be integrated with
the dynamics of limbs and muscles and their interaction
with the ground, enabling stable locmotion patterns (Full and
Koditschek, 1999; Ghigliazza et al., 2003). Neural oscillators
are one important class of neural networks in which recurrent
connections are strong enough to induce endogenous patterns
of neural activation that are not mere transformations of input.
That class can be extended to neural timers that generate complex
temporal patterns that may be the basis for certain motor
skills (Buonomano and Laje, 2010). Coupling neural oscillators
provides an account for coordination (Schöner and Kelso, 1988)
and adaptation enables the modulation of rhythmic movement
patterns (Aoi et al., 2017).

Typically, however, these kinds of models do not address
how movement may be directed at targets in the world, such
as when reaching for an object or intercepting a ball. A
related class of neural models going back, perhaps, to Bullock
and Grossberg (1988), generates time courses by integrating
neural activity toward an end-point that may ultimately be
determined by perceptual processes. This is the basis of the
notion of dynamic movement primitives (Schaal et al., 2003),
which is still broadly neurally inspired although it is typically
implemented in a mathematical form that does not explicitly
reference neural processing principles (see Ijspeert et al., 2013
for an excellent review). The dynamical systems framework for
reaching toward objects can address how such movement is
directed at objects in the world (Hersch and Billard, 2008).
Typically, however, the representation of the object’s pose and
kinematic state remains clearly outside the neural metaphor
(while achieving superhuman performance in skills such as
catching, Kim et al., 2014).

Our approach builds on this tradition of using neural
oscillators for timing. We generate individual goal-directed
reaches from an active transient solution of a recurrent neural
dynamics. We extend this tradition by providing a neural
dynamic architecture that obtains from the visual array a neural
representation of the targets of a reaching movement. This
requires that an object’s visual coordinates are transformed into
coordinates anchored in the initial position of the hand (Schöner
et al., 2019). We show how such a neural representation of
movement targets may be linked to the visual array, enabling
online updating of movement generation when the scene
changes (see Knips et al., 2017 for an earlier version of such
online updating).

1.3. Neural Networks for Perception
A third strand of neural inspiration for embodied cognitive
systems is, of course, the use of neural networks to extract
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relevant information about the environment from sensory (e.g.,
image, sound) data (Kriegeskorte, 2015). This strand is currently
undergoing explosive growth as the scaling of deep neural
networks in size and learning examples enables superhuman
performance in certain classification and detection tasks (Lecun
et al., 2015; Schmidhuber, 2015). These neural networks
essentially serve as intelligent filters of sensory information, a
critical function when robot cognition is to be linked to the world.

While these networks by themselves do not perform cognitive
functions, they may provide outputs that enable cognition. For
instance, networks may deliver labels for a relational description
of a visual scene (e.g., Kelleher and Dobnik, 2017). In most
cases, the actual reasoning about spatial or other relations is,
however, performed outside a neural processes model, based
on algorithms and probabilistic inference. First steps are being
made, however, toward such models generating the sequential
attentional selection onwhich human visual cognition is centrally
based (Ba et al., 2015).

Our approach is based on the classical notion of feature
extraction along the visual pathway, the simplest step in these
kinds of systems (e.g., Serre et al., 2007). As we do not address
object recognition, we limit ourselves to very simple features here
(see Lomp et al., 2017 for how the approach may link to object
recognition). Instead, we demonstrate how a neural dynamic
system may autonomously generate the sequence of attentional
selections to build a visual scene memory that is intermittently
coupled to the visual array, and thus is sensitive to change and
capable of updating in response to such change.

1.4. Goals
In this paper, we integrate these three strands of neurally
inspired robotics which requires us to extend each of them.
Our emphasis is on how the integrated system—essentially a
network of neural dynamic populations—is continuously or
intermittently coupled to sensory information, while at the same
time being capable of autonomously generating sequences of
decisions, actions, and events. Neural activation is thus generated
endogenously is this system, while retaining the coupling to the
sensory surfaces.

The system addressed four key elements of grounded
cognition: (1) It autonomously builds scene memory, a neural
map of locations and feature values bound to those locations.
Different objects are sequentially brought into the attentional
foreground, in each case creating an entry into scene memory,
which can be updated if change is detected. (2) The system
learns the serial order of events that occur in its visual array.
Each time an attended object changes, the system registers the
transition and learns the new feature value as associated with
its serial position. This provides a possible interface through
which a human user can interact with the system. (3) The system
generates a sequence of actions oriented at objects in the world in
the learned serial order. At any point in the sequence, this entails
finding an object in the visual surrounding that matches the
feature values currently sought, generating the action, and then
transitioning to the next sub-task within the learned sequence.
This exemplifies the capacity of the system to autonomously
generate organized behavior that is not merely reactive but
reflective of a learned plan. (4) Each action consists of a pointing

gesture oriented at an attended object. The action is initiated once
the object has been brought into the attentional foreground, but
may be updated any time if object shifts to a new location. This
is a minimal instantiation of object-oriented action that any form
of cognitive robotics must be capable of.

Key to this demonstration is the notion of neural dynamics,
in which strongly recurrent neural networks, approximated
as spatially and temporally continuous neural fields, evolve
primarily under the influence of their internal interaction that
sets up attractor states. Inputs induce instabilities that bring
about switches of neural states from which sequences of cognitive
or motor states emerge. Such neural dynamics are capable of
making decisions, building working memories, and organizing
sequential transitions (Schöner et al., 2016). Because their neural
states are stable, neural fields retain their functional properties
when they are coupled to other fields. Fields may thus serve as
building blocks of networks of fields, which could be thought
of as neural dynamic architectures. These networks may be
coupled to sensory inputs, while evolving under their own,
endogenous dynamics, resolving the tension between reactive
and cognitive systems.

To make the ideas accessible, we restrict the demonstration
to a very simple scenario. A robot observes a table top on
which a human user places and removes colored objects in a
particular serial order. The user then builds a new visual scene,
that includes the objects with colors contained in the taught
series. The robot points at these objects in the order defined
by the human teacher. When an object of the next required
color is not available, the system waits until such a color is
presented. When the visual array changes, the robot updates its
reaching plans. This may happen online if the change occurs
while the robot is already attempting to point at the object. All
action and observation run autonomously in neural dynamics.
There is no control algorithm outside the neural dynamics. See
Supplementary Videos 1 and 2 for exemplary demonstrations
of teaching and executing the series.

2. DYNAMIC FIELD THEORY

We use Dynamic Field Theory (DFT) (Schöner et al., 2016) as a
conceptual framework. DFT provides neural process accounts for
elementary cognitive functions such as decisionmaking, memory
creation, or the generation of sequences. The core elements
of DFT are neural populations which may generate activation
patterns that are not primarily dictated by input. This is based
on structured and strong recurrent connectivity within the
population. Excitatory recurrent connectivity enables detection
decisions in which neural activation is induced by input, but
then stabilized against decay even as input may weaken again.
The initial detection occurs through an instability, in which
the resting state becomes unstable. The detection is reversed
when the activated state becomes unstable, typically at a lower
level of input than needed for initial detection. If the excitatory
recurrency is sufficiently strong, the reverse detection instability
does not happen, leading to activation that is sustained even
when the inducing input is removed entirely. This is the basis for
working memory.
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Inhibitory recurrent connectivity enables selection decisions,
in which one sub-population becomes activated even if multiple
sub-populations receive supra-threshold input. Such selection
decisions are also stabilized so that the selection of a sub-
population may persist even as inputs to other sub-populations
become stronger (up to a limit, when the selection instability is
encountered). So even though neural populations may be driven
by input, they may realize non-unique mappings from input to
activation states based on their activation history.

When different populations are coupled, they may induce
these kinds of instabilities in each other. This is the basis
for generating sequences of neural activation states. When
the coupling occurs between excitatory and inhibitory sub-
populations, the instabilities may trigger active transients, well-
defined time courses of neural activation from temporally
unstructured input. Neural oscillations are another possible
dynamic regime.

Through their connectivity to sensory or motor surfaces,
neural populations may effectively represent continuous feature
dimensions, x. This leads to the notion of neural dynamic
fields, u(x). We employ a particular mathematical formalization
of the dynamics of such neural populations that goes back to
Amari (1977),

τ u̇(x) = −u(x)+ h+ s+
∫

σ (u(x′))ω(x− x′)dx′, (1)

where τ describes the field’s relaxation time, h < 0 the
field’s resting level, s the sum of input stimuli, and ω the
field’s interaction kernel that defines the pattern of recurrent
connectivity within the field. Only sufficiently activated field
locations contribute to interaction or project onto other fields, as
formalized by the sigmoidal non-linearity, σ (u). Thus, one may
think of the activation variable, u, as something like a population-
level membrane potential that reflects how close neurons in the
population are to the firing threshold [other formalizations use
the firing rate as a population variable, see Wilson and Cowan
(1973)]. In the meantime, there is a large literature on the
mathematics of such fields (Coombes et al., 2014).

The kernel, ω, combines short-range excitatory coupling with
long-range inhibitory coupling. This leads to localized peaks of

activation as the activation states that emerge from the instability
of the resting state when localized input reaches a threshold
(Figure 1). These peaks are the units of representation in DFT
that specify through their locations particular values along the
represented dimension.

Fields may represent low-dimensional metric spaces. When
their dimensionality grows, the binding problem arises and
can be solved, see Chapter 5 of Schöner et al. (2016). A limit
case are zero-dimensional fields which can be thought of as
populations of neurons that represent categorical states. These
may arise from larger populations through inhomogoneities in
the input or output connectivity. We sometimes call such zero-
dimensional fields neural dynamic nodes and model them by
single activation variables, u(t), subject to a neural dynamics
analogous to Equation (1).

When fields of different dimensionality are coupled, new
functions emerge (Zibner et al., 2011, see also Chapter 9 of
Schöner et al., 2016). In projecting from a higher to a lower
dimensional field, certain dimensions may be marginalized,
which effectively probes for the existence of a peak anywhere
along the marginalized dimensions. In projecting from a lower
to a higher dimensional field, a boost may be given to a
subspace, enabling locations within the subspace to reach the
detection instability. This is the basis for visual search. The
control of peak formation in a field through homogeneous
boosting of its activation level is a mechanism of control
that may effectively gate particular projections by enabling
or disabling peak formation. This mechanism is also central
to sequence generation through the condition of satisfaction
(CoS) (Sandamirskaya and Schöner, 2010) that will play a
central role in our sequence representation model. The neural
representation of the CoS is a neural field or a neural
node that is pre-activated by the currently active behavior.
That behavior predicts the sensory or internal state that will
indicate its successful completion. When a signal matching
that prediction is received from sensory inputs or from
other neural processes, the CoS goes through a detection
instability. It then inhibits the current behavior in a reverse
detection instability and enables the activation of a new
behavior (Sandamirskaya and Schöner, 2010).

FIGURE 1 | A dynamic neural field spanning a metric dimension, x, represents a specific value, x0, along that dimension through a supra-threshold activation peak

that is stabilized by local excitatory and global inhibitory interactions.
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3. MODEL

The neural dynamic architecture described here is a network
of neural fields that are coupled to a camera and a robotic
arm. These links enable online connection to a changing visual
scene and online control of the arm. Three sub-networks
(Figure 2) autonomously organize sequences of activation states
to build visual representations, learn or perform serially ordered
sequences, and generate object-oriented movements.

The perceptual sub-network, connected to the camera, creates

a working memory representation of the visual scene through

autonomous shifts of attention. A motor sub-network drives
an oscillator generating velocity commands for the robotic
arm. The cognitive sub-network represents ordinal positions
in a sequence and may autonomously shift from one ordinal
position to the next. The ordinal system may be used in
two different manners, sequence learning and sequence recall,

controlled by the activation of one of two different task
nodes. These task nodes activate behaviors by boosting fields’
resting levels and enabling fields to generate task relevant
attractor states.

The following sections describe for each sub-network the
states that drive behavior and the mechanism for how the system
switches between those states. The last section addresses the
integration of all three sub-networks for the two tasks Learn
and Recall.

3.1. Perception: Scene Representation
The scene representation sub-network is based on Grieben et al.
(2018) and creates three-dimensional (2D space and 1D color)
working memory representations of objects in the visual scene
captured by the camera. Each entry into the representation
is created sequentially as the sub-network autonomously shifts
attention across different objects in the scene.

FIGURE 2 | Sketch of the dynamic field network with its three sub-networks.
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The network’s attention is modeled through peaks of
activation in the two-dimensional Saliency Selection field that
arise at salient locations in the scene. These locations are
represented in the Saliency field which receives input directly
from the camera. Based on their distinctive colors, the table and
the robot’s own arm are subtracted from the image in a pre-
processing step. The saturation channel of the resulting HSV-
image serves as input amplitude at each location.

Combined with a homogeneous boost of its resting level
from the Exploration intention node, activation in the Saliency
field is sufficient to create a single peak in the Saliency
Selection field. Attentional shifts occur whenever the Exploration
node deactivates and subsequently reactivates, causing a
destabilization of the present peak in the Selection field followed
by the emergence of a new peak at a new location. Previously
unattended locations are more likely to be selected because
inhibitory influence from the working memory gives them a
competitive advantage.

The activation of the Saliency Selection field, usel, is governed
by the following neural dynamics:

τ u̇sel(x, y) =− usel(x, y)+ hsel + wexpσ (uexp)

+ wsalσ (usal(x, y))− wmem

∫
σ (umem(x, y, c))dc

+
∫

σ (usel(x
′, y′))ωsel(x− x′, y− y′)dx′dy′,

(2)

where hsel describes the field’s resting level, uexp the homogeneous
boost activation from the Explore intention node, usal(x, y)
the activation of the Saliency field,

∫
σ (umem(x, y, c))dc the

activation of the Working Memory projected onto the two
spatial dimensions, x and y, and ωsel the field’s selective lateral
interaction kernel. Each input, σuin, to the field is weighted by a
specific weight, win. The same notation is used in all following
equations and the concrete parameter values can be found in
the Appendix.

The currently attended location achieves spatial feature
binding: It is forwarded to the three 3D space-color fields, Scene
Space Selection, Working Memory, and WM Space Selection,
ensuring that the color features represented in those fields
originate from the same location. The Scene Space Selection
field combines sub-threshold activation from the Space Color
Maps field, that represents color information in the scene, with
spatial sub-threshold activation from the Saliency Selection field.
Together, these inputs induce a single peak in three dimensions
that represents the attended spatial location and the color
perceived at that location.

That color is extracted and combined with spatial information
from the Saliency Selection field to add a peak in the 3D-
Working Memory field.1 The Working Memory field receives
additional input directly from the camera image that includes the
robot’s arm. That input is proportional to the saturation channel

1Spatial information is taken from the Saliency Selection field rather than directly

from the Scene Space Selection field to allow for possible coordinate transforms

between image and memory space. In the present scenario, the camera is not

moved so that there is no need for a coordinate transform.

from which the table color saturation has been subtracted.
This mask, seen, for instance, in the Working Memory row
of Figure 4, makes it possible to sustain peaks of activation
anywhere where the camera picks up visual structure. Peaks
representing objects can thus remain stable in working memory
when they become occluded by the robot’s arm, but are removed
from working memory when they disappear from the scene at
any other location.

The activation, umem(x, y, c), of the Working Memory field is
governed by the following dynamics:

τ u̇mem(x, y, c)

=− umem(x, y, c)+ hmem + wsel(x, y, c)σ (usel(x, y))

+ wnbk(x, y, c)σ (inbk(x, y))+ wssl

∫
σ (ussl(x, y, c))dxdy

+
∫

σ (umem(x
′, y′, c′))ωmem(x− x′, y− y′, c− c′)dx′dy′dc′,

(3)

where hmem describes the field’s resting level, usel(x, y) the
activation from the Saliency Selection field, inbk(x, y) the
saturation channel from the camera image,

∫
σ (ussl(x, y, c))dxdy

the activation of the Scene Space Selection field projected onto the
color dimension, c, and ωmem the field’s lateral interaction kernel.

Supra-threshold activation of the Working Memory field is
forwarded to the Memory Space Selection field, which works
analogously to the Scene Space Selection field and thus forms a
single 3D activation peak, representing color and spatial location
of the attended location in working memory.

Color information represented in the Scene and Memory
Space Selection fields is forwarded to the Color Match field.
That field forms a peak only when the input from the scene
overlaps in location and color with one of the peaks in the
memory field. A peak in the match field thus signals successful
entry of an item into the Working Memory at the currently
attended location. Supra-threshold activation in the match field
projects onto the CoS Explore node, which in turn inhibits the
Explore intention node. Deactivation of the Explore intention
node removes the resting level boost from the Saliency Selection
field inducing a reverse detection instability that propagates to
the Scene and Memory Space Selection fields, the Color Match
field and ultimately to the CoS Explore node. The newly created
peak in the Working Memory field is sustained and the Explore
intention node is released from inhibition enabling attentional
selection of a new location.

3.1.1. Offset Detector
The scene representation sub-network is capable of detecting
sudden object movement with the help of a two-layer offset
detector connected to the Saliency field. Both layers, udfa and udsl,
are two-dimensional fields over image space that are governed by
the following dynamics with timescales, τdfa < τdsl:

τdfau̇dfa(x, y) =− udfa(x, y)+ hdet − wsinσ (usal(x, y))

+ wdslσ (udsl(x, y)),

τdslu̇dsl(x, y) =− udsl(x, y)+ hdet + wsexσ (usal(x, y)),

(4)
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where hdet describes the common resting level, and σ (usal(x, y))
the thresholded activation of the Saliency field which excites
the slower layer, udsl, and inhibits the faster layer, udfa. Because
inhibitory input is stronger than excitatory input (wsin > wdsl),
static visual structure induces supra-threshold activation in the
slow layer, udsl, not in the fast layer, udsl.

Once an object is removed from the scene, the inhibitory
influence, wsin, vanishes faster than the excitatory influence from
the slow layer, udsl, leading to the formation of a peak in udfa that
represents the detection of an object that moves away from the
location of the peak.

3.2. Motor: Arm Movement
The sub-network responsible for reaching movements, based on
Schöner et al. (2019), autonomously drives an oscillator that
creates velocity commands which move a robotic arm to a given
target in two-dimensional space. A hierarchy of intention and
CoS nodes governs the behavior: The Reach intention node
activates the Oscillate intention node, which initiates an active
transient (see Figure 3). The Cos Oscillate node is activated once
the transient reaches a new steady state, while the CoS Reach
is activated when the representations of target and end-effector
position match. Thus, multiple active transients (oscillations) are
generated until the arm reaches the represented target.

Target and end-effector (EEF) are both represented as peaks
of activation in two-dimensional fields defined over image space,
the Target Position and the EEF Position DNFs, respectively.
Activation originating from working memory causes the creation
of a peak in the Target Position field. Proprioceptive information
from the current arm configuration is mapped through a forward
kinematics into end-effector space and then transformed from
rate to space code inducing a peak in a two-dimensional EEF
Position field. Target and end-effector representations are cross-
correlated with each other to create an end-effector centered
representation of the target position. This representation is input
into a two-layer field of neural oscillators, uexc and uinh. The faster
excitatory layer, uexc, generates an active transient illustrated
in Figure 3: Its input first drives up excitation, which is then
suppressed by inhibition from the slower inhibitory layer, uinh:

τexcu̇exc(x, y) =− uexc(x, y)+ hosc + wcctσ (ucct(x, y))

+ woscσ (uosc)− winhθ(uinh(x, y))

τinhu̇inh(x, y) =− uinh(x, y)+ hosc + wcctσ (ucct(x, y))

+ woscσ (uosc),

(5)

where τexc < τinh are the different relaxation times, hosc
the resting level, σ (ucct(x, y)) the end-effector-centered target
representation, σ (uosc) the homogeneous resting level boost
from the Oscillate intention node, and θ – a semi-linear
threshold function.

The thresholded activation, θ(uexc(x, y)), is transformed into a
rate coded Cartesian velocity vector, v, using a set of feed-forward
weights, wvel(x, y):

v(t) =
∫ ∫

wvel(x, y)θ(uexc(x, y, t))dxdy (6)

FIGURE 3 | An active transient in uexc generated by a two-layer oscillator in

response to an input stimulus, s. The supra-threshold activation level leads to

a bell-shaped velocity profile on read-out. This illustration is zero-dimensional

while in the model, a two-dimensional field of identical oscillators is used.

The weights, wvel(x, y), describe a linear distance function in the
end-effector centered representation of the target position. For
different movement distances, (x, y), these weights are tuned such
that the arm reaches the target position within a fixed movement
time. The velocity vector, v, is transformed into a joint velocity
vector, λ̇, using the pseudo-inverse of the arm’s Jacobian, J+,
which depends on the current joint configuration λ(t):

λ̇ = J+(λ(t))v(t) (7)

For more details on the generated velocity profile see Schöner
et al. (2019).

While the oscillator is going, its input is not updated, because
the connection from proprioception to the EEF-Position field is
gated by the Oscillate intention node. The EEF-Position field thus
effectively represents the initial position of the hand. Termination
of the transient is detected by the CoS Oscillate node, which
receives excitatory activation from uinh and inhibitory activation
from uexc. Activation of CoS Oscillate inhibits the Oscillate
intention node, which resets the oscillator, and releases the EEF
Position Gate from inhibition so that the end-effector position
is updated. When the target representation overlaps sufficiently
with the updated EEF Position, a peak forms in the Position
Match field and activates the CoS Reach, which terminates
the reach.

3.3. Cognition: Serial Order
The serial order sub-network, based on Sandamirskaya and
Schöner (2010), allows for the autonomous storage and recall
of a sequence of activation patterns. Each activation pattern
is represented through learned inhomogeneous connections
between an ordinal node and a feature field, here the one-
dimensional Sequence Color field. Supra-threshold activation in a
particular ordinal node thus induces a peak in the Sequence Color
field that represents the color associated with that particular stage
in the sequence.

The sub-network consisting of ordinal nodes, memory nodes
and a single CoS node enforces the sequential activation of
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ordinal nodes in a fixed order:

τ ȯi =− oi + h+ woi ,oiσ (oi)− woi ,oj

∑
j 6=i

σ (oj)+ wmi−1 ,oiσ (mi−1)

− wmi ,oiσ (mi)− wCoSσ (uCoS)+ woh+σ (ulrn)

+ woh+σ (urcl)

τ ṁi =−mi + h+ wmi ,miσ (mi)+ woi ,miσ (oi)+ wmh+σ (ulrn)

+ wmh+σ (urcl).

(8)

An active ordinal node, oi, representing the ith position in the
sequence, inhibits all other ordinal nodes, oj, and activates its
own self-sustained memory node, mi. The memory node pre-
activates the next ordinal node, oi+1, through an excitatory
connection and inhibits its own ordinal node, oi, to prevent it
from becoming reactivated after completion of the stage. While
activated, an ordinal node’s self excitation, woi ,oi , is sufficient to
overcome inhibition from its memory node, wmi ,oi . An ordinal
node remains active until the CoS node, uCoS, is activated and
destabilizes all ordinal nodes, which, in turn, removes input
from the CoS node that deactivates. The self-sustained memory
nodes are unaffected, so that upon release from inhibition by the
CoS, the pre-activated ordinal node of the next element in the
sequence is activated. Recurring activation and deactivation of
the CoS node thus creates a sequence of autonomous transitions
between sequence elements in the order of ascending i. Ordinal
and memory nodes can become activated only in the presence
of an excitatory boost, wh+ , from one of the task nodes, Learn
(ulrn) or, Recall (urcl). Deactivation of an active task node leads
to deactivation of all memory and ordinal nodes, effectively
resetting the entire system.

Connection weights, woi ,ucol , between the active ordinal node,
oi, and the active region in the Sequence Color field, ucol, are
strengthened according to a dynamic version of the Hebbian
learning rule:

τ ẇoi ,ucol (c) = ησ (ulrn)σ (oi)(σ (ucol(c))− woi ,ucol (c)), (9)

where η describes the learning rate and ulrn the activation of the
Learn task node that gates the learning process.

Before learning, peaks in the Sequence Color field arise when
a color attended in the Working Memory Selection field is input
through the gate field, Learn color, ulcol:

τ u̇col(c) =− ucol(c)+ h+
∫

σ (ucol(c
′))ωcol(c− c′)dc′

+wlcolσ (ulcol(c))+
∑
i

woi,ucol (c)σ (oi),
(10)

After learning, peaks in the Sequence color field may arise from
previously learned connections, woi ,ucol (c), of an ordinal node,
oi. The selective kernel, ωcol, ensures that only a single color is
represented at all times.

3.4. Task Integration: Learn and Recall
The full network may operate in two different regimes: In the
learning regime, a sequence of colors is presented to the system

and learned. In the recall regime, a learned sequence of colors
is reproduced by pointing at colored objects in a specific order.
Each regime is evoked by the activation of its corresponding task
node, Learn and Recall, which alter the resting level of certain
sub-sets of fields.

Both task nodes boost the resting level of all ordinal and
memory nodes to allow supra-threshold activation. When task
nodes are deactivated, the removal of the corresponding boost
causes activation of all self-sustained nodes to decay, effectively
resetting the system. This happens, for instance, at the end
of the sequence due to activation of the sequence’s condition
of satisfaction.

The Learn node acts as a gate between the Scene
Representation and the Serial Order sub-networks. By boosting
the Learn Color field, the Learn node enables that field to form
supra-threshold peaks. At which color such a peak is erected
is controlled by input from the Memory Space Selection field
that represents the color at the currently attended location.
That color is then imprinted in the connections to the currently
active ordinal node through the learning dynamics (Equation
9). The Learn node pre-activates the Offset Detected node, which
connects to the Sequence CoS. Thus, whenever a single object
is presented in the learning regime, its color is associated with
the currently active ordinal node and its removal from the scene
causes a transition in which the active ordinal node is replaced
by the next ordinal node.

The Recall node is a gate between the sequence generation
and the arm movement sub-networks. It boosts the Recall
Color gating field so that the color represented in the Sequence
Color field is passed on to the three-dimensional Memory Color
Selection field. If an object in working memory overlaps with
that color, a peak forms in the Memory Color Selection field. The
peak’s spatial position is forwarded to the Target Position field
of the Arm Movement sub-network, which initiates a reaching
movement. Once a reach has been successfully performed, the
Reach CoS is activated, which triggers the Sequence CoS, causing
the transition to the next ordinal node. In the recall regime,
the arm will thus move autonomously to colored objects in the
learned order, as long as appropriately colored objects are visible
in the scene.

4. RESULTS

In this section we show how activation within the network
unfolds in time during the learn and recall tasks. We
visualize relevant activation fields to illustrate how the network’s
autonomy enables it to cope with variable timing during learning
and with changes of the scene during recall.

The network is effectively a large dynamical system.We solved
it numerically on digital computers, and that numerical solution
was the only form in which algorithms intervened in the system.
The numerical implementation of the model made use of CEDAR

(Lomp et al., 2016), an open source framework in which DFT
models can be graphically assembled and interactively tuned.
Cedar can be used to simulate robotic behavior, which was done
for the results illustrated in this paper. The visual scene, camera,
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and robot armwere simulated usingWEBOTS (Michel, 2004) that
can be coupled into Cedar. The same Cedar code can also link to
real sensors and robots. We did this, driving the model from a
real camera and manipulating the visual scene by placing colored
objects on a white table top. We also controlled a lightweight
KUKA arm from the same Cedar code to verify its capacity to act
out the planned movements. These informal robotic experiments
are not further documented in this paper.

4.1. Scene Representation: Autonomous
Build-up of Visual Working Memory
The build-up of the scene workingmemory is an ongoing process
that provides visual information to the network irrespective of
the currently active task node. In Figure 4 we show activation
snapshots of different points in time during working memory
build-up in an exemplary scene containing three objects and the
arm’s end-effector.

FIGURE 4 | Time course of building a scene memory.

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2019 | Volume 13 | Article 95

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tekülve et al. Autonomous Sequence Generation

At point t0, the Exploration intention node provides a
homogeneous boost to the Saliency Selection field leading to an
activation peak at the location of the purple object. This causes
the emergence of a three-dimensional peak in the Scene Selection
field, of which the color dimension is shown in the third row. The
WorkingMemory field contains no supra-threshold activation yet
but, at the locations of the non-background objects, the resting
level is increased across the whole color dimension.

Once the peak in the Scene Selection field has fully emerged
at t1, its color component is forwarded as a slice toward the
Working Memory, where it overlaps with the tube originating
from the Saliency Selection field and forms a three-dimensional
peak. Subsequently a peak also forms in the Memory Spatial
Selection field, which shares the same color as the peak in the
Scene Space Selection causing an overlap in the Color Match field.

The peak forming in the Color Match field activates the CoS
Explore node, which inhibits the Explore intention node. Thus
the resting level boost is removed from the Saliency Selection
field, which subsequently falls down to sub-threshold activation

at point t2. Only the self-sustained peak in the Working Memory
field remains.

The absence of a peak in the Color Match field causes the CoS
node to fall below threshold again, bringing the sub-network to
its initial state. The following activation of the Explore intention
node, depicted from t3 until t5, follows the same temporal
activation pattern as the previous one with different feature
values for spatial location and color. The spatial location in the
Saliency Selection field differs due to the inhibitory influence
from theWorking Memory field. See Supplementary Video 3 for
a different example of autonomous build-up of visual working
memory in continuous time.

4.2. Learning Demonstration
A particular color sequence is taught to the network in its
learning regime by presenting objects of a certain color one after
another. In Figure 5 activation snapshots of some points in time
during an exemplary learning episode are shown. The top row
depicts the temporal evolution of activation of the ordinal nodes

FIGURE 5 | Time course of learning a three element sequence with varying presentation time.
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and the Sequence CoS node, while each snapshot column shows
the camera image, the activation of the Saliency field, activation
of the fast layer of the Offset Detector, activation of the Sequence
Color field, and the weight values, woi ,ucol , for each ordinal node
at one particular point in time.

In the initial phase of the learning at point t0 no objects are in
the scene, but the Learning task node has been activated leading
to supra-threshold activation in the first ordinal node. All other
ordinal nodes are below threshold activity with a slight advantage
for o2, which already receives an excitatory bias through the
active memory node,m1.

At t1, a green object is inserted into the scene, which forms a
peak in the Saliency field leading to a localized inhibition in the
fastOffSet Detector field. It is also committed to working memory
and leads to the emergence of a peak in the Sequence Color
field encoding the green color. Due to present supra-threshold
activation in the Sequence Color field and the ordinal node o1, the
Hebbian learning rule strengthens weights between the ordinal
node and the green color feature values.

The object is removed from the scene at t2, which destabilizes
the peak in the Saliency field removing the inhibition from the
fast layer of the Offset Detector. The slow layer (not depicted) still
carries supra-threshold activation, exciting the fast layer leading
to the formation of a peak, which will subsequently activate the
Sequence CoS node inhibiting all ordinal nodes. This deactivates
o1 and causes the color peak in the Sequence Color field to
vanish as it is no longer supported by either learned connections
nor color input from the scene. The missing input in the scene
will also ultimately lead to a decay of activation in the slow
Offset Detector layer and subsequently cause a reverse-detection
instability in the fast layer and the Sequence CoS node.

The deactivation of the Sequence CoS node is followed by an
activation of the next ordinal node o2 at t3. Between t2 and t3
a blue object has been added to the scene, whose color is then
connected to the freshly activated ordinal node via the Hebbian
learning rule. Removal of the object at t4 triggers the Offset
Detector and the CoS node enabling the activation of the next
ordinal node o3 at t5. The presented purple object is kept in
the scene for a longer time span than the green or blue one,
which does not influence the learning as the transition to the
next sequence element at t6 is based on the removal event rather
than timing.

4.3. Recall Demonstration
We demonstrate successful sequence recall through a pointing
task, where the network moves the arm to an object in the
scene matching the color of the current sequence element.
Only a successful reach toward that object allows a progress
to the next sequence element. An exemplary recall of three
sequence elements is depicted in Figure 6, which demonstrates
the temporal evolution of the activation of ordinal nodes as
well as the field activity of the Sequence Color, the Target
Position, and the Position Match field at discrete points during
the sequence recall.

At point t0, the Recall task node has been activated, which
lead to the activation of the first ordinal node and the emergence
of a peak in the Sequence Color field at the green location

due to the learned connections, wo1 ,ucol . The color information
converges with the content of the Working Memory field in the
Memory Color Selection field to form a three dimensional peak
specifying position and color. Positional information is projected
to the Target Position field of the Arm Movement sub-network,
where it is forwarded to the movement generating oscillator
and the Position Match field, which compares the current end
effector position (center/left) with the current target position
(bottom/right).

Due to a successful arm movement both positions match at
point t1, which is represented through a peak in the Position
Match field that activates the Sequence CoS deactivating the
current ordinal node. The CoS node itself falls below threshold
activity as soon as the peak in the Position Match field destabilizes
through a missing target representation that vanished through
insufficient color input from the Sequence Color field.

The missing inhibition from the CoS causes an activation of
the next ordinal node o2, which is associated with blue color.
At t2 however the blue peak has emerged in the Sequence Color
field, but the target position has not yet been extracted from
working memory. The column of point t3 depicts the end of
the movement, where the overlap of end effector and target
cause a peak that triggers the Sequence CoS. In this particular
configuration thematch representation is only possible due to the
self-sustaining working memory representation that shields the
blue object representation from the occlusion through the arm.

The movement toward the purple object depicted from
t4 until t6 follows an analog activation pattern in which
the ordinal node causes the formation of a purple peak in
the Sequence Color field, which causes an extraction of the
target position, leading to movement that terminates due
to an represented match of positions. The movement times
of all three movements are roughly the same despite their
differences in distance, which results from the movement
oscillator that enforces the same movement timing for all
movements. See Supplementary Video 4 for another sequence
recall demonstration showing the activation development of
selected fields in continuous time.

4.3.1. Recall With a Moving Object
The autonomy of all three parts of the field network makes the
execution of the recall task robust against unforeseen changes in
the scene. We demonstrate this in an exemplary recall episode,
where one of the objects in the scene is moved while its color
corresponds to the active sequence element. The episode is
depicted in Figure 7, which shows activation snapshots analog to
Figure 6. Additionally activation of the Intention and CoS node
driving the two-layer oscillator are shown as well as snapshots of
theMemory Color Selection field.

In this episode, build-up of the scene memory starts
simultaneously with activation of the recall task, which causes
a delay between the activation of the first ordinal node and the
first movement as the green object, which is the first sequence
element, is the second object committed to memory. This can
be observed at t0 in the Memory Color Selection field, where the
green object forms a peak as it overlaps with the green color slice
specified by the sequence color, while the purple object is present
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FIGURE 6 | Time course of recalling a three element sequence through pointing at colored objects.

as a sub-threshold activation blob, and the blue object is entirely
absent. As the first movement is finished at t1 all three objects are
present in working memory as sub-threshold activation blobs.

Thus at t2, the second movement starts closely after the
activation of the second ordinal node with the blue object as
the target on the right side of the camera image. While the arm
is moving the object is moved to the center/top position of the
image, which results in a non-match between arm and target at
the end of the movement, which can be seen at t3. Here working
memory has updated the position of the blue object, which leads
to an extraction of a different target position that does not match
with the current position of the end effector. Only at t4 after a
second movement was generated, the blue object and the end
effector match, which concludes the recall of the second element
of the sequence.

The last movement toward the purple object is then conducted
without any further perturbations and terminates after a single
movement at t6.

4.3.2. Recall With a Missing Object
In this second recall episode demonstrating the robustness of the
field network we start the recall in a scene that lacks the second
object of the sequence. In Figure 8, activation snapshots of the

same sub-set of fields used in the previous perturbation episode
are shown.

At points t0 and t1, the network’s activation develops analog
to the previous two recall examples with a color slice used to
extract the target position and the position match to determine
the successful termination of the movement. However as the
second ordinal node activates at t2 no blue object is present in
the scene, thus no sub-threshold activation blob overlaps with
the blue color slice in the Memory Color Selection field and no
peak forms.

At point t3, the blue object is added to the scene, which
is committed to memory and afterwards extracted as a valid
target position. The movement than concludes at t4 with the
arm occluding the purple object, which is kept in working
memory due to the self-sustaining kernel. The working memory
information is then used in t5, when the third ordinal node
specifies purple as the next sequence color. Thus the sequence
ends at t6 with no further perturbations.

5. DISCUSSION

We have presented a network of dynamic neural fields that
integrates the complete pathway from the sensor surface (vision)

Frontiers in Neurorobotics | www.frontiersin.org 12 November 2019 | Volume 13 | Article 95

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tekülve et al. Autonomous Sequence Generation

FIGURE 7 | Online updating of the movement during sequence recall.

to representations of higher cognition (serial order) and to the
motor system (pointing). The network architecture enables a
robotic agent to autonomously learn a sequence of colors from
demonstration and then to act according to the defined serial
order on a scene. Both during learning and while acting out the
sequence, the transitions between elements of the sequence are
detected without the need for an external control signal (The
switch between learning and recall mode is not autonomous,
however, reflecting a similar need for task instructions when a
human operator performs such a task).

In each of the three sub-networks responsible for scene
representation, the representation of serial order, and movement
generation, sequential transitions between neural activation
states are brought about through the mechanism of the condition
of satisfaction. Thus, visual attention shifts only once a currently
attended item has been committed to working memory. A
transition to the next element in the serial order occurs only
once the robot has successfully acted on the current element. And

an arm movement terminates only once the desired movement
target has been reached. The mechanism of the condition of
satisfaction thus reconciles the capacity to autonomously act
according to learned or structurally determined plans with the
capacity to be responsive to sensory or internal information about
the achievement of goals.

5.1. What the Scenario Stands for
The scenario was simple, but meant to demonstrate
the fundamental components of any neurally grounded
autonomous robot.

(1) A representation of the visual surround is the basis for any
intelligent action directed at the world. It is also the basis for
sharing an environment with a human user. We humans are
particularly tuned to building scene representations which
form the basis of much of our visual cognition (Henderson
and Hollingworth, 1999). Scene representations need to
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FIGURE 8 | Recall with a delayed second object.

include scene memory to deal with occlusions (e.g., by the
agent’s own body or body parts of a collaborating human
user) andwith a limited viewing range. Scene representations
must also be open to updating, however, when the scene
changes over time. Attentional selection is the key process
that provides an interface between the scene and any
action plan. So, while we stripped the system down to the
bare essentials, the core processes of scene representation
were covered.

(2) Directing action to objects in the world requires
transforming attentionally selected scene information
into a coordinate frame anchored in the initial position
of the actuator. In that representation, motor plans
can be framed as movement parameters (Erlhagen and
Schöner, 2002) that characterize the movement as a whole.
Movements must be initiatiated and terminated, and time
courses of motor commands must be generated that take
the effector to the target. In dynamic environments, such as
when a human user interferes with objects, the movement

parameters must be open to online updating. If movements
still fail to reach the target, correction movements must be
generated. Even in our extremely limited implementation,
these core processes of movement generation were covered.
Control issues, which are not trivial in human movement
but are well-understood in robotics, were neglected.

(3) The cognition of goal-directed action was simplified to
serial order. Serial order is a cognitive construct in that it
abstracts from the contents (what is serially ordered) and
from time (when is each item addressed). Based on these
abstractions, a broad set of actions can be conceived of as
serially ordered processing steps. For instance, assembling
a piece of IKEA furniture could be described this way.
Unlike many classical, disembodied cognitive tasks, real
action sequences require the capacity to deal with variable
and perhaps unpredictable amounts of time needed to
achieve each processing step. Learning the—a priori—
arbitrary contents of a serially ordered sequence makes this
scenario quite powerful. It goes beyond, for instance, a
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mere capacity to imitate or emulate behavior, which would
lead to the reproduction of the same movements or effects
without generalization to new conditions. It also goes beyond
the generation of sequences of behaviors that would be
triggered by environmental conditions according to a fixed
organizational scheme encoded in a behavior-based robotic
architecture (Elements of fixed sequencing are contained in
the present system such as when attentional selection always
precedes pointing).

5.2. Scaling Beyond the Simplified Scenario
(1) The scene representation system was built on a single,

trivial color feature. We have previously explored and
demonstrated elsewhere how a neural dynamic system of the
same kind can deal with multiple feature dimensions (e.g.,
Chapter 8 of Schöner et al., 2016 or Grieben et al., 2018). This
entails a feature binding problem that can be solved through
a shared spatial dimension across multiple low-dimensional
feature/space fields. Binding occurs by attending selectively
to a spatial location and transmitting feature information
separately in the different feature/space fields. In this
account, such binding through space is ultimately the reason
why objects need to be attended sequentially. Active gaze
shifts would be another extension, the basis for which
has been outline in previous work (e.g., Wilimzig et al.,
2006). A further generalization would be to extend the
scene representation into a semantic map in which objects
are also classified and their class labels are stored. There
is, of course, a plethora of neurally based feedforward
classification system (reviewed in the section 1), and their
outputs could be treated as such labels. Such modules may
need improvement in terms of object segmentation and pose
estimation (as discussed in Lomp et al., 2017), which clearly
requires attentional processes. Visual search for such labels is
a challenge that may need some research attention.

(2) The motor domain is, of course, a much richer domain
than we were able to demonstrate. There are myriad
problems to be solved such as dealing with many degrees
of freedom, dealing with obstacles, dealing with compliant
actuators, controlling impedance, grasp planning and
control, manipulating objects dynamically, and many more.
For many of these, technical solutions are available or
are being actively researched. Neurally grounded process
accounts have not been developed as strongly as one would
hope, however. The fundamental difference between human
motor control and the control of current robot arms limits
the extent to which approaches inspired by modern control
theory and the theory of optimal control carry over to
neurally inspired robotics (but see Driess et al., 2018).

(3) We have looked at the learning and recall of a single
sequence. To learnmultiple sequences, additional processing
substrate must be introduced that represents activation
of such learned sequences as well as selection of a
neural population when a new sequence is added to the
sequence memory. In principle, an approach inspired by
Adaptive Resonance Theory (Carpenter and Grossberg,
2017) may achieve that. We have outlined such an approach

in related work on contingency learning (Tekülve and
Schöner, 2019), but important questions remain open
such as how to align sequences of different lengths. The
position encoding of serial order in the ordinal nodes
makes it possible, however, to represent sequences that
entail the same elements in different serial positions
(Sandamirskaya and Schöner, 2010).

The sliver of cognition we have captured may be part of
communication, showing each other what to do. If perception
was better (e.g., recognizing events and perceiving relationships
between actuators and objects), and if action was richer (e.g., the
ability to use tools and manipulate objects), then the modeled
interface would already make the robot quite useful. It would
enable a robot to learn the solution of problems from a human
user, as long as the perception system extracts the conceptual
structure of the demonstrated action. A big extension would be
the capacity of the system to solve problems by itself, devising
the sequences of actions required to achieve a goal. This would
require neural processes in new domains such as exploration,
outcome representations, perhaps value systems. There is a
growing literature on such models (Mnih et al., 2015), but their
import for robotic learning is an open research problem.

5.3. Related Work
A number of groups have addressed object-directed action and
the requisite perception in a similar neural-dynamic framework
(Fard et al., 2015; Strauss et al., 2015; Tan et al., 2016). Serial
order and the specific neural mechanism for sequencing neural
activation patterns were not yet part of these efforts, which
otherwise overlap with ours. A number of neural dynamicmodels
of serial order or sequencing have been proposed (e.g., Deco
and Rolls, 2005), but not been brought into robotic problems.
One reason may be the lack of a control structure comparable
to our condition of satisfaction, so that the sequences unfold in
neural dynamics at a given rhythm that is not synchronized with
perceptual events. Such systems would not remain tied to the
actual performance of a sequence in the world.

Related attempts to model in neural terms the entire chain
from perception to action have been made for robotic vehicles.
For instance, Alexander and Sporns (2002) enabled a vehicle
to learn from reward a task directed at objects that a robot
vehicle was able to pick up. pick up. Gurney et al. (2004) realized
a neurally inspired system the organized the organism (This
paper is useful also for its careful discussion of different levels of
descriptions for neurally inspired approaches to robotics). Both
systems are conceptually in the fold of behavior-based robotics, in
that the sequences of actions emerge from a neural architecture,
modulated by adaptation. To our knowledge, systems of that kind
have not yet been shown to be able to form serial order memories
and acquire scene representations.

A different style of neural robotic model for cognition is
SPAUN (Eliasmith et al., 2012). This is an approach based on
the Neural Engineering Framework (Eliasmith, 2005), which
is able to implement any neural dynamic model in a spiking
neural network. Thus, models based on DFT may, in principle,
be implemented within this framework. On the other hand,
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SPAUN has also been turned to approaches to cognition that
may not be compatible with the principles of DFT, in particular,
the Vector Symbolic Architecture (VSA) framework that goes
back to Smolensky, Kanerva, Plate, and Gayler (see Levy and
Gayler, 2008 for review). In VSA, concepts are mapped onto
high-dimensional vectors, that enable processing these concepts
in themanner of symbolmanipulation. If this approach is entirely
free of non-neural algorithmic steps is not clear to us.

6. CONCLUSION

We have shown, in a minimal scenario, how sequences
of attentional shifts, of movements, and of serially ordered
actions can be autonomously generated in a neural dynamic
framework that is free of any non-neural algorithmic control.
The continuous or intermittent coupling to sensory and motor
systems is made possible by creating neural attractor states.
Inducing instabilities in a controlled manner enables the system
to make sequential transitions between such states. As a result,
the neural dynamic robot demonstrates a minimal form of
cognition, learning and acting out serially ordered actions. Much
work remains to be done to scale such systems to the real world.
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APPENDIX

Network Parameters
The following tables list the field parameters of the different
sub-networks. Lateral kernels are constructed according to the

following equation: ω(a, σ , cinh) = cinh+
∑

i ai
1√
2πσi

2
exp(−x2

2σi2
).

The learning rate used in Equation (9) is η = 0.05.

TABLE A1 | Parameter values of the scene representation sub-network.

Name Resting

level

Lateral

Kernel

Inputs

SCENE REPRESENTATION

Saliency usal hsal = −0.5 ωsal : a1 = 1,

σ1 = 3,

cinh = −0.0001

wimg = 1

Saliency selection usel hsel = −2.5 ωsel : a1 = 3,

σ1 = 2,

cinh = −0.08

wsal = 2.2, wexp = 2.0,

wmem = −0.1

Space color maps uscm hscm = −0.5 ωscm :

cinh = −0.0001

wimg = 1

Scene space selection ussl hssl = −1.5 ωssl : cinh =
−0.0001

wscm = 1,wsel = 1

Working memory umemhmem = −5 ωmem : a1 = 5,

σ1 = 2,

a2 = −2.5,

σ2 = 6,

cinh = −0.0001

wsel = 1, wnbk = 3.5,

wssl = 1

WM space selection uwsl hwsl = −1.5 ωwsl :

cinh = −0.0001

wmem = 1,wsel = 1

Color match ucm hcm = −1.5 ωcm :

cinh = −0.0001

wssl = 1,wwsl = 1

Explore int uexp hsel = −0.5 — wecs = −3

Explore CoS uecs hecs = −0.5 — wcm = 1

Off-set detector fast udfa hdfa = −0.2 — wsin = −1,wdsl = 0.5

Off-set detector slow udsl hdsl = −0.2 — wsex = 1

TABLE A2 | Parameter values of the arm movement sub-network.

Name Resting

level

Lateral

Kernel

Inputs

ARM MOVEMENT

Target position utp htp = −0.5 ωtp :

cinh = −0.001

wwcl = 1,wdfa = −2

EEF position uep hep = −0.5 ωep : a = 25,

σ = 2, cinh = −0.3

wepg = 10

EEF position gate uepg hepg = −0.5 ωepg :

cinh = −0.001

wppc = 1,woin = −2

Position match upm hpm = −1.5 — wep = 1,wtp = 1

Oscillator fast uofa hofa = −2.5 ωofa :

cinh = −0.001

woin = 2,wefc = 1,

wosl = −4

Oscillator slow uosl hosl = −2.5 ωosl :

cinh = −0.001

woin = 2,wefc = 1

Oscillate intention uoin hoin = −0.5 — wrea = 1,wocs = −2

Oscillate CoS uocs hocs = −0.5 — wofa = −1,wosl = 1

Reach intention urea hrea = −0.5 — wrcl = 1,wrcs = −2

Reach CoS urcs hrcs = −0.5 — wpm = 1

TABLE A3 | Parameter values of the serial order sub-network.

Name Resting

level

Lateral

Kernel

Inputs

SERIAL ORDER

Ordinal node oi ho = −5 woi ,oi = 4.8 woi ,oj = 2,

wmi−1 ,oi = 2.9,

wmi ,oi = 3.8,

wCoS = 2,

woh+ = 3

Memory node mi hm = −5 wmi ,mi
= 5 woi ,mi

= 2.6,

wmh+ = 3

Sequence CoS uCoS hCoS = −0.5 — wrcs =
1,wdfa = 1

Sequence color ucol hcol = −0.3 ωcol : a = 1,

σ = 3, cinh = −0.3

wlcol = 1,

woi ,ucol ∈ [0, 1]

TABLE A4 | Parameter values of task related fields of the dynamic field network.

Name Resting

level

Lateral

Kernel

Inputs

LEARN AND RECALL

Learn node ulrn hlrn = −0.5 — wmanual = 1

Recall node urcl hrcl = −0.5 — wmanual = 1

Learn color ulcol hlcol = −1.5 — wlrn = 1,wwsl = 1

Recall color urcol hrcol = −1.5 — wcol = 1, wrcl = 1

WM color

selection

uwcl hwcl = −1.5 ωwcl :

cinh = −0.0001

wrcol = 1,

wmem = 1
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