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Error-related potential (ErrP) based assist-as-needed robot-therapy can be an effective
rehabilitation method. To date, several studies have shown the presence of ErrP
under various task situations. However, in the context of assist-as-needed methods,
the existence of ErrP is unexplored. Therefore, the principal objective of this study
is to determine if an ErrP can be evoked when a subject is unable to complete a
physical exercise in a given time. Fifteen stroke patients participated in an experiment
that involved performing a physical rehabilitation exercise. Results showed that the
electroencephalographic (EEG) response of the trials, where patients failed to complete
the exercise, against the trials, where patients successfully completed the exercise,
significantly differ from each other, and the resulting difference of event-related potentials
resembles the previously reported ErrP signals as well as has some unique features.
Along with the highly statistically significant difference, the trials differ in time-frequency
patterns and scalp distribution maps. In summary, the results of the study provide a
novel basis for the detection of the failure against the success events while executing
rehabilitation exercises that can be used to improve the state-of-the-art robot-assisted
rehabilitation methods.

Keywords: assist-as-needed, brain–computer interface (BCI), electroencephalography (EEG), error-related
potential (ErrP), stroke rehabilitation

INTRODUCTION

Stroke is the second leading cause of death and the third leading cause of disability in the world
(Johnson et al., 2016). Depending on the extent and the location of damage due to stroke, stroke
survivors suffer from a various degree of body functionality impairment (Kalaria et al., 2016).
The most notable impairments include cognitive impairment, dementia, and limb movement
impairment (Kalaria et al., 2016). Nevertheless, recovery from the disability due to stroke is possible
through neuroplasticity (Basteris et al., 2014). Neuroplasticity is brain’s natural process aimed
to reorganize itself by forming new neural connections, especially in response to learning or
experiences that result in partial recovery from the disability. Post-stroke rehabilitation accelerates
this process of neurological changes and ultimately helps in attaining a higher rate of recovery
(Liu et al., 2017).
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Motor function impairment affects the patient’s activities of
daily living (ADLs) (Basteris et al., 2014). Therefore, recovery
from motor disabilities is one of the primary objectives of the
post-stroke rehabilitation program. Historically, in post-stroke
rehabilitation, the patients are asked to perform certain physical
exercises using their affected limb (Liu et al., 2017). Previous
studies have described the role of intensive and repetitive
rehabilitation exercises in promoting the rate of recovery from
motor disabilities (Grosmaire and Duret, 2017; Liu et al.,
2017; Tacchino et al., 2017). In addition, several studies have
highlighted the significance of the active participation of the
patient in performing rehabilitation exercises to promote motor
recovery (Grosmaire and Duret, 2017; Tacchino et al., 2017).
However, the key issue is that stroke patients cannot perform
the rehabilitation exercises repetitively and actively due to their
motor impairment (Basteris et al., 2014; Yue et al., 2017).

Assist-as-needed (AAN) robot therapy-based rehabilitation
program helps in eliminating the issues mentioned above and
allows the patients to perform exercises repetitively and actively
(Basteris et al., 2014; Grosmaire and Duret, 2017). In AAN
based robot therapies, assistance is provided to the patient in
performing the rehabilitation exercise when he/she is unable
to perform it on his/her own and vice versa. A few well-
known EEG based BCI approaches, including movement-related
cortical potentials (MRCP) (Liu et al., 2017), event-related
synchronization/desynchronization (ERS/ERD) (Liu et al., 2017)
and surface-electromyographic (sEMG) signals (Basteris et al.,
2014), are most popular in developing assistive exoskeletons that
assist stroke survivors in performing physical exercises. Error-
related potential (ErrP) is another event-related potential (ERP)
signal which is gaining popularity recently in BCI research due to
its inherent intrinsic human feedback mechanism (Chavarriaga
et al., 2014). It is an ERP that is elicited when a human perceives
an error (Chavarriaga et al., 2014).

The existing body of research on ErrP suggests that ErrP signal
is elicited under certain task situations. Response ErrP occurs
when the subject is asked to respond as quickly as possible (e.g.,
choice reaction task) (Olvet and Hajcak, 2009). Feedback ErrP
occurs when the subject realizes an error upon given feedback
of the task (Lopez-Larraz et al., 2010). Interaction ErrP occurs
when the subject is interacting with a machine, and the machine
misinterpreted an instruction given (Ferrez and Del R. Millán,
2008). Observation ErrP occurs when the subject recognizes an
error made by a machine or external system (Roset et al., 2014).
Recently, three new types of errors, namely target, outcome, and
execution ErrPs have been reported (Milekovic et al., 2013). To
date, a number of studies have investigated the ErrP signal and
its applicability in the EEG-based BCIs (Olvet and Hajcak, 2008;
Chavarriaga et al., 2014; Weinberg et al., 2015; Kim et al., 2017).
In Omedes et al. (2018), authors developed a 3D virtual interface
that simulated participants’ hand to reach and grasp different
virtual objects and found that an ErrP evokes in erroneous
commands. In Kim et al. (2017), ErrP was employed to detect
if a robot has made an error in recognizing the gesture made by
the participant. In Yazmir and Reiner (2017), authors developed
a virtual tennis game in which a difference in EEG response

was observed when the participant successfully hit to that of
miss the target.

Although significant research has been carried out on ErrP,
there is no single study which discusses the feasibility of ErrP in
implementing assist-as-needed robot therapy approach. With the
aim of filling the gap mentioned above in BCI based methods,
in this study we investigated if an ErrP signal is evoked when
a participant is unable to perform a physical exercise. Fifteen
stroke patients participated in this EEG experiment in which they
performed a standard rehabilitation exercise. We hypothesized
that a difference similar to error-related potentials will exist
when the stroke patients are unable to perform a rehabilitation
exercise (failure trial) to that of when they complete the same
rehabilitation exercise (success trial) in a given time. Results of
this study will provide a novel basis for the BCI based methods
to be implement in the AAN based robot therapy, hence forming
a foundation of a new type of task situation in which the ErrP
brain signal can be elicited. This will assist in differentiating a
failure trial against a success trial in performing a rehabilitation
exercise. The developed ErrP based brain-in-the-loop approach
is expected to enhance the efficiency of robot-based stroke
rehabilitation programs.

MATERIALS AND METHODS

Participants
Fifteen stroke patients (five females, mean age: 57.5± 11.3 years)
participated in the experiment (see Table 1). The experiment
was conducted in collaboration with the 2nd Hospital of
Jiaxing, China. All participants voluntarily took part in the
experiment and provided their written informed consent before
commencement of experiments. The stroke patients’ affected
limb’s impairment level was assessed using Brunnstrom stages of

TABLE 1 | Stroke patients’ information.

Range Diagnosis Affected Days since Brunnstrom

Patient of age side stroke stage

1 50–55 Hemorrhage Left 113 Stage II

2 75–80 Hemorrhage Left 62 Stage IV

3 65–70 Infarction Right 82 Stage II

4 55–60 Infarction Right 11 Stage II

5 60–65 Infarction Right 11 Stage II

6 30–35 Hemorrhage Left 40 Stage I

7 45–50 Infarction Right 31 Stage II

8 50–55 Hemorrhage Right 41 Stage IV

9 60–65 Infarction Left 53 Stage II

10 45–50 Infarction Right 31 Stage IV

11 50–55 Infarction Left 44 Stage III

12 70–75 Infarction Left 48 Stage I

13 60–65 Hemorrhage Right 18 Stage II

14 55–60 Infarction Right 55 Stage II

15 55–60 Infarction Right 43 Stage IV

The data of patient 1 and 9 had to be excluded from the analysis because
patient 1 aborted the experiment at the start and patient 9 was not performing
the experiment as per the instructions given.
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recovery by an expert panel from the 2nd Hospital of Jiaxing,
China prior to experimentation (see Table 1). The study was
approved by the Ethics Committee of the 2nd Hospital of Jiaxing,
and the experiments were conducted in accordance with the
declaration of Helsinki. The data of Patient 1 and 9 had to
be excluded from the analysis because patient 1 aborted the
experiment at the start and patient 9 was not performing the
experiment as per the instructions given.

Task Description
Participants sat on a comfortable chair facing the LCD monitor
(resolution of 1280 × 720 and refresh rate of 100 Hz) that
delivered task instructions to the participants.

The experiment required participants to perform a standard
Bobath’s rehabilitation exercise: shoulder flexion-extension while
adjoining both hands. Already recorded video of a therapist
performing the exercise was used to illustrate the know-how of
the exercise to the participants. The video was collected from the
2nd Hospital of Jiaxing, China. Each participant was asked to
participate in two sessions of the experiment including 24 trials
each; however, patient 2, 3, 7, and 14 participated only in one
session due to muscle fatigue. All participants’ data satisfied the
minimum number of trials required to conduct an ErrP based
ERP study, i.e., at least six trials of each class, as outlined in the
previous studies (Olvet and Hajcak, 2009; Meyer et al., 2013).
A fixation cross, as shown in Figure 1A appeared at the start
of a trial. Followed by the fixation mark, the exercise video was
played (see Figure 1B). Participants were asked to observe the
exercise being described in the video. Afterward, a 3-2-1 timer
(see Figure 1C) starts and the participants were asked to perform
the exercise (accurately as depicted in the video) once the timer
finishes and Figure 1D appears. Participants were given 2–15 s
to complete the exercise. Roughly, in 35% of the trials, 2–4 s,
in 10% of the trials 9–10 s and in the rest of the trials 15 s
were given to complete the exercise in a pseudo-random fashion.
Participants were asked to complete the exercise before the
‘Time’s up!’ screen (see Figure 1E) has appeared. Additionally,
a beep sound was played on the onset of ‘Time’s up!’ screen for
about 30 ms to inform the participants that the time has expired.
The accuracy was preferred over the speed as the ErrP amplitudes
are notably larger when the accuracy is emphasized over the speed
(Gehring et al., 1993).

The time durations given to complete the exercise were based
on a preliminary experiment such that the patients will not be
able to complete the exercise in the short 2–4 s trials (named
failure trials onwards) and will be able to successfully complete
the exercise in the long 15 s trials (named success trials onwards).
A complete exercise was marked in a trial when the participant
started performing the exercise on the onset of the screen as in
Figure 1D and execute the exercise depicted in the exercise video,
and his/her arms come to rest before the onset of the screen as in
Figure 1E. The medium 9–10 s trials were used to add additional
uncertainty so that participants cannot anticipate trial durations.
The medium 9–10 s trials were not included in the data analysis.
Participants were asked to take rest for about 20 min in between
two sessions to avoid muscle fatigue, and thus, the participants
could keep full concentration in the experiment.

Experiment procedure was explained to the participants, and
sufficient time was given for practice before the start of the
experiment. The visual stimuli of the experiment were designed
using Presentation software (version 20.2, Neurobehavioral
Systems, Inc., Berkeley, CA, United States).

Data Acquisition
Fifty-eight channels of monopolar EEG were recorded using
an active EEG electrode system and g.HIamp amplifier (g.tec
GmbH, Austria) as per the international 10–20 system. Electro-
oculogram (EOG) signals were recorded from the electrodes
placed above and below the left eye (FP1, VEOG) and on
the outer canthi of both eyes (F9, F10). The EOG data were
recorded to remove the eye-blinks artifacts from the EEG signals.
Channels were referenced to the right earlobe and grounded
to AFz location. Bipolar sEMG signals were recorded from the

FIGURE 1 | Description of the task’s trial and visual stimuli. Instructions were
delivered in the following order. (A) A fixation cross marking the start of the
trial, (B) exercise video, (C) a 3-2-1 timer, (D) image depicting instruction to
start performing the exercise. The time given to perform the exercise varied
between 2 and 15 s in a pseudo-random fashion and it was based on a
preliminary investigation. (E) Participants were asked to complete the exercise
before this screen appeared.
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deltoid posterior muscle. All electrodes impedance was kept
below 10 k�. All three physiological signals were sampled at
2400 Hz with a 50 Hz notch filter. EEG and EOG data were
additionally filtered with 0.01–1000 Hz band-pass filter, and EMG
data were additionally filtered with a 10–500 Hz band-pass filter
to remove the slow drift and high-frequency noises in the signal
(Farquhar and Hill, 2013).

Data Analysis
To prepare the raw data for further analysis, all the
recorded physiological signals were preprocessed offline.
Data preprocessing was performed in MATLAB and EEGLAB
toolbox (Delorme and Makeig, 2004). The preprocessing steps
are as follows:

(1) High-pass filtered the data to remove low-frequency drifts
using Windowed sinc finite impulse response filter (zero
phase shift), 0.1 Hz cut-off frequency, as per the parameters
recommended in Widmann et al. (2015).

(2) Low pass filtered the data using Windowed sinc
finite impulse response filter (zero phase shift),
128 Hz cut-off frequency, as per the parameters
recommended in Widmann et al. (2015).

(3) Data were down-sampled to 512 Hz.
(4) Artifactual channels were removed with manual

inspection of the data.
(5) Artifact subspace reconstruction (ASR) (Mullen et al.,

2013) method was used to remove transients, stereotypical
and non-stereotypical high amplitude artifacts from the
continuous EEG data with parameters [standard deviation
(SD) 20, sliding window length 500 ms and correlation
coefficient 0.8] as suggested in Chang et al. (2018).

(6) Independent component analysis was used to remove
any artifactual component left in the data (Delorme
and Makeig, 2004). The components that comprised of
ocular, cardiac and muscular artifacts were removed.
A hybrid approach constituting ICLabel (EEGLAB)
and visual inspection was used to filter out the
artifactual components.

(7) Data were segmented into epochs ranging from −200 to
800 ms relative to the onset of Figure 1E. Further analysis
was performed on the extracted epochs.

(8) Data epochs with maximum signal amplitude
exceeding ± 75 µV and improbability exceeding 6
SD for single channels and 2 SD for all channels were
flagged as outliers and were removed; about 5% of
the trials were removed (Sörnmo and Laguna, 2005;
Delorme et al., 2007).

Teager Kaiser energy operator (TKEO) method is a powerful
method to detect the onset and offset of the muscle activity from
the sEMG signal (Li et al., 2007). The discrete TKEO operator ψ

is defined as:

9 [x (n)] = x2 (n)− x (n+ 1) x (n− 1)

where x is the sEMG value and n is the sample number
(Li et al., 2007).

Muscle activity onset was considered when the TKEO operator
ψ value exceeds a fixed threshold α for more than 25 consecutive
samples, and similarly muscle activity offset was considered when
the ψ value remains below the α threshold for more than 25
consecutive samples after the onset of the muscle activity (Solnik
et al., 2008). The threshold α is defined as:

α = µ0 + jδ0

where µ0 and δ0 are mean and SD of the background sEMG
noise in the TKEO domain, whereas j is a scale factor for δ0.
Value of j was chosen to be 7 based on the recommendation in
Li et al. (2007). In a trial, if the participant started performing the
exercise before Figure 1D screen appeared or in other words if
the onset of the muscle activity was before the Figure 1D screen
appeared, it was removed. The trials in which patients failed to
observe the onset of Figure 1D screen and consequently delayed
the execution of exercise were removed as well. Furthermore, the
authenticity of failure and success trials were confirmed with the
offset of the muscle activity, i.e., in failure trials, muscle activity
offset should occur after the onset of the ‘Time’s up!’ screen and
in success trials it should occur before the onset of the ‘Time’s
up!’ screen. All the trials that had ambiguity in being a success
or failure trials and the trials in which the participant did not
perform the exercise at all were removed. Overall less than 20%
of the trials were rejected. The artifacts free unambiguous success
and failure trials were considered for further analysis.

Individual failure and success related ERP waveforms were
calculated by averaging over the success and failure epochs of
the same individual. Grand-average success and failure ERP
waveforms were calculated by averaging over individual success
and failure ERPs. Difference of individual as well as grand-
average failure and success ERP waveforms were calculated
further and were smoothed out with 25 Hz low-pass FIR filter for
illustration purpose and statistical analysis. Topographical scalp
maps provide reference-bias-free multi-channel information of
the EEG signals (Murray et al., 2008). Therefore, scalp maps were
also calculated using the grand-average success and failure EEG
signals on the most prominent peaks.

In order to gauge induced and evoked power in the ERP signal,
time-frequency analysis was performed (Dickter and Kieffaber,
2014). Evoked power is phase-locked to the stimulus presented;
however, induced power (induced oscillatory activities) is not
phase-locked and hence get canceled out in averaging (Dickter
and Kieffaber, 2014). Nevertheless, both evoked and induced
power are time-locked to the stimulus event (Dickter and
Kieffaber, 2014). Event-related spectral perturbations (ERSPs)
represents amplitude dynamics in a broad range of frequencies
as a function of time furnishing information of both evoked
and induced power unlike the grand-average ERPs that only
provide information of the evoked power (Dickter and Kieffaber,
2014). On the other hand, Inter-trial coherence (ITC) computes
phase synchronization across trials at each time point in a broad
range of frequencies (Dickter and Kieffaber, 2014). ITC ranges
between zero and one where zero suggests random phases and
one suggests perfectly coherent phases across trials (Dickter and
Kieffaber, 2014). Thus, localized changes in ERSP with a high
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value of ITC at that particular time and frequency represents
evoked power whereas localized ERSP changes with low values
of ITC represents induced power (Dickter and Kieffaber, 2014).
Jointly with the ERSPs and the ITC, the power of the evoked
response, as well as the induced oscillatory activities, can be
gauged (Dickter and Kieffaber, 2014).

In result, time-frequency analysis was performed in EEGLAB
to calculate the ERSPs and ITC with parameters as recommended
in Delorme and Makeig (2004) and Dickter and Kieffaber
(2014). ERSPs and ITC were calculated on full epoch length
with a resolution of 4 ms and frequency resolution of 1 Hz
approximately. Fast Fourier transform (FFT) with Hanning
tapering was used for decomposition. The ERSP spectrogram
post-0 ms was divided by the spectrogram before 0 ms for
normalization. It is to be noted that the onset of Figure 1E
screen is taken as 0 ms reference throughout the analysis. The
significance of ERSPs deviation from the baseline was assessed
using the bootstrap method (α = 0.05).

Statistical analysis was conducted using IBM SPSS Statistics
25 to estimate the statistical significance of the results. Statistical
significance of the difference of failure and success ERP peaks’
amplitude (named difference ERP onwards) for each of the
13 participants were tested against zero with one-sample t-test
(two-tailed). These individual difference ERP amplitudes were
computed by averaging each patients’ failure and success trials
separately and, then, extracting the amplitudes of the most
prominent peaks and then taking a difference of that. The t-test
null-hypothesis was that there is zero mean amplitude difference
in the ERPs of success and failure trials, whereas the alternative
hypothesis was non-zero mean amplitude difference. Previous
studies have suggested that the ErrP signals have the highest
activity around Cz and FCz electrodes (Chavarriaga and Millán,
2010; Spüler and Niethammer, 2015; Yazmir and Reiner, 2017).
Therefore, the analysis was carried out on the most prominent
peaks in the difference ERP at the Cz electrode location.

Shapiro–Wilk test (α = 0.05) was used to confirm the normal
distribution of the mean samples before the statistical analysis
(Shapiro and Wilk, 1965). The null-hypothesis of Shapiro–
Wilk assumes a normal-distribution while alternative hypothesis
denies that. Skewness and Kurtosis z-value were used as an
additional measure to confirm the normality of the mean data
samples (Cramer, 1998).

RESULTS

Strong evidence of differences in the EEG response of the success
and the failure trials has been found. The obtained ErrP has some
unique features pertaining to the novel task situation besides
some features similar to the previously reported ErrP signal.

The result of the grand average ERPs of the failure and success
trials and their difference at Cz location has been shown in
Figure 2A. Three-time windows (W1: 80–120 ms, W2: 120–
160 ms, and W3: 380–440 ms) were chosen for analysis based
on the most prominent peaks. Failure events ERP has a positive
component with a peak at 98 ms and an amplitude of−1.139 µV
and also a negative component with a peak at 131 ms and an

amplitude of −5.236 µV. In addition, a negative component
related to failure events has been observed with a peak at 414 ms
and an amplitude of −1.528 µV. Similarly, success events ERP
has a negative component with a peak at 102 ms with an
amplitude of −5.043 µV and also a positive component with
a peak at 137 ms with an amplitude of 0.714 µV. Likewise, a
positive component related to success events has been observed
with a peak at 400 ms and an amplitude of 2.55 µV. Figure 2A
also presents the results of the difference of ERPs of failure and
success events (difference ERP) in the three time-windows along
with its standard deviation. As can be seen in Figure 2A, in
the difference ERP, a positive peak appears at 100 ms with an
amplitude of 3.611 µV pursued by a negative peak at 135 ms with
an amplitude of −5.827 µV followed by a prominent negative
peak at 410 ms with an amplitude of −4.687 µV. The scalp
maps of the grand-average success and failure ERPs have been
showing a centro-parietal scalp distribution mainly as can be seen
in Figure 2B.

Figure 3 depicts individual waveforms of difference ERP.
What stands out in Figure 3 is the repeating pattern of the
individual difference ERPs. Results of only first six patients have
been shown to prevent over-burdening the figure, while we
got similar outcomes for each of the 13 patients, which can
also be deduced from the SD shape exhibited in Figure 2A.
Individual waveforms were based on all available epochs
for each patient.

Event-related spectral perturbations and ITC of success and
failure events have been depicted in Figure 4. The results
showed in all four Figures 4A–D are statistically significant
(α = 0.05); the insignificant areas are shown in the green color.
Failure events associated evoked power is significantly high in
the time-period 96–470 ms and 3–12 Hz, and ITC reaches up
to 0.44 in this period as shown in Figure 4B. Induced power
is significantly high in the time period 150–700 ms and 42–
50 Hz, 640–700 ms and 11–24 Hz, 15–34 Hz at various times as
shown in Figure 4A. Success events associated evoked power is
significantly high in the time-period 100–460 ms and 3–10 Hz,
20–170 ms and 10–21 Hz and ITC reaches up to 0.46 in this
period as shown in Figure 4D. Induced power is significantly
high in the time period 550–700 ms and 3–22 Hz, 30–650 ms
and 18–30 Hz, 34–38 Hz and 42–50 Hz at various times as shown
in Figure 4C.

Shapiro–Wilk test results show that the assumption of normal
distribution was not rejected for difference ERPs in all three-time
windows at α = 0.05 (see Table 2). In addition, skewness and
kurtosis z-value was within ± 1.96 for the three-time windows’
difference ERP peaks’ amplitudes that further strengthen the
assumption of normal distribution.

One-sample t-test (two-tailed) was applied to examine if the
amplitude of the difference ERP peak in the time window W1,
W2, and W3 (see Figure 2A) significantly different against zero
or not. The results of the statistical analysis are shown in Table 2.
In window W1, the difference ERP’s positive peak amplitude
is significantly higher than zero with M = 4.509, SD = 3.55,
t(12) = 4.580, p = ≤ 0.001. In window W2, the difference ERP’s
negative peak amplitude is significantly lower than zero with
M = −6.556, SD = 4.706, t(12) = − 5.023, p = ≤0.001. In
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FIGURE 2 | (A) The grand average ERPs of the failure events, success events, difference ERP along with its standard deviation at Cz electrode location. W1, W2,
and W3 represent three times windows selected for analysis based on the most prominent peaks. (B) Scalp distribution maps of the most prominent peaks.

window W3, the difference ERP’s negative peak amplitude again
significantly lower than zero with M = −6.406, SD = 7.242,
t(12) =−3.190, p = 0.008.

The literature on ErrP has highlighted several factors that
affect its amplitude, such as speed and accuracy of task execution
(Gehring et al., 1993, 2018). Thus, a step further, it has been
investigated if the amount of exercise executed can affect the
amplitude of failure events peaks in the three-time windows.
It is understood that the failure trials in which 4 s were given
to complete the exercise (named 4-s failure trials onwards), the
amount of exercise executed was higher before the onset of
‘Time’s up!’ screen as there was more time in comparison to the
failure trials in which 2 s were given to complete the exercise
(named 2-s failure trials onwards). Therefore, the 2-s failure
trials and the 4-s failure trials were separated and compared.
The grand-average ERPs with its SD as well as the individual
ERPs of 2- and 4-s failure trials at the Cz electrode location
have been shown in Figures 5A,B respectively. Results of only
first six patients have been shown to prevent over-burdening
the figure, while we got similar outcomes for each of the 13
patients. Paired-samples t-test has been performed to evaluate

the significance of the difference in the amplitudes of 2- and 4-
s trials in the three-time windows. Shapiro–Wilk test (α = 0.05)
was used to confirm the normal distribution of the mean samples
before the statistical analysis, and the results have been shown
in Table 3. Also, skewness and kurtosis z-value of the mean
samples was within ± 1.96 for the three-time windows except
for the 4-s failure trials skewness z-value in the window W2
which was −2.028. However, paired-samples t-test was used in
this case as well to check any significant difference. The results
of the statistical analysis are shown in Table 3. In window W1,
the 2-s trials M and SD are −0.502 and 6.980 respectively and
4-s trials M and SD are 2.166 and 7.280 respectively; however,
the difference is statistically insignificant with t(12) = −0.832,
p = 0.422. In window W2, the 2-s trials M and SD are −8.366
and 7.258 respectively and 4-s trials M and SD are −3.679 and
10.801 respectively; nevertheless, the difference is statistically
insignificant with t(12) = −1.161, p = 0.268. In window W3,
the 2-s trials M and SD are −6.020 and 8.020 respectively
and 4-s trials M and SD are −2.887 and 7.348 respectively;
however, again the difference is statistically insignificant with
t(12) =− 0.970, p = 0.351.

Frontiers in Neurorobotics | www.frontiersin.org 6 December 2019 | Volume 13 | Article 107

https://www.frontiersin.org/journals/neurorobotics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neurorobotics#articles


fnbot-13-00107 December 20, 2019 Time: 15:47 # 7

Kumar et al. ErrP Recorded During Post-stroke Rehabilitation

FIGURE 3 | Individual difference ERPs at the Cz electrode for six patients. Results of only first six patients have been shown to prevent over-burdening the figure,
while we got similar outcomes for each of the 13 patients, which can also be deduced from the SD shape exhibited in Figure 2A.

FIGURE 4 | Grand average ERPs’ Event-related spectral perturbations (ERSPs) and inter-trial coherence (ITC). All colors except green shows statistically significant
values at α = 0.05. (A,B) Depict ERSPs and ITC patterns for the failure events, respectively. (C,D) Depict ERSPs and ITC patterns for the success events respectively.

Single-trial EEG responses of patient 2 have been shown
in Figure 6. To assess the feasibility of detecting ErrP signals
in a single-trial, average ITC of the most prominent peaks of
the single-trial failure and success responses of patient 2 were
calculated, in the three-time windows W1, W2, and W3. For the
failure trials, the average ITC has been observed to be 0.3486, and
for the success responses, it has been observed to be 0.4187. To
make a comparison, Zhang et al. (2014) reported a maximum
ITC 0.36 in their ErrP study involving a monetary gambling
task and Yazmir and Reiner (2017) reported a maximum ITC
0.3 in their virtual throwing game ErrP study. It indicates
that the novel ErrP signal of this study can be detected in a
single-trial with good accuracy using state-of-the-art machine
learning methods.

DISCUSSION

The goal of this study was to check whether an error
related potential can be elicited following a failure trial in
a post-stroke rehabilitation movement against the success.
The obtained results of this study are promising. Overall,
it has been found that the ERP, associated with the failure
related events and the ERP associated with the success related
events, differ from each other significantly and the resulting
difference ERP resembles the previously reported ErrP signals
and has some unique features which are novel to this
new ErrP signal.

In the grand average difference ERP, first positive peak exhibits
at 100 ms post the ‘Time’s up!’ screen appeared. After that, a
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TABLE 2 | Shapiro–Wilk test p-value, mean, standard deviation, t-test statistics
(two-tailed) result of the difference in difference ERP’s peak amplitudes against
zero in the three time-windows.

Shapiro–Wilk t-Test statistics

Windows test p-value Mean (M) ± SD (against zero)

Window 1 0.073 4.509 ± 3.55 t(12) = 4.580, p = ≤ 0.001

Window 2 0.623 −6.556 ± 4.706 t(12) = −5.023, p = ≤0.001

Window 3 0.319 −6.406 ± 7.242 t(12) = −3.190, p = 0.008

negative peak occurred at 135 ms and finally, a broader negative
peak appeared at about 410 ms. These findings are consistent
with that of Ferrez and Del R. Millán (2008) who reported a
series of positive and negative peaks related to interaction ErrP
around 200 to 450 ms post a reference event in a pressing button
computer game. A comparison of previous studies has shown that
the ErrPs is elicited sooner in the tasks that demand participants
to respond quickly and accurately (Vocat et al., 2008; Chavarriaga
and Millán, 2010; Ladouceur et al., 2018; Omedes et al., 2018)
which is in accordance with the present results. Furthermore,
Omedes et al. (2018) also reported a N400 peak in the context
of observation of erroneous action in a 3D reaching task, which
is consistent with our studies 410 ms negative peak. Prior studies
(Olvet and Hajcak, 2008; Weinberg et al., 2015; Rosburg et al.,
2018) that have observed the difference ERPs (error/failure minus
correct/success trials) noted a negative peak followed by positive
peak post-reference event in error trials ERPs. Surprisingly, in
this study, reverse polarities have been observed in the failure
trial ERP, i.e., a positive peak followed by a negative peak which
could be unique to the novel task methodology opted in this
experiment. Interestingly, the difference ERP’s final negative peak
around 410 ms corroborates the earlier findings (Ferrez and Del
R. Millán, 2008; Chavarriaga and Millán, 2010; Omedes et al.,
2018). Although the final negative peak around 410 ms popularly,
known as N400 is believed to be linked with semantic mismatch
(Kutas and Federmeier, 2011), however, N400 existence was also

observed during erroneous actions when goal-oriented actions
were involved (Balconi and Vitaloni, 2014).

Event-related potentials of both success and failure trials
have three prominent peaks. The scalp distribution of the first
peak at 100 ms has fronto-central distribution whereas the
peaks at 135 and 410 ms have mainly centro-parietal scalp
distribution. This finding is consistent with that of Omedes
et al. (2018), who also observed fronto-central and centro-parietal
scalp distribution of ErrP peaks.

The success events induced power was significant in 3–
22, 18–30, 34–38, and 42–50 Hz frequency ranges at various
times. On the other hand, the failure events induced power
was significant in 11–24, 16–34, and 42–50 Hz at various
times. The alpha-band power induced following the success
events is in accords with the earlier observations of Carp and
Compton (2009), which showed that alpha-band power in the
range 8–14 Hz increase and then decrease following a correct
response in a six-choice Stroop task; the trend was majorly absent
in erroneous response which is consistent with our findings.
A possible explanation for this is that in the success response
patients completed the exercise before the onset of the ‘Time’s
up!’ screen. Therefore, the inter-trial resting interval may have
disengaged the patients, and notably, alpha power is linked
with the alertness (Carp and Compton, 2009). On the contrary,
following the failure response patients’ alertness may have been
maintained throughout that caused absence of the quadratic
pattern of the induced alpha power. Furthermore, following a
failure response, a periodic rebound has been observed in the
beta activity that may have been caused due to inhibition of
the ongoing motor activity — a trend which has been absent
following a success response. A similar activity was observed
by Koelewijn et al. (2008) following an erroneous execution
of a button-pressing task. It suggests that higher order metal-
functions are involved in the evaluation of motor activities even
after the execution has stopped.

No significant difference has been observed in the 2- and 4-s
failure trials. These findings support our methodology of a direct

FIGURE 5 | (A) The grand-average ERPs with its SD as well as individual ERPs of the 2-s failure trials. (B) The grand-average ERPs with its SD as well as individual
ERPs of the 4-s failure trials. Results of only the first six patients have been shown to prevent over-burdening the figure, while we got similar outcomes for each of the
13 patients.
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TABLE 3 | Shapiro–Wilk test p-value, mean, standard deviation, paired samples t-test statistics (two-tailed) results of the difference in 2-s failure events’ peak amplitudes
and 4-s failure events’ peak amplitudes in the three time-windows.

Windows Type of failure event Shapiro–Wilk test p-value Mean ± SD t-Test statistics (inter-)

Window 1 2-s trials 0.460 −0.502 ± 6.980 t(12) = − 0.832, p = 0.422

4-s trials 0.358 2.166 ± 7.280

Window 2 2-s trials 0.935 −8.366 ± 7.258 t(12) = −1.161, p = 0.268

4-s trials 0.113 −3.679 ± 10.801

Window 3 2-s trials 0.281 −6.020 ± 8.020 t(12) = −0.970, p = 0.351

4-s trials 0.076 −2.887 ± 7.348

FIGURE 6 | Single-trial EEG responses of patient 2. (A) Failure trials, (B) Success trials. In the three-time windows W1, W2 and W3, the average ITC of the failure
trials has been observed to be 0.3486, and for the success trials, it has been observed to be 0.4187.

comparison of 2- and 4-s failure trials taken collectively with the
success trials can be made.

Implications for BCI
In the form of a new task situation that elicits ErrP, the
results of this study have demonstrated a clear difference
in the failure responses from the success responses. We
expect that the results from this study can be transferred to
a assist-as-needed (AAN) robot-therapy based rehabilitation
program and may be used to improve the current state-of-
the-art methods in recognizing the point when the patient
has failed in performing the rehabilitation exercise and
needed assistance.

The insights gained from this study will also assist
developing an adaptive algorithm for AAN methods that
can increase/decrease the assistance level on detecting the
failure/success related EEG response, respectively. This may
make the rehabilitation program continually challenging that
may result in an increasingly engaged rehabilitation program
that ultimately motivates stroke patients to train or practice
longer (Wang et al., 2017).

As the ErrP response associated with the success and the
failure events of this study do not demand any mental workload
on the participants, therefore, it is expected that the findings of

this study can be integrated with existing AAN modalities that
may improve the efficacy of the overall rehabilitation program.

Study Limitations and Future Work
One can argue that the ErrP signals observed in this study are
possibly due to the surprise of seeing the finished time-period
instead of the failure on executing the rehabilitation exercise.
However, it is notable that a surprise forms an integral part of
the action-monitoring system of the human brain (Hayden et al.,
2011). The experience of error in previous ErrP studies’ tasks
such as in gesture controlled robot (Kim et al., 2017), virtual
3D reaching task (Omedes et al., 2018), monitoring cursor on a
screen (Chavarriaga and Millán, 2010) had come with a surprise
as well. A possible method to reduce this confounding factor
is to run the experiment in an asynchronous manner in which
the patient will have autonomy of performing rehabilitation
exercises, which identifies an area of further research.

Another limitation of the study is the diversity in the
participants in terms of days since they suffered a stroke and
Brunnstrom stage, which can be possible sources of variability
in the EEG signal. The effects of patients’ age, Brunnstrom
stage, recovery days, and interest on the amplitude of the ErrP
signal elicited in our novel task condition can be studied in
the future work.
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Another natural progression of this study is to work on
detecting the failure and success trials in a single-trial, including
against resting periods, so that the ErrP signal can be used in
assist-as-needed robot-therapy in real-time. This is an important
area for future research.

In EEG studies, reference selection during recording and
analysis has always been a source of bias, which can potentially
affect the shape of the EEG signals (Murray et al., 2008). Several
studies advocate the use of bipolar electrodes to reduce the noise
level instead of unipolar references when neural signals only from
the cortical sources are of interest (Yao et al., 2019). Several
other studies suggest the use of average reference and reference
electrode standardization technique (REST) (Yao et al., 2019).
Multiple reference techniques should be employed, and their
results should be compared to get a reference-bias-free estimate
of EEG responses.

CONCLUSION

In this paper, we have reported the existence of the error-related
potential signal in a new task condition that is when a participant
is unable to complete a physical movement in a given time.
We conducted experiments on the stroke patients that involved
performing a physical rehabilitation exercise. All patients had
various levels of limb function impairment. We applied MATLAB
and EEGLAB based signal processing techniques to analyze the
EEG, EOG, and sEMG data. We used parametric statistical
methods to evaluate the statistical significance of the findings.
None of the previously reported task conditions that elicit
ErrP involve continuous physical exercise movements. To the
best of authors’ knowledge, for the first time, an ErrP has
been observed while performing rehabilitation exercise. The
research has also shown that the reported ErrP has reverse
polarity characteristics for the first two peaks of failure trial ERP
which is unique to this new task condition ErrP and a final
negative peak which is consistent with the results reported in the
literature. In summary, the findings reported here shed light on
a new type of task that evokes ErrP using which failure events

from success events while performing a physical exercise can
be distinguished.
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