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Robotic assisted minimally invasive surgery (RAMIS) systems present many advantages

to the surgeon and patient over open and standard laparoscopic surgery. However,

haptic feedback, which is crucial for the success of many surgical procedures,

is still an open challenge in RAMIS. Understanding the way that haptic feedback

affects performance and learning can be useful in the development of haptic

feedback algorithms and teleoperation control systems. In this study, we examined the

performance and learning of inexperienced participants under different haptic feedback

conditions in a task of surgical needle driving via a soft homogeneous deformable

object—an artificial tissue. We designed an experimental setup to characterize their

movement trajectories and the forces that they applied on the artificial tissue. Participants

first performed the task in an open condition, with a standard surgical needle holder,

followed by teleoperation in one of three feedback conditions: (1) no haptic feedback, (2)

haptic feedback based on position exchange, and (3) haptic feedback based on direct

recording from a force sensor, and then again with the open needle holder. To quantify the

effect of different force feedback conditions on the quality of needle driving, we developed

novel metrics that assess the kinematics of needle driving and the tissue interaction

forces, and we combined our novel metrics with classical metrics. We analyzed the

final teleoperated performance in each condition, the improvement during teleoperation,

and the aftereffect of teleoperation on the performance when using the open needle

driver. We found that there is no significant difference in the final performance and in

the aftereffect between the 3 conditions. Only the two conditions with force feedback

presented statistically significant improvement during teleoperation in several of the

metrics, but when we compared directly between the improvements in the three different

feedback conditions none of the effects reached statistical significance. We discuss

possible explanations for the relative similarity in performance. We conclude that we

developed several new metrics for the quality of surgical needle driving, but even with

these detailed metrics, the advantage of state of the art force feedback methods to tasks

that require interaction with homogeneous soft tissue is questionable.
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1. INTRODUCTION

Robot Assisted Minimally Invasive Surgery (RAMIS) refers
to minimally invasive surgical procedure aided by robots. In
RAMIS, the surgeons use a robotic manipulator to operate
robotic instruments inside the patient’s body. The surgical
instrument (or end effector, e.g. gripper, scissors) follows
the movement of the surgeon’s hands, usually with different
motion scaling, filtering, and other possible manipulations or
restrictions. Compared to minimally invasive surgery, RAMIS
has several advantages, including 7 degrees-of-freedom (DOF),
3D high definition visual system, higher precision and accuracy,
and more intuitive operation (e.g., preventing the Fulcrum
effect). As a result, RAMIS has the potential to produce a better
surgical outcome (Garcia-Ruiz, 1998; Hagen et al., 2008; Maeso
et al., 2010; Szold et al., 2015). In 2017, the number of surgical
procedures using the widespread da-Vinci RAMIS system was
∼877, 000 (Inc., 2017), and this number has been consistently
growing over the years (Freschi et al., 2013; Enayati et al., 2016;
Peters et al., 2018).

In RAMIS, surgeons that were used to operate with their
hands in full contact with the patient interact with robotic
interfaces that mediate between them and the patient. In this
process, surgeons have lost the ability to use the crucial sense
of touch, or haptic sense. The haptic sense is used in many
surgical procedures for detecting lesions, navigate inside the
body, and most importantly, to control the amount of force
needed in each of the 7 DOF available in current teleoperation
systems (De et al., 2007; Trejos et al., 2009). The haptic sense
has an important role in motor control and in many surgical
procedures. Currently, most commercial RAMIS systems do not
offer any haptic feedback to the surgeon, although the systems
are physically able to provide kinesthetic haptic feedback using
embedded motors. New RAMIS systems report to have the
ability to provide haptic feedback (Senhance system, TransAstrix;
REVO-I Robotic Surgical System, Meere Company) (Culbertson
et al., 2018; Rao, 2018).

As a consequence of the lack of haptic feedback, surgeons
have to estimate the forces based only on visual information
(e.g., tissue deformation, color changes of tissue) and prior
knowledge (e.g., the stiffness and deformability of the specific
tissue). This estimation is worsened when the surgeon’s field
of view is obstructed. Prior literature stressed that estimating
forces and torques using other modalities can cause an inaccurate
estimation, and as a consequence surgeons can apply excessive
forces on the tissue ending in unwanted injuries. This drawback is
especially important when considering non-expert surgeons and
trainees that are in the process of learning how to control and
estimate the forces correctly, and the lack of feedback is making
the use of the devices less intuitive (Okamura, 2009; Johnson
et al., 2014; Enayati et al., 2016).

The reasons for the lack of haptic feedback are mainly due to
stability issues in closed loop teleoperation with force feedback
and due to challenges in force estimation. Instability can lead
to unwanted oscillations and difficulty of controlling the end
effector (Enayati et al., 2016). Studies on haptic interfaces and

stability havemanaged to give haptic feedback and ensure a stable
system, but at the expense of the transparency, which is ameasure
of the fidelity of the teleoperation system (Lawrence, 1993; Ryu
et al., 2004; Nisky et al., 2013; Enayati et al., 2016). Thus, the way
the forces are rendered to the surgeon is another challenge, and
understanding the effect of different conditions of force feedback
on the surgeon (i.e., the movement of the operator) is a necessary
step for optimizing force feedback in RAMIS.

A second reason for the lack of haptic feedback is the
difficulty to estimate the forces that are applied at the end
effector. Several haptic feedback algorithms were suggested to
solve the challenge of force estimation. For example, position
exchange is an algorithm that estimates the forces based on
the error between the desired position of the robot and the
actual (current) position of the robot (Siciliano and Khatib,
2016). Other studies suggested more advanced haptic feedback
estimation algorithms for RAMIS (Anooshahpour et al., 2014;
Dalvand et al., 2014; Li and Hannaford, 2017; Rivero et al., 2017),
as well as advanced algorithms for learning the dynamics of
robots that can be modified to cable-driven robots (Rubio, 2012;
García-Sánchez et al., 2018; He and Dong, 2018; Rubio et al.,
2018; Yen et al., 2018). Each one of the force feedback algorithms
has a trade-off between system stability and transparency along
with other limitations.

The benefit of haptic feedback to surgery is not yet fully
understood (Okamura and Verner, 2009; Gibo et al., 2014; Yang
et al., 2015; Talasaz et al., 2017). In a meta-analysis on the effect
of force feedback, Weber and Schneider (2014) found that haptic
feedback reduces the amount of force applied, but the reduction
is smaller when depth perception is available. Another meta-
analysis byWeber and Eichberger (2015) showed that the effect of
force feedback is task-dependent; they found that when surgical
tasks were given, the effect of force feedback was bigger, resulting
in lower applied forces. The results in studies that directly
compared task performance between haptic feedback condition
to no haptic feedback condition were inconclusive. Mahvash
et al. (2008) studied the effect of visual feedback and direct
force feedback (measured by a force sensor located at the remote
site) on the performance of a palpation task. They report mixed
answers to the question of whether force feedback yields better
performance. In a follow-up experiment, Gwilliam et al. (2009)
showed that the accuracy of experienced surgeons was higher
when they received haptic feedback compared to visual force
feedback or no feedback. Santos-Carreras et al. (2010) compared
participants’ performance in needle driving in virtual reality for
three different force feedback conditions: visual feedback (i.e.,
without haptic cues), 3 DOF force feedback and 6 DOF force
feedback (forces and torques). It is important to note that the
visual system in the experiment was a 2D screen (i.e., not 3D).
Forces were rendered to the users by a set of equations modeling
the forces in the task. In the experiment, participants performed
the task using a surgical needle holder that was attached to a
robotic interface. They tested three metrics—completion time,
exit point error and maximum penetration depth. They show
that there is a significant difference between force feedback
conditions and visual feedback for exit point error andmaximum
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penetration depth, but they did not find any benefits when adding
torque feedback.

In addition to metrics that evaluate task performance, it
is important to evaluate the hand kinematics of the user and
characterize the learning process of users. When manipulating
the tool in a teleoperation system, the kinematics are different
compared to freehand movements—even when looking on
simple movements such as reaching to a target (Nisky et al.,
2014b), or on a more complex movement such as needle driving
(Nisky et al., 2015). In a needle driving task, participants
presented slower learning in teleoperation compared to needle
driving that was preformed with a needle holder as in
open surgery. When learning to use a teleoperation system,
participants presented a learning curve over subsequent trials
in path length, completion time, and other kinematic and
dynamic metrics (Narazaki et al., 2006; Nisky et al., 2014b).
Metrics that quantify the human movement or performance
are also used to differentiate between novices and experts
surgeons (Hofstad et al., 2013; Nisky et al., 2015; Sharon
et al., 2017) or to evaluate the effect of training on performing
surgical tasks (Judkins et al., 2008). Classical metrics, such
as task completion time and path length were measured to
assess the performance of participants during surgical tasks,
and the learning process of surgeons with various levels
of expertise (Smith et al., 2001; Nisky et al., 2015). In
another study, force and torque metrics were suggested to
discriminate between novice and expert surgeons (Richards et al.,
2000).

In addition to classical metrics of movement and force
variables, it is possible to definemetrics that are based on research
of the motor system. The motor system is complex and the
different levels of movement execution are subjects of numerous
studies (Kandel et al., 2000; Flash et al., 2013). To execute even
the simplest movement our motor system is engaged in a series
of tasks that end in the desired movement. Due to redundancy
at many levels of the system, there are many ways the motor
system can perform the same task. As a result, modeling the
motor system and its movements is a non-trivial task (Franklin
and Wolpert, 2011; Jarc and Nisky, 2015, 2020). One prominent
kinematic law of the human movement is the two-thirds power
law for planar trajectories and its generalization to 3 dimensional
movements, known as the one-sixth power law. The two-thirds
power law describes the relation between movement’s curvature
and speed, and the one-sixth power law adds dependency on
torsion. Several studies have shown that the law applies for simple
and complex movements (Pollick et al., 2009; Flash et al., 2013).
Sharon and Nisky (2018) showed that surgeon expertise and
the use of teleoperation effects the parameters of the one-sixth
power law. Another suggested principle in human movement
is the minimum jerk. Jerk is the 3rd derivative of the position,
and studies showed that human movement is optimized such
that its jerk will be minimal (Flash et al., 2013). Jerk is used
to measure to the smoothness of the movement: lower jerk is
smother movement. Several ways were suggested to quantify the
smoothness of the human movement (Hogan and Sternad, 2009;
Balasubramanian et al., 2012; Estrada et al., 2016; Pandey et al.,
2017).

In order to study how haptic feedback affects the motor
performance in a needle driving task and specifically how it
affects the learning of the task, we quantified the performance
as well as the different aspects of the movements using classic
and novel metrics. We developed metrics for evaluation of the
motor system performance in the needle driving task. Using
the metrics and trial by trial experiment with different force
feedback conditions, we assessed the effect of the different haptic
conditions on learning and performance.

2. MATERIALS AND METHODS

2.1. Needle Driving Task
We selected a surgical needle driving task for this experiment,
and designed an experimental setup to characterize participants’
movements and applied forces. Needle driving encompasses a
complex movement (movement in 6 DOF, divided into several
subtasks) combined with interaction with soft tissue and it is a
common procedure in surgeries. Tissue interaction forces can
add important information to the operator when interacting with
a soft object. The goal of needle driving is driving a surgical needle
between two points through tissue using a surgical tool. The
participants were requested to drive the needle while following
the arc of the needle with the tooltip, maintaining tool tip
velocity direction perpendicular to the needle curve. We divided
the needle driving task into six subtasks (Figure 1), (a) needle
positioning, (b) needle insertion, (c) needle correction (optional),
(d) repositioning, and (e) needle pulling. We refer to needle
correction as needle insertion after repositioning the tool on the
needle; therefore, this subtask is optional, and the participants
were instructed to avoid corrections as much as possible.

2.2. Experiment Setup
2.2.1. da-Vinci Research Kit—Hardware and Control
The experimental apparatus was the da-Vinci Research Kit
(dVRK) (Kazanzides et al., 2014). The dVRK is based on
first generation da-Vinci system hardware (Intuitive Surgical
Inc.), and has open hardware controllers and open source
code (Kazanzides et al., 2014; Chen et al., 2017). The dVRK
teleoperation setup (Figure 2) included two Master Tool
Manipulators (MTM), two Patient Side Manipulators (PSM),
4 controllers (one for each manipulator), foot pedals tray and
high resolution stereo viewer. During teleoperation, the patient
side manipulators (PSMs) follow the movement of the master
manipulators (MTMs) after scaling and proper changes to
orientation. Each MTM is capable of providing 6 DOF haptic
feedback. In this experiment, we used 2 large needle drivers
as patient side instruments. The 3D vision system consists of
2 HD cameras (FLIR Blackfly S cameras, BFS-U3-32S4C, 3.2
MP; Edmund Optics Lenses, 16 mm, f/1.8 Ci Series Fixed
Focal Length Lens), and 2 HD flat screens (frame rate of 35
Hz, resolution of 1080 × 810). The dVRK controllers were
connected to Ubuntu (UNIX) OS computer with an Intel Xeon
E5-2630 v3 2.40 GHz processor. The vision systemwas connected
to Ubuntu OS computer with Intel Core i7-7700K 4.2 GHz
processor and NVIDIA Quadro P2000 5 GB graphics card.
The communication between the two computers was done over
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FIGURE 1 | Needle driving task. We divided the needle driving task into 8 subtasks (A–H). On each trial, participants (A) grasped a needle and positioned it above the

starting point, (B) transported the needle to the insertion point and positioned it, and (C) inserted the needle into the tissue (1st insertion). (D) If needed, participants

repositioned the tool on the needle and continued in insertion (2nd insertion). Then they (E) repositioned the tool on the needle for extraction, (F) grasped the needle

for extraction, (G) extracted the needle, and (H) positioned the needle above the finish point.

the university’s local area network (LAN) and ROS multiple
machines configuration. The maximal latency that was measured
using this communication was 0.5 ms.

The control mechanism of the dVRK teleoperation is depicted
in Figure 3, where x and ẋ denotes the end-effector’s Cartesian
space position and velocity, respectively, and X denotes a
vector of x and ẋ. q and q̇ denotes the joints’ position and
velocity, respectively. M, P, and u denote MTM, PSM and user,
respectively. “des” and “cur” denotes desired and current. R, T,
S, and J denotes rotation matrix, transformation matrix, scaling
and Jacobian, respectively. Forward and inverse kinematics are
denoted by Fwd and Inv, respectively. f and τ denotes Cartesian
forces and motor torques, respectively. The user moves the
MTMs and receives 3DOF haptic feedback. The patient side
(Figure 3B) follows the master side (Figure 3A) with proper
scaling and transformation. The scaling STele = 0.4 was chosen
such that the user reaches the entire experimental workspace. The
PSM control is depicted in Figure 3D. The PSM interacts with the
environment (i.e., needle, tissue).

When switch 1 is closed, the user receives position exchange
(PE) haptic feedback. In PE haptic feedback, the PD controller
(Figure 3E) receives desired and current position and velocities,
such that the error between them is used to calculate the force
feedback. The KP and KD for the PD PE controller were tuned
manually to roughly match the output forces to the forces
recorded by the Force/Torque (F/T) sensor. The equation for the
PD PE controller is:

fMp = KD(xPdes − xPcur )+ KP(ẋPdes − ẋPdes ) (1)

where xPdes and xPcur are the desired (based on the position of the
MTM) and current positions of the PSM, respectively, ẋPdes and
ẋPdes are the desired and current velocities of the PSM, andKP and

KD are the positional and derivative gains of the PD controller.

The values are KP = 1000
kg

s2
and KD = 30

kg
s .

When switch 2 is closed, the user receives direct feedback (DF)
haptic feedback. The equation for the DF haptic feedback is:

fDF = GDF · fFS, (2)

where, fFS is the force measured by the force sensor, and GDF is
the gain of the force. The DF feedback is sampled by the force
sensor at 500 Hz and is transmitted to the operator directly with
a gain of GDF = 0.7. We chose the 0.7 force scaling empirically as
the largest gain in which participants were able to easily stabilize
the system. Maximum latency in DF haptic feedback was ∼20
ms. We measured the latency experimentally by using left PSM
to invoke the F/T sensor direct feedback to the right PSM. This
way we could find the difference between the positions of both
PSMs and measure the maximum latency. In both force feedback
conditions, the forces were rendered to the user at 500 Hz. When
both switches are open, the user did not receive feedback (NF).
Both switches were never closed together. In addition, dVRK
gravity compensation (GC) was enabled (Kazanzides et al., 2014;
Chen et al., 2017).

2.2.2. Open and Teleoperation Setup
The experimental setup included two parts: (1) open needle
driving, as in open surgery, and (2) teleoperated needle driving
with the dVRK. The open needle driving setup (Figure 4)
consisted of magnetic tracking sensors (TrakStar, Ascension
Technologies, NDI), a titanium needle holder (Fine Needle
holder, 16 cm, Serrated, Titanium,World Precision Instruments),
and a single HD camera (LifeCam Studio 1080p FHD WebCam,
Microsoft). We instrumented the surgical needle holder with
two magnetic 6DOF sensors. The sensors were mounted on
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FIGURE 2 | Experimental setup for teleoperation. (A) The participant uses the two dVRK Master Tool Manipulators (MTM) to control the patient side tools. 2 HD

cameras are used to acquire the visual information that is presented to the user. (B) Master side: the participant manipulate left MTM and right MTM. (C) Patient side:

needle driving is performed on the artificial tissue using the right tool of the patient-side manipulator (PSM). (D) A side view of the artificial tissue fixture. Forces and

torques were recorded by the F/T sensor that is embedded in the fixture.

the needle holder using custom made 3D printed fixtures that
attached the sensors to the two rods of the needle holder. We
calculated the tooltip position and orientation using the two
magnetic sensors’ position and orientation. The teleoperated
needle driving setup (Figure 2) included the dVRK, 3D HD
cameras and two large needle driver tools (Intuitive Surgical).
The foot pedal had to be pressed to enable teleoperation.

For both setups (open and teleoperated), we designed a 3D-
printed custom fixture for the artificial tissue. The artificial tissue
was made from a silicone molded homogenous piece (EcoFlex
00-30 mixed with 10% Silicone Thinner, Smooth-On inc.). The
tissue was molded around 2 wooden sticks that were used to
fix the tissue to the 3D printed fixture. The fixture and tissue
were mounted on an acrylic plate that was fixed to a force/torque
sensor (Nano 43 F/T sensor, ATI Industrial Automation) that
measured tissue interaction forces and torques. The sensor was
mounted beneath the tissue (see Figure 2D), and its vertical axis
(Z) was normal to the face of the tissue. The 3D-printed fixture
could be rotated in 4 different right angles, to enable rotation of
the tissue between the experimental blocks to allow for working
on a fresh portion of the artificial tissue in each block. We used

surgical needles for general surgery (GS-21, Covidien), 10 needles
were placed on the fixture in each block for participants to use.

2.3. Experimental Procedures
Thirty participants (N = 30) took part in the experiment after
signing an informed consent form. The protocol and the form
were approved by the Human Subject Research Committee of
Ben Gurion University of the Negev, Beer-Sheva, Israel. All
participants were right-handed, and they used the right needle
driver to perform the needle driving, and the left needle driver
(or their left hand in the open setup) to adjust the needle
as needed.

Participants were asked to perform 120 trials of needle driving
with the open and the teleoperated setups. The experimental
protocol is depicted in Figure 5. The protocol was divided into
12 blocks, and each block included 10 trials. After each block,
the artificial tissue was rotated such that a fresh entrance and exit
point were presented to the participant to prevent wearing of the
silicone tissue. The needle driving desired path was not changed,
the tissue fixture was rotated by 90 degrees in the horizontal
plane. All the participants first performed 40 trials of open needle
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FIGURE 3 | dVRK teleoperation control. (A) Master-side, (B) patient side, and (C) haptic feedback conditions: when switch 1 is closed, the user receives position

exchange (PE) haptic feedback. When switch 2 is closed, the user receives direct feedback (DF) haptic feedback. When both switches are open, the user does not

receive feedback (NF). In addition, dVRK gravity compensation (GC) is enabled. (D) Patient side dVRK controller (presented in B) (E) PD PE controller for the PE haptic

feedback. Complete description is given in section 2.2.1.

FIGURE 4 | Experimental setup for open needle driving. (A) The participant performs open needle driving using a titanium needle holder. (B) Magnetic transmitter

records 6 DOF pose of the 2 magnetic sensors. (C) Artificial tissue, fixture, and F/T sensor setup (identical to the teleoperated conditions).
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FIGURE 5 | Experimental protocol. Participants performed 120 trials of needle

driving that were divided into 12 blocks. In our statistical analysis, we focused

on 3 contrasts: learning, aftereffect and final performance. Learning: the effect

of practice in teleoperation—the difference in performance between early and

late teleoperation. Aftereffect: the effect of teleoperation on open needle

driving—difference in performance between just before and just after

teleoperation. Final performance: the performance at the end of teleoperation

compared to the participant’s baseline—the difference between the late

teleoperation performance and the performance just before teleoperation.

driving. We used the performance of each participant at the end
of this baseline open part to compare with their performance
at the subsequent parts of the experiment. In the second part
of the experiment, all the participants performed 60 trials of
needle driving task using the dVRK. Each group received one
of three feedback conditions: (1) no haptic feedback (NF, N =

10), (2) direct sensing from a force sensor that was mounted
under the tissue (DF, N = 10), and (3) position exchange based
force feedback (PE, N = 10). After completing the teleoperation
part, all the participants performed additional 20 trials using the
open needle driving setup. This transition back to performing
open needle driving after teleoperation represents a scenario that
could happen in real life surgeries in case that the surgeon decides
that the procedure cannot be safely completed with robotic
assistance, and is used to assess the aftereffect of teleoperation
with different feedback conditions on the performance in open
needle driving.

Prior to the first part of open needle driving, and prior to the
second part of teleoperation needle driving, participants viewed
a video with instructions on how to perform the task correctly
using the needle holder and using teleoperation, respectively
(as in Nisky et al., 2015). Participants were asked to perform
the needle insertion in one throw, and if needed, they could
readjust their gripping of the needle and continue the insertion
along the same curve of the needle. In addition, they were
asked to work as quickly and as accurately as possible. Then,
participants were asked to do a short practice. Before the open
needle driving, participants practiced the use of the needle holder
together with the surgical needle (without interaction with the
tissue). Before the teleoperation part, participants were asked
to adjust the system to their comfort (adjust chair and vision
system’s height and 3D vision of the environment was validated).
Afterward, participants practiced several teleoperation exercises,
to familiarize themselves with the dynamics of the robot. They
were asked to: (1) move in a circle around the tissue and upwards,
(2) reach in all directions—forwards, backward and to the sides,
(3) touch the tissue and fixture using the teleoperation tool, (4)

pick up the needle and release, and (5) pantomime the needle
driving movements without touching the tissue.

After completing this practice, they began the test trials. After
the first three trials of the open needle driving and first three
trials in teleoperation needle driving part, participants received
feedback on correct and incorrect performance; Emphasis was
given on simultaneous wrist rotation during needle insertion and
extraction, correct needle gripping, correct use of needle holder,
and insert and exit of the needle at desired points. After each
block, the tissue fixture was rotated, and participants received a
short break.

2.4. Data Analysis
2.4.1. Sampling and Preprocessing
In the open needle driving setup, we recorded the data at 120
Hz, and in the teleoperation setup we recorded at 500 Hz.
We down-sampled and interpolated all the signals to 100 Hz.
Both position and force data were interpolated using the shape-
preserving piecewise cubic interpolation. Orientation data was
interpolated using the spherical linear quaternion interpolation
method (Slerp).We filtered tooltip position data with a 2nd order
Butterworth low pass filter with cut-off frequency of Fc = 10 Hz
using Matlab filtfilt() function, resulting in zero phase filtering
with a cut-off frequency of Fc = 8 Hz. Velocity, acceleration, and
jerk were calculated using numerical differentiation. After each
differentiation, we filtered the signal using the same filter that was
used for the tooltip signal.

2.4.2. Segmentation
We defined trial start as the first interaction of the needle with
the tissue, and the end of the trial as the final interaction with
the tissue. We automatically segmented trial start and end based
on force and tooltip position samples—the first and last samples
for which the force was higher than the noise threshold (th =

0.06[N]), and the tooltip position was inside the artificial tissue
contour (i.e., there was interaction with the tissue, not with the
fixture). We manually validated this trial segmentation based on
force profiles and recorded trial video, and corrected erroneous
segmentation due to accidental tissue interaction. Corrected
segmentation samples were selected from a pool of samples that
was marked by the automatic segmentation algorithm as possible
segmentation samples.

We also automatically segmented each trial into trial subtasks
(Figure 1). The automatic segmentation algorithm was designed
based on task definition and based on the unique characteristics
of the setup. When the gripper was closed and tissue interaction
forces were above the noise threshold, the data point was
classified as belonging to one of the needle driving segments
(insertion, correction, or extraction). Insertion was defined as
the first sequence of data points that belonged to the needle
driving segments. Correction segments were classified if tooltip
position was closer to needle entrance point rather than exit
point. Extraction segments were defined as last sequence of data
points belonging to the needle driving segment, or classified
when tooltip position was closer to needle exit point rather than
entrance point.
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2.4.3. Metrics of Performance
We quantified participants performance using four classes of
metrics: (I) task performance, (II) forces, (III) kinematics, and
(IV) motor control grounded metrics. In the following section,
we will review all the metrics that we used, including classical
metrics and novel metrics that we developed in this study.

We used two metrics to quantify task performance. Task
completion time was calculated as the cumulative time in which
participants preformed the task:

Completion Time= tend − tstart , (3)

where, tstart and tend are the start and end time of the
task, respectively. Exit point error metric was measured as
the Euclidean distance between desired exit point and actual
exit point:

Exit Point Error= ||xdesired − xactual||, (4)

where xdesired and xactual are vectors of the x, y data point in the
plane of the tissue surface. The data of the actual and desired exit
point was extracted using the images recorded by the cameras.
Since the cameras and tissue in the teleoperation setup are
fixed and identical between all trials, we could use the known
dimension of the tissue to calculate the distance between them.
Because the camera in the open needle driving setup was not
fixed, we could not use the images to extract the exit point error,
thus the exit point error metric wasmeasured in the teleoperation
needle driving setup only.

We used five metrics to quantify the forces that the
participants applied on the tissue. We calculated the total
normalized force as:

Total Normalized Force=
1

die

N−1
∑

n=1

|f (n)| · 1t(n), (5)

where |f | denotes the total force, 1t(n) = t(n) − t(n − 1) is the
time difference between consecutive samples, N is the number
of samples, and die is the Euclidean distance between actual
entrance and exit points. Since we used the Euclidean distance
that was extracted only from the camera in the teleoperation
setup, this metric is calculated only in the teleoperation setup.
The metric quantifies the total forces that participants applied on
the tissue as an indication of damage to the tissue. The rationale is
that some amount of force is needed for the needle driving itself,
but if there are substantial forces that were applied in incorrect
directions the total cumulative forces will be higher. However,
if the participants traveled a longer path inside the tissue due
to inaccurate performance of the needle driving, larger forces
will accumulate as well. Therefore, we normalized the cumulative
forces by the distance traveled through the tissue.

Additional metric that quantified forces is the maximum force
applied on the tissue:

Max Force= max (|f |), (6)

where |f | denotes the tissue interaction forces. The maximum
torque around Z axis was calculated as:

Max TorqueZ axis = max (τz), (7)

where τz denotes the torque around the vertical axis. This
metric ideally should be zero, since the optimal needle driving
movement is planar, and the needle should not rotate around the
normal to the tissue direction.

The force consistency of consecutive movements was
calculated as the sum of squared Euclidean cumulative distance
between all force profiles to their mean profile:

Force Consistency=
1

Nt

Nt
∑

i=1

N−1
∑

n=0

(|fi(n)− fmean(n)|2)
2, (8)

where f is the 3DOF tissue interaction forces, i denotes force
profile index, and N is the number of samples within a single
trajectory, and Nt = 5 is the number of trajectories. Prior to the
calculation of this metric we aligned the force trajectories using
Dynamic Time Warping (DTW) to find the mean trajectory and
to allow for calculating the distance between two trajectories.

We used five metrics to quantify movement kinematics to
assess movement efficiency and consistency. We calculated the
path length of the movement as:

Path Length=

N−1
∑

i=1

|xi+1 − xi|2, (9)

where N is the number of samples. This is a classical metric
(Smith et al., 2001; Narazaki et al., 2006; Hofstad et al., 2013;
Nisky et al., 2014b; Nisky et al., 2015), and lower values imply
higher efficiency of the movement.

We calculated three metrics that quantify how close the
participants were to performing the needle driving according to
the instructions. For each trajectory, we fitted a circle that ideally
should be with an identical diameter to that of the needle, and
any deviation of the tip of the needle driver from that circle
results in a movement that does not push the needle along its
arc. We calculated the Circle deviation as the integrated distance
of the projected path from the best fitted circle, normalized by the
length of the projection of the path on the curve of the circle (see
ilustration in Figure 6).

Circle Deviation=
1

2arc

N−1
∑

n=1

s2(n) · 1θ(n), (10)

where, s is the Euclidean distance between the fitted circle and the
path projected on the fitted plane, 1θ(n) = θ(n) − θ(n − 1) is
the angle difference between consecutive samples of the tool tip
on the arc of the fitted circle, N is the number of samples, and
2arc = rneedle1θarc is the total arc path in meters, where 1θarc is
the difference between the angle of the tool tip at the beginning
of the movement to the angle at the end of the movement on the
arc of the fitted circle.
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The Plane deviation quantifies the cumulative deviation from
the movement plane as the integrated distance of the trajectory
from the plane that is fitted to the movement, normalized by
the length of the path (see ilustration in Figure 6). We fitted the
plane to the hand path using Matlab fitlm() function, we used the
vertical axis (z axis) as the dependent variable, and the horizontal
axes (x, y) as the independent variables.

Plane Deviation=
1

PL

N−1
∑

n=1

r2(n) · 1x(n), (11)

where, r is the Euclidean distance between the fitted plane and the
trajectory,1x(n) = |x(n)−x(n− 1)|2 is the path length between
consecutive samples of the tool tip, N is the number of samples,
and PL is the total path length in meters.

The normalized angular path (Equation 12) quantifies wrist
rotation during needle driving (Sharon et al., 2017).

Normalized Angular Path=
1

PL

N−1
∑

i=1

1θi,i+1, (12)

where, PL is the path length, 1θi,i+1 is the angular rotation
between two consecutive samples, and N is the number of
samples. This metric was suggested in Sharon et al. (2017), where
higher normalized angular path was associated with expertise and
with learning of the needle driving with repeated performance of
the task.

The trajectory consistency (Equation 13) of consecutive
movements was calculated as the sum of squared Euclidean
cumulative distances between all trajectory profiles to their mean
profile. We aligned trajectory profiles using Dynamic Time
Warping (DTW) (computed by Matlab dtw() function with the
squared metric) to find the mean trajectory and to calculate the
distance between each pair of trajectories.

Trajectory Consistency=
1

Nt

Nt
∑

i=1

N−1
∑

n=0

(|xi(n)− xmean(n)|2)
2,

(13)
where, x is the 3 DOF position, i denotes trajectory index, and N
is the number of samples within a single trajectory, and Nt = 5 is
the number of trajectories.

We used motor control grounded metrics to quantify to
what extent the movements of the participants satisfy known
laws in human motor control that were proposed for simpler
movements. We focused on the speed-curvature-torsion power
law (Pollick et al., 2009; Sharon and Nisky, 2018) and the
minimum jerk (Hogan and Sternad, 2009). The speed-curvature-
torsion power law is defined as:

v = ακβ |τ |γ , (14)

where v is the speed, α is the velocity gain factor, κ is the
curvature and τ is the torsion. β and γ are the power constants,
and in scribbling movements they were proposed to be equal to
−1/3 and −1/6, respectively (Pollick et al., 2009) (but may be
different in needle-driving, Sharon and Nisky, 2018). We used

linear regression on the log-transformed data to fit the power law
to the participants trajectories, and calculated the optimal α, β ,
and γ estimates.

In addition, we calculated the root mean squared jerk
(Equation 15) of participants’ movements.

Jerk=

√

√

√

√

1

t2 − t1

N−1
∑

n=1

...
x(n)2 · 1t(n), (15)

where,
...
x is the jerk of the movement, 1t(n) = t(n) − t(n − 1)

is the time difference between consecutive samples, and N is the
number of samples. Jerk is a measure for movement smoothness,
the lower the jerk, the smoother the movement. There are
several suggested methods to calculate the jerk of a movement
(Hogan and Sternad, 2009). Following an analysis of the different
methods on our data, we chose the method that normalizes the
jerk by movement duration, and has units of jerk. As a result,
this jerk metric is less correlated with completion time. Because
this metric spans over several orders of magnitudes, we chose to
analyze the logarithm of the metric.

2.4.4. Statistical Analysis
In our statistical analysis we compared three contrasts (Figure 5):
learning in teleoperation, aftereffect, and final performance.
In the learning contrast, we analyze the effect of practice in
teleoperation: the difference in performance between early and
late teleoperation. We define early and late as the median of
the first 5 trials and median of last 5 trials in teleoperation,
respectively. In the aftereffect contrast, we analyze the effect
of teleoperation on open needle driving: the difference in
performance between just before (last 5 trials of 1st open needle
driving) and just after teleoperation (first 5 trials of 2nd open
needle driving). In the final performance contrast, we analyze the
performance at the end of teleoperation compared to participants
baseline: the difference between the late teleoperation (last 5
trials in teleoperation needle driving) performance and the
performance just before teleoperation (last 5 trials in 1st open
needle driving). We chose to use the medians of blocks of 5
trials in our statistical analysis to reduce the effect of trial-by-trial
variability in the performance of the participants.

Most of our metrics did not distribute normally. Therefore,
we chose the median of each block as the statistic to quantify the
metrics values. We used non-parametric statistical methods. For
each one of the contrasts above, we used the two-sided Wilcoxon
sign rank test to determine whether the difference between the
two stages in each contrast was statistically different from zero.
In addition, for each contrast separately, we used the Kruskal-
Wallis test to determine whether we can reject the alternative
hypothesis that the metrics describing the three force feedback
conditions belong to the same distribution. Since none of the KW
tests showed statistical significant differences no post-hoc tests
were needed.

3. RESULTS

To assess the performance of our participants in the needle
driving task, we first visually examined the recorded trajectories
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FIGURE 6 | Illustration of the fitted plane and circle use in the kinematics metrics circle deviation and plane deviation for a single trial. In the figure we present the

insertion subtask for one participants that received DF feedback, and the trial is recorded from the teleoperation setup. (A) The fitted plane and the path. (B) An

example of a projected path (seen in 3 dimension in A) and the circle fitted to that path. (C) The distance of the path to the plane (i.e., shortest distance of each point).

(D) The radius of the surgical needle (yellow) used in the experiment, together with the radius of the fitted circle (red) and the distance of the tooltip path from the

center of the fitted plane.

of the tissue interaction forces and the kinematics of the patient
side instrument tip. We compared the trajectories in the different
dVRK teleoperation conditions and the trajectories in the open
needle driving. Following the visual examination, we quantified
the performance of the participants using novel and classical
metrics. We grouped the metrics into the following categories:
task performance, tissue interaction forces, kinematics, and
motor control grounded metrics. Because most of the metrics
were not normally distributed, we used non-parametric statistical
tests to assess the effect of feedback conditions on each one
of the metrics. Specifically, we focused on the effect of the
different feedback conditions (no feedback NF, position exchange
PE, and direct force feedback DF) on (i) the learning during
teleoperation, (ii) the final performance in teleoperation, and (iii)
the aftereffect of teleoperation on needle driving using an open
surgical needle holder.

In Figure 7, the tissue interaction forces and translation
trajectories of a single participant in the first 5 trials
(Figures 7A,C) and the last 5 trials (Figures 7B,D) are depicted.
Visual examination of the force and translation trajectories
suggests that the last 5 trials are more consistent (i.e., similar
to each other) compared to the first 5 trials. Moreover,
the trajectories seem to be less jerky and more planar
(Figures 7C,D). In Figure 8, Examples of tissue interaction
forces as a function of time during a single trial in open needle
driving (Figures 8A,B) and teleoperation (Figures 8C,D) are
presented. When performing the task correctly (Figures 8A,C),

we identified a pattern in the tissue interaction forces. In the
insertion part, the ideal driving trajectory is oriented along
the x-y diagonal, and indeed the needle horizontal (x-y plane)
forces are correlated. The vertical (z) component of the force
vector is oriented in the negative vertical direction when the
needle first penetrates the tissue, but the direction is reversed
when the needle starts pointing toward the extraction point.
During repositioning, there are occasional small forces due to
transient interactions with the tissue. The extraction is a single
fast movement of pulling the needle both in the horizontal plane
and in the vertical axis, and as the movement progress, the
vertical force component is more dominant compared to forces in
horizontal plane. This pattern was consistent across participants
in successful needle driving trials. For reference, examples of two
trajectories of less successful trials are depicted in Figure 8B for
open needle driving and Figure 8D for teleoperation. For both
trajectories, participants did not succeed to insert the needle in
one throw and needed a second throw to correct. The maximum
tissue interaction force of the teleoperation example is higher
compared to the correct example, and for the open needle driving
the force trajectories have a different pattern and are less smooth.

In our analysis, we divided the needle driving task to several
subtasks, and present here the results only for the insertion
subtask. We focused on the insertion subtask because it is most
important for the success of the overall needle driving, and
its relative duration is highest (median relative duration and
standard deviation of 50.9% ± 10 for insertion; 16.6% ± 14
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FIGURE 7 | An example of trajectories (lines) and tissue interaction forces (arrows) from the first 5 teleoperated trials (A) and last 5 trials (B) of participant from direct

force (DF) feedback condition. The start of each trajectory is denoted by a diamond marker. Tissue interaction forces are represented by arrows, and each arrow

represents the direction of the force at the specific sample together with the size of the force (length of the arrow). Different viewpoint of the same trajectories are

presented in (C,D). The skin-toned flat cylinder represents the mock tissue specimen at scale. Red dotted line is presented to orient the viewer in space.

for extraction; 16% ± 14 for repositioning) compared to the
other subtasks.

To compare participants, performance between the three
feedback conditions, we quantified three contrasts: (1) the
learning during teleoperation (tele late—tele early) is presented in
Figure 10, (2) the aftereffect of each teleoperation condition on
open needle driving (open 2 early—open 1 late) is presented in
Figure 12, and (3) the final performance of each participant in
teleoperation compared to the participant’s baseline performance
(tele late—open 1 late) is presented in Figure 11. For each metric,
we present the median of the difference of each contrast and
a non-parametric bootstrap 95% confidence interval for each
of the metrics in each of the teleoperation conditions, along
with gray markers denoting individual participants. Statistical
results of all metrics for the three contrasts are presented in
two tables: Wilcoxon sign rank test results are summarized
in Table 1 and Kruskal-Wallis test results are summarized in

Table 2. In these tables, statistically significant values are marked
with bold letters.

First, we examine the learning during teleoperation contrast.
In Figure 9, we present a detailed look at the results of learning
during teleoperation, in addition to the statistical analysis that
is summarized in Figure 10. Figure 9 presents the performances
of the early stage teleoperation and late stage of teleoperation.
For each stage, we present the median and non-parametric
bootstrap 95% confidence interval for each of the metrics in each
of the teleoperation conditions, along with markers denoting
individual participants.

Examining the task performance metrics in teleoperation
learning (Figures 9A,B, 10A,B), we found significant
improvement in completion time (effect of 2–5 s, Table 1)
for all conditions, without difference between the feedback
conditions (Figure 10B). There was no significant improvement
in exit point error in teleoperation and no difference between the
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FIGURE 8 | Examples of force trajectories in each axis during needle-driving trials in open needle driving (A,B) and in teleoperation (C,D). We present force trajectory

for a trial that was preformed correctly (open needle driving - A, teleoperation - C) and for a trial that was preformed incorrectly (open needle driving - B, teleoperation

- D). In addition, the segments that were identified by the automatic segmentation algorithm are annotated.

conditions (Figure 10A). However, the radius of the exit point
marker on the tissue was 2 mm, and thus, although we did not
see a statistically significant difference between the groups, the
force feedback conditions (PE and DF) medians are closer to the
marker radius compared to NF condition. Hence, it could be that
participants did not try to improve their exit point accuracy more
than the marker radius. Another important observation is that
the dispersion of exit point error between participants was higher
in the tele-early stage compared to tele-late stage (Figure 9A),
and this is more prominent in the force feedback conditions (DF
and PE). So although there was no improvement in the groups’
exit point error median, we think that participants with high
exit error at the tele-early stage improved their exit point error
accuracy, but we cannot provide quantitative statistical support
to this observation.

Looking at the force metrics in teleoperation learning
(Figures 9C–F, 10C–F), for the total normalized force metric,
there was significant learning for all conditions without
difference in learning between the three conditions (Figure 10C).
All participants reduced their applied forces during teleoperation,
and therefore, in real surgery this would reduce the tissue
damage. When looking at the maximum forces, we did not
see significant improvement in none of them (Figure 10D),
but when looking at the details (Figure 9D), we can see that
at the tele-early stage there was no visible difference between

the conditions, and in the tele-late stage the dispersion for
the force feedback conditions was reduced and the tendency
was toward lowering the maximum forces, while the NF group
did not reduce the median of the maximum forces. It is
important to note that we did not find significant differences
between the two stages in the conditions’ median, nor in the
interaction factor. In addition, when we looked at the maximum
torque around the vertical axis (Figure 10E), we saw that only
PE feedback condition had significantly reduced its maximum
torques, which ideally should be zero.We did not see a significant
difference between the conditions, but we did see that the DF
feedback condition had at first (Tele-early stage, Figure 9E)
higher maximum torques compared to tele-late stage (excluding
1 participant); this might be due to difficulty in stabilizing
the system. Although participants did not receive feedback
on the torques DOFs, most of them reduced the maximum
torques around the vertical axis. As for the consistency of
tissue interaction forces, the force consistency metric, for both
force feedback conditions, DF and PE, we saw a significantly
improvement in the consistency of forces in learning during
teleoperation (Figure 10F). It is important to note that there
was no statistically significant difference in learning between the
conditions. Higher consistency of force profiles might indicate a
certain technique that participants with force feedback acquired
to help them perform the task.
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FIGURE 9 | Comparison of the performance of the insertion subtask between early and late dVRK teleoperation. For each metric (A–O), median of first five (early) and

last five (late) trials are presented. Each gray marker represents an individual subject. The big marker with error bars shows the median of each group (NF, PE, and DF)

and the 95% bootstrap confidence interval, respectively.
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FIGURE 10 | Summary of the dVRK teleoperation learning during the insertion subtask. For each metric (A–O), median of difference between late teleoperation stage

to early teleoperation stage is presented. Each gray marker represent individual subject. Error bars shows median of each group difference (NF, PE, and DF) and 95%

bootstrap confidence interval. Gray asterisks represent the result of a Wilcoxon sign rank test for difference from zero.

Looking at the kinematics metrics in teleoperation learning
(Figures 9G–K, 10G–K), we saw no significant difference
between the feedback conditions. The movements of force
feedback conditions (PE and DF) became significantly more
consistent in the teleoperation learning process (Figure 10K).
The trajectory consistency for the DF group’s median and
variability was higher in the tele-early stage compared to the
NF and PE conditions, while at the tele-late stage there was no
visible difference between the groups (Figure 9K); this might
be because participants experienced difficulties in stabilizing
the system in the DF condition at the beginning. There was
a significant reduction during teleoperation learning in plane
deviation for PE and NF (Figure 10I), while there was no
learning in DF. All 3 conditions presented lower dispersion in
path length, deviation from circle, and deviation from plane in
tele-late stage compared to tele-early stage and there was no
visible difference between the performances of the 3 conditions
(Figures 10G–I). We saw no learning for the angular path
(Figure 10J). Based on the results in Sharon et al. (2017) that
showed that participants increased their angular path during the
insertion task, we expected to see a similar increase in our study,
but this was not the case.

Looking at themotor control orientedmetrics in teleoperation
learning (Figures 9L–O, 10L–O), participants’ movements were
generally consistent with the speed-curvature-torsion power law
(mean R2 with standard deviation of the fit: R2NF = 0.80 ±

0.06, R2PE = 0.79 ± 0.06, R2DF = 0.81 ± 0.06), and β

and γ parameters had tendency toward their theoretical values
(−1/3 and −1/6 respectively). Although there was no significant
difference between the two stages, this result indicated that
participants tendency was to perform movements that follow
the 1/6 power law. In none of the force feedback conditions
there was no effect of learning on the velocity gain factor, α,
indicating that the participants did not generally increase their
movement tempo as they repeated the needle driving task. The
jerk of the participants’ movements also was not affected by the
3 conditions, nor was it reduced in the late stage. This result
indicates that participants movement did not become smoother
during teleoperation trials.

In the final performance contrast we quantified the
performance at the late stage of teleoperation compared to
the baseline performance at the late stage of the first open needle
driving. The insertion completion time (Figure 11A) of NF
and DF conditions were significantly higher in teleoperation
compared to open, while for PE condition there was no
significant difference. As for the force metrics, there was no
significant difference between the conditions for all force
metrics. In the NF and PE conditions, participants applied
significant more maximum force (effect size of 1.37 [N] and
0.72, respectively) in tele-late stage compared to open 1-late
(Figure 11B), and there was no difference in maximum force
for the DF feedback condition. For NF and PE conditions the
consistency of forces (Figure 11D) was lower in tele-late stage
compared to open-1 late stage, while for the DF condition,
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FIGURE 11 | Summary of the dVRK teleoperation final performance compared to baseline for the insertion subtask. For each metric (A–M), median of difference

between late teleoperation stage to late first open stage is presented. Each gray marker represent individual subject. Error bars shows median of each group

difference (NF, PE, and DF) and 95% bootstrap confidence interval. Gray asterisks represent the result of a Wilcoxon sign rank test for difference from zero.

there was no difference between the open needle driving and
teleoperation needle driving.

In the final performance of the kinematic metrics, only for
the path length (Figure 11E) there was a significant difference
between PE and DF conditions: the PE force feedback group
performed the task with shorter path length compared to
DF force feedback, when looking on the teleoperation needle
driving compared to baseline. For the other kinematic metrics,
there was no difference between the conditions in the final
performance. Similarly, there was no significant difference
between the feedback conditions in the motor control oriented
metrics. Comparing the final performance in velocity gain factor
α metric (Figure 11J), in NF and PE conditions participants
movement was slower in teleoperation compared to open needle
driving baseline. The jerk (Figure 11M) for all conditions
was significantly lower in the teleoperation; this might be
because the control system of the dVRK adds damping to
participants movements.

For the aftereffect contrast (Figure 12) we did not see
aftereffect in open needle driving for majority of the metrics.
This means that the participants performance did not deteriorate
due to the 60 trials of the task in teleoperation under any of
the feedback conditions, and participants did not improve their
performance in open needle driving after training the same task
in teleoperation. The fact that the open performance did not
deteriorate following teleoperation is encouraging as it suggests
that if during surgical cases surgeons have to revert to open

cases their performance would continue to be the same as before
regardless to the force feedback condition.

4. DISCUSSION

We examined the effect of feedback conditions on several
aspects of task performance and movement. We used a task
of surgical needle driving to evaluate this effect on participants
in two setups: (1) teleoperation, as in RAMIS, and (2)
using a needle holder, as in open surgery. We designed an
experimental setup such that participants performed the task in
the two setups while we simultaneously recorded their position,
orientation, and tissue interaction forces. In teleoperation,
force feedback conditions included two simple force feedback
approaches: (1) position exchange force feedback, and (2) direct
force feedback sensed from an F/T force sensor. The third
condition was no force feedback condition. We designed a
protocol to test the learning during teleoperation, the final
performance in teleoperation and the aftereffect of teleoperation
on open needle driving. The experimental apparatus and
protocol we designed enabled us to study different aspects of
human movement and force control during complex movement
in a surgical task in RAMIS. We developed new metrics
to assess the quality of surgical needle driving: trajectory
consistency, force consistency, circle deviation, and plane
deviation. We also used recently proposed as well as classical
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FIGURE 12 | Summary of the open needle driving aftereffect for the insertion subtask. For each metric (A–M), median of difference between early stage in the second

open needle driving to late stage in the first open needle driving are presented. Each gray marker represent individual subject. Error bars shows median of each group

difference (NF, PE, and DF) and 95% bootstrap confidence interval. Gray asterisks represent the result of a Wilcoxon sign rank test for difference from zero.

metrics to assess performance: exit point error, completion
time, total normalized force, max force, max torque z axis,
path length, angular path, speed-curvature-torsion power law,
and jerk.

In a study with 30 participants, we found that in several of
the metrics, such as force consistency and maximum applied
torques in the vertical direction, the two conditions with force
feedback presented statistically significant improvement during
teleoperation (i.e., learning). In addition, in some of the metrics,
such as task completion time and total normalized force, there
was an improvement in all the force feedback conditions.
However, when we compared directly between the learning in the
three different feedback conditions, none of the effects reached
statistical significance. Moreover, we did not find any statistically
significant differences between the 3 force feedback conditions
in the final performance in teleoperation (except one difference
between DF and PE in path length) and the aftereffect. Therefore,
we conclude that in our detailed analysis of the performance of
needle driving through soft tissue we did not find a benefit to
presenting novice participants with force feedback. Hence, our
data suggests that the advantage of state of the art force feedback
methods to tasks that require interaction with homogeneous soft
tissue is questionable.

Up to performing this research, several studies compared
conditions with force feedback (usually one algorithm of force
feedback) to no force feedback condition, and usually added

another condition with the force feedback as visual information
(Tholey et al., 2005; Arata et al., 2008; Gwilliam et al., 2009;
Santos-Carreras et al., 2010; Talasaz et al., 2017). Results
were inconclusive and were task dependent. We expected to
find statistically significant differences between the three force
feedback conditions, and more specifically, we expected to find
worse performance at the end of teleoperation without force
feedback compared to the other two force feedback conditions,
as in Talasaz et al. (2017), Currie et al. (2017), and Gwilliam
et al. (2009), and applied forces in Okamura and Verner (2009)
and Santos-Carreras et al. (2010). Surprisingly, we did not see
such differences for all the contrasts and metrics except one,
consistently with task completion time in Verner and Okamura
(2007), Santos-Carreras et al. (2010), and task error in Okamura
and Verner (2009).

One possible explanation is that the 3D high-definition
visual feedback compensated for the missing feedback in the
no force feedback (NF) and the poor haptic feedback in the
position exchange force feedback (PE) conditions. The 3D
visual compensation is more prominent when interacting with
a deformable object such as artificial silicone tissue. Indeed,
previous studies showed the importance of 3D vision (Weber
and Schneider, 2014). Another explanation might be that after
60 trials in the novel environments in our experiment the human
motor system adjusted to the new conditions and perform the
same. In Nisky et al. (2015), learning curve of task completion
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TABLE 1 | Statistical analysis—Wilcoxon sign rank.

Metric name
Learning Aftereffect Final performance

NF PE DF NF PE DF NF PE DF

Exit point error
p 0.37 0.06 0.23 – – – – – –

1 0.50 0.95 1 – – – – – –

Completion time
p 0.027 0.0019 0.0058 0.064 0.92 1 0.0058 0.43 0.037

1 1.99 3.8 5.47 −0.50 −0.079 −0.13 −1.62 −1.02 −1.64

Total Force normalized
p 0.013 0.0039 0.0019 – – – – – –

1 0.46 0.66 0.98 – – – – – –

Max force
p 0.77 0.13 0.32 0.019 0.84 0.43 0.0039 0.037 0.84

1 −0.34 0.70 0.79 0.35 −0.053 0.23 −1.37 −0.72 0.11

Max torque - Z axis
p 0.69 0.0039 0.10 0.32 0.10 0.064 0.37 0.16 0.55

1 −3 7.9 5.2 3.03 11 6.87 6.54 11.3 9.36

DTW - force
p 0.19 0.027 0.037 0.84 0.43 0.10 0.002 0.013 0.19

1 451 1330 2140 16.6 −83.2 175 −968 −364 −192

Path length
p 0.084 0.10 0.019 0.23 0.037 1 0.37 0.0097 0.69

1 0.010 0.020 0.031 0.0082 0.010 0.0010 0.011 0.023 0.0020

Circle deviation
p 0.27 0.16 0.43 0.23 0.064 0.84 0.37 0.037 0.84

1 4.78 · 10−6 3.20 · 10−6 1.20 · 10−6 5.84 · 10−6 4.94 · 10−6 8.82 · 10−7 5.79 · 10−6 7.10 · 10−6 4.34 · 10−7

Plane deviation
p 0.027 0.013 0.55 0.84 0.19 0.55 0.43 0.037 0.69

1 1.85 · 10−6 2.16 · 10−6 1.75 · 10−6 −4.81 · 10−7 1.82 · 10−6 −8.20 · 10−7 8.62 · 10−7 2.64 · 10−6 −1.80 · 10−7

Angular path
p 0.10 0.55 0.27 0.69 0.92 0.13 0.77 0.16 0.16

1 −5.96 3.53 −9.44 −10.7 1.32 15.5 8.15 −7.89 16.6

DTW - position
p 0.10 0.019 0.027 0.77 0.43 0.92 0.32 0.62 0.10

1 0.010 0.020 0.026 0.0021 −4.28 · 10−5 0.0014 −0.0042 −0.0010 −0.0041

1/6 power law α
p 0.32 0.084 0.13 0.77 0.32 0.23 0.013 0.0097 0.084

1 0.035 0.038 0.059 0.016 0.038 0.049 0.083 0.15 0.061

1/6 power law β
p 0.32 0.013 0.32 0.92 0.77 0.37 0.77 0.13 0.13

1 −0.0057 −0.019 −0.011 0.0040 0.0048 −0.0087 −0.0047 −0.021 −0.012

1/6 power law γ
p 0.13 0.13 0.019 1 0.69 0.84 0.49 0.16 0.84

1 −0.015 −0.0095 −0.022 −0.0040 −0.00061 −0.0016 −0.0058 −0.015 0.0041

Jerk
p 0.69 0.37 0.27 0.16 0.19 0.37 0.0019 0.0019 0.0019

1 −0.071 −0.070 −0.14 0.11 0.21 0.099 1.22 1.4 0.86

time of non-medical novice participants in needle driving task
did not seem to reach a plateau after 80 trials, while for path
length it seems that the majority of learning improvement was
in the first 20 trials. Another possibility is that 60 trials in
teleoperation were not sufficient to the learning of the motor
system, and there is potential for further improvement in task
performance that would eventually reveal advantages to one of
the force feedback conditions. This explanation is consistent with
Nisky et al. (2014b), where learning was observed even after 200
trials in a simple reaching task in teleoperation.

Another possible explanation for our failure to find
statistically significant differences between the force feedback
conditions might be the high between participants variability.
This variability could be a consequence of the location
of needle grasping, or variability in entrance and exit
points. Large variability in the sample reduces the power
of statistical tests. This indicates that larger sample sizes or
adding constraints on the task may be useful to increase
power in future studies. To partially mitigate the influence

of between-participants variability, for each contrast we
compared the performance of the participants to their
relevant baseline performance. One more reason for the
large variability is the human movement variability, which
allows to successfully perform a given task with different
trajectories. Generally, variability is unavoidable in the motor
system, and is even considered a virtue of the sensorimotor
system (Touwen, 1993; Todorov and Jordan, 2002; Faisal et al.,
2008; Stergiou and Decker, 2011; Kaipust et al., 2012; Nisky
et al., 2014a; Buzzi et al., 2019). With repetitions of the task,
the decrease in trajectory consistency and force consistency
metrics showed that the within-participant variability in
consecutive trials was lower at the late stage of the experiment.
This suggests that unlike in simpler movements (Müller and
Sternad, 2004; Dingwell et al., 2012), participants gradually
progressed toward adopting a stereotypic trajectory to perform
the task.

In our experiment, we implemented two force feedback
conditions, (1) position exchange force feedback and
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TABLE 2 | Statistical analysis—Kruskal-Wallis test.

Metric name
Learning Aftereffect Final performance

NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF NF-PE NF-DF PE-DF

Exit point error

p model and χ2 p = 0.80, χ2 = 0.43 – –

p 0.84 0.82 1 – – – – – –

1 −2.2 −2.3 −0.1 – – – – – –

Completion time

p model and χ2 p = 0.17, χ2 = 3.54 p = 0.62, χ2 = 0.94 p = 0.59, χ2 = 1.04

p 0.93 0.17 0.32 0.64 0.71 0.99 0.69 0.99 0.61

1 −1.4 −7 −5.6 −3.5 −3.1 0.4 −3.2 0.5 3.7

Total Force normalized

p model and χ2 p = 0.093, χ2 = 4.75 – –

p 0.77 0.083 0.31 – – – – – –

1 −2.7 −8.4 −5.7 – – – – – –

Max force

p model and χ2 p = 0.44, χ2 = 1.63 p = 0.26, χ2 = 2.65 p = 0.11, χ2 = 4.26

p 0.48 0.53 0.99 0.34 1 0.32 0.32 0.11 0.82

1 4.5 −4.2 0.3 5.5 −0.1 −5.6 −5.6 −7.9 −2.3

Max torque - Z axis

p model and χ2 p = 0.22, χ2 = 3 p = 0.91, χ2 = 0.17 p = 0.92, χ2 = 0.15

p 0.24 0.35 0.97 0.91 0.99 0.95 0.93 1 0.94

1 −6.3 −5.4 0.9 1.6 0.5 −1.1 −1.4 −0.1 1.3

DTW - force

p model and χ2 p = 0.34, χ2 = 2.11 p = 0.27, χ2 = 2.60 p = 0.14, χ2 = 3.86

p 0.55 0.34 0.93 0.88 0.51 0.25 0.35 0.13 0.85

1 −4.1 −5.5 −1.4 1.9 −4.3 −6.2 −5.4 −7.5 −2.1

Path length

p model and χ2 p = 0.052, χ2 = 5.91 p = 0.41, χ2 = 1.77 p = 0.028, χ
2

= 7.1

p 0.97 0.11 0.069 0.92 0.63 0.39 0.23 0.56 0.022

1 0.9 −7.8 −8.7 −1.5 3.6 5.1 −6.4 4 10.4

Circle deviation

p model and χ2 p = 0.87, χ2 = 0.266 p = 0.20, χ2 = 3.19 p = 0.11, χ2 = 4.41

p 0.98 0.86 0.94 0.74 0.55 0.17 0.41 0.69 0.093

1 0.7 2 1.3 −2.9 4.1 7 −5 3.2 8.2

Plane deviation

p model and χ2 p = 0.44, χ2 = 1.61 p = 0.21, χ2 = 3.07 p = 0.10, χ2 = 4.45

p 0.80 0.41 0.80 0.63 0.67 0.18 0.56 0.51 0.088

1 2.5 5 2.5 −3.6 3.3 6.9 −4 4.3 8.3

Angular path

p model and χ2 p = 0.26, χ2 = 2.66 p = 0.32, χ2 = 2.25 p = 0.11, χ2 = 4.33

p 0.31 0.99 0.35 0.99 0.42 0.37 0.39 0.72 0.098

1 −5.7 −0.3 5.4 0.4 −4.9 −5.3 5.1 −3 −8.1

DTW - position

p model and χ2 p = 0.38, χ2 = 1.91 p = 0.48, χ2 = 1.46 p = 0.46, χ2 = 1.52

p 0.85 0.35 0.67 0.63 0.97 0.48 0.55 0.99 0.51

1 −2.1 −5.4 −3.3 3.6 −0.9 −4.5 −4.1 0.2 4.3

1/6 power law α

p model and χ2 p = 0.88, χ2 = 0.23 p = 0.68, χ2 = 0.75 p = 0.67, χ2 = 0.77

p 0.95 0.88 0.97 0.67 0.81 0.97 0.74 0.99 0.71

1 −1.1 −1.9 −0.8 −3.3 −2.4 0.9 −2.9 0.2 3.1

1/6 power law β

p model and χ2 p = 0.46, χ2 = 1.53 p = 0.66, χ2 = 0.80 p = 0.51, χ2 = 1.32

p 0.50 0.99 0.56 0.84 0.64 0.94 0.48 0.77 0.89

1 4.4 0.4 −4 2.2 3.5 1.3 4.5 2.7 −1.8

1/6 power law γ

p model and χ2 p = 0.56, χ2 = 1.14 p = 0.98, χ2 = 0.023 p = 0.31, χ2 = 2.32

p 0.85 0.85 0.53 0.98 0.99 0.99 0.72 0.72 0.28

1 −2.1 2.1 4.2 −0.6 −0.3 0.3 3 −3 −6

Jerk

p model and χ2 p = 0.88, χ2 = 0.235 p = 0.37, χ2 = 1.94 p = 0.060, χ2 = 5.61

p 1 0.90 0.91 0.55 0.95 0.38 0.81 0.21 0.057

1 0.1 1.7 1.6 −4.1 1.1 5.2 −2.4 6.6 9

(2) direct sensing from a force sensor that was attached
to the tissue plate. In addition, all participants in all 3
conditions received gravity compensation as described
in (Chen et al., 2017), and more advanced algorithms

(e.g., the one implemented by Lin et al., 2019) could
improve the performance. It is possible that with better
gravity compensation the participants could perform
better and this could have allowed for observing more
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pronounced differences between the different force
feedback conditions.

In position exchange force feedback, we estimated the
applied forces based on the error between desired and current
state of the robot tooltip (Siciliano and Khatib, 2016). While
we did not perform an analytic analysis of stability in our
force feedback implementations, we could easily see that the
position exchange force feedback remained stable throughout
the experiment. However, the force feedback did not feel
real, as the forces when interacting with the tissue felt lower
compared to DF condition and open needle driving. The
position exchange form of force feedback is better when
interacting with a stiff object rather than a soft object. Since
the interaction in our experiment is with a deformable tissue,
the forces felt less realistic and smaller than the actual
applied forces. In addition, because there was no dynamic
compensation, participants felt forces when moving the tool
freely without any interaction with an object. This two issues
likely resulted in a poor quality of force feedback in the
PE condition.

In the direct force feedback condition, participants received
the forces directly from a force sensor located under the
tissue. The force sensor recorded the tissue interaction forces
with high accuracy, and as a result, the forces felt more
realistic than in the PE condition. However, occasionally,
we observed the tool starting to get out of stability. To
mitigate the instability problem, we empirically tuned a
gain of 0.7 for the direct force feedback. In most cases,
participants succeed to stabilize the system, and if they did
not succeed they stopped teleoperation for a brief moment
and returned to the task; however, in some cases, participants
were still not able to stabilize the system. In some metrics,
the DF condition median was visibly different compared
to the PE and NF condition at the early stage trials in
teleoperation (e.g., completion time, force consistency, and
trajectory consistency), but the difference was not visible in the
late stage.

In the final performance contrast, our aim was to compare
the performances between the three conditions at the late
stage in teleoperation. We chose to normalize each participants
performances to his or her baseline performances at the late
stage of open needle driving. As a result, in this contrast, we
compared between the performances in open needle driving to
the performances in teleoperation. Comparison between the two
setups, in which the participants perform the task with different
tools, is not trivial. However, because we compare the way the
human operator manipulates the tool end effector (i.e., needle
holder tooltip and dVRK large needle driver tooltip), and the
metrics we used are relevant for the end effector we believe that
this kind of comparison is valid. We did not see statistically
significant difference between the feedback conditions in final
performance (except one difference in path length metric), but
we did see that for all metrics the jerk in the teleoperation
was lower compared to open needle driving and that forces
were for most cases similar in teleoperation late stage and open
needle driving.

5. CONCLUSION

In the current study, we failed to find statistically significant
differences between the feedback conditions in needle driving
through soft tissue. Both our implementations of simple force
feedback algorithms did not significantly improve the kinematics
and tissue interaction forces of the human operator compared to
no force feedback, and there was no difference between the two
force feedback algorithms. Thismay be a result of the poor quality
of our force feedback algorithms for soft tissue interaction, or due
to sufficient force cues available from visual information about
tissue deformation.

Detailed understanding of the effect of haptic feedback
on the operators movement and tissue interaction forces
is important for developing future guidelines for human-
centered design of teleoperated RAMIS systems with force
feedback that will eventually provide advantage over unilateral
teleoperation. We think that better, human-centered, force
feedback algorithms have the potential to improve performance
and movement quality compared to no feedback at all or
algorithms that don’t consider the human operator as part of the
control loop.

6. FUTURE WORK

In the future, it will be interesting to perform a similar
experiment with experienced and novice surgeons that are
familiar with surgery and RAMIS and to see if one of the force
feedback condition will be beneficial for them. In this study,
we implemented two simple force feedback algorithms and in
future studies, it is important to investigate the performance
of participants with other force feedback algorithms (Mahvash
and Okamura, 2007; Santos-Carreras et al., 2010; Anooshahpour
et al., 2014; Koehn and Kuchenbecker, 2015; Rivero et al.,
2017; Quek et al., 2018). Another aspect future studies is to
investigate if the high-resolution visual feedback was indeed
responsible for the lack of differences between the conditions.
It is possible to perform similar experiment with different vision
conditions, and particularly the 3D vision compared to 2D vision;
To investigate the learning curves and perform the research
with more trials; to add more constraints to the needle driving
complex task; or to give feedback on performances in real
time that will encourage the participants to perform better in
the task.
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