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In recent years, lots of multifactorial optimization evolutionary algorithms have been

developed to optimizemultiple tasks simultaneously, which improves the overall efficiency

using implicit genetic complementarity between different tasks. In this paper, a novel

multitask fireworks algorithm is proposed with novel transfer sparks to solve multitask

optimization problems. For each task, some transfer sparks would be generated with

adaptive length and promising direction vector, which are very helpful to transfer

useful genetic information between different tasks. Finally, the proposed algorithm is

compared against some chosen state-of-the-art evolutionary multitasking algorithms.

The experimental results show that the proposed algorithm provides better performance

on several single objectives and multiobjective MTO test suites.

Keywords: evolutionary multitasking, multitask optimization, fireworks algorithm, transfer spark, evolutionary

algorithm

INTRODUCTION

Traditional evolutionary algorithms aim to find the optimal solution for a single optimization
problem by applying the reproduction and selection operators to generate better individuals
iteratively (Coello et al., 2006). With the complexity of the problem increasing, simultaneously
solving multiple optimization problems efficiently and quickly becomes an urgent problem (Ong
and Gupta, 2016). In this context, inspired by multitasking learning in the machine learning
field (Chandra et al., 2017), evolutionary multitasking (EMT) is proposed to solve the multitask
optimization (MTO) problem by encoding the solutions from different tasks into a unified search
space and utilizing the information of potential complementarity and similarity of different tasks
to improve the convergence speed and the quality of the solutions (Gupta et al., 2016b).

The best known and the first instructive work in the EMT area is the multifactorial
evolutionary algorithm (MFEA) (Gupta et al., 2016b, 2017). The MFEA algorithm is inspired by
the multifactorial inheritance (Rice et al., 1978; Cloninger et al., 1979). Each task corresponds
to a cultural bias block, and each cultural bias block will have an impact on the development
of the offspring. When individuals with different cultural biases hybridize, they exchange
information about each other’s cultures and promote optimization by exploiting the potential
genetic complementarity between multiple tasks (Gupta and Ong, 2016). Intuitively, an inferior
solution of a task may be an exceptional solution for the other task. Similarly, the same solution
in a unified space can also be excellent in multiple tasks concurrently. In both cases, the MFEA
allows multiple tasks to bundle together to optimize and share genetic information to improve
the overall efficiency of the search process (Gupta et al., 2018). To this end, MFEA also proposed
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the mechanisms of assortative mating and vertical cultural
transmission to ensure the efficiency and intensity of information
exchange between tasks. These ideas have a profound impact on
subsequent algorithms.

Currently, the research on EMT can approximately be
summarized into three categories, the practical application of
EMT (Sagarna and Ong, 2016; Yuan et al., 2016; Zhou et al.,
2016; Cheng et al., 2017; Binh et al., 2018; Thanh et al., 2018;
Lian et al., 2019; Wang et al., 2019) and the improved algorithm
based on the MFEA framework (Bali et al., 2017; Feng et al.,
2017; Wen and Ting, 2017; Joy et al., 2018; Li et al., 2018; Tuan
et al., 2018; Zhong et al., 2018; Binh et al., 2019; Liang et al.,
2019; Yin et al., 2019; Yu et al., 2019; Zheng et al., 2019; Zhou
et al., 2019) and the perfection of EMT theory (Gupta et al.,
2016a; Hashimoto et al., 2018; Liu et al., 2018; Zhou et al., 2018;
Bali et al., 2019; Chen et al., 2019; Feng et al., 2019; Huang
et al., 2019; Shang et al., 2019; Song et al., 2019; Tang et al.,
2019). From the above studies, a consensus can be summarized
that efficiently utilizing the inter-task related information is the
key to improve overall search efficiency in EMT. Therefore,
many studies focus on analyzing and optimizing knowledge
transfer between tasks. Zhong et al. (2018) proposed a multitask
genetic programming algorithm, which adopted a novel scalable
chromosome representation to allow cross-domain coding of
multiple solutions in a unified representation. The improved
evolutionary mechanism takes both the implicit transfer of
useful features between tasks and the ability of exploration into
account. Liang et al. (2019) introduced genetic transform strategy
and hyper-rectangle search strategy to the MFEA to improve
the efficiency of knowledge transfer between tasks in the late
iteration of the traditional MFEA. Huang et al. (2019) proposed
an efficient surrogate-assisted multitask evolutionary framework
with adaptive knowledge transfer, which is very superior for
solving expensive optimization tasks. The surrogate model is
constructed according to the historical search information of
each task and reduces the evaluation times. A universal similarity
measurement mechanism and an adaptive knowledge transfer
mechanism are proposed to help knowledge transfer efficiently.
Chen et al. (2019) presented the adaptive selection mechanism to
evaluate the correlation between tasks and cumulative return on
knowledge transferring to select the appropriate assisted task for
a given task to prevent the influence of negative tasks. Feng et al.
(2019) proposed an explicit genetic transferring EMT algorithm
by autoencoding. This explicit genetic transfer method effectively
utilizes multiple preferences embedded in different evolutionary
operators to improve search performance. Bali et al. (2019)
adopted the online learning mechanism into EMT and initiated a
data-driven parameter tuning multitasking approach to mitigate
harmful interactions between unrelated tasks to enhance overall
optimization efficiency.

It is noted that most of the existing EMT algorithms are
affected by the well-known MFEA algorithm. Individuals
exchange genetic information through the chromosomal
crossover. The hybridization of individuals with the same
cultural background contributes to exploit, while individuals
from different cultural backgrounds share information about
their respective tasks. However, there are two drawbacks. First,

the crossover sites and offset directions are randomly generated;
therefore, the information transferred from the other task might
not necessarily contribute to the optimization of the target task.
Second, the intensity of information exchange is artificially set,
and the optimization performance lacks effective feedback on it,
which makes the search effect of EMT algorithm sensitive to the
relationship between the tasks optimized simultaneously.

Swarm intelligence algorithms have the potential to transfer
potential genetic information between tasks due to their inherent
parallelism (Feng et al., 2019; Song et al., 2019). Inspired by
coevolution (Cheng et al., 2017), by mapping multiple tasks
into different subpopulations, the same type of subpopulations
compete with each other, and subpopulations with different
types cooperate, and potentially helpful knowledge blocks can
be efficiently transferred between populations and utilized. The
fireworks algorithm (FWA) (Tan and Zhu, 2010) is a recently
proposed evolutionary algorithm based on swarm intelligence.
First, a fixed number of positions in the search space are chosen
as fireworks. Then, a set of sparks is generated through the
explosion operation from the fireworks. Afterward, the superior
solutions from the whole fireworks and sparks are selected as
the fireworks for the next generation to continually improve the
quality of the solution iteratively. Benefiting from the powerful
global search and information utilization capabilities of FWA, it
has attracted much research interest (Zheng et al., 2013; Liu et al.,
2015; Li et al., 2017; Li and Tan, 2018) and has demonstrated
excellent performance in many real-world problems (Yang and
Tan, 2014; Bacanin and Tuba, 2015; Bouarara et al., 2015; Ding
et al., 2015; Rahmani et al., 2015). In this paper, an innovative
transfer vector (TV) is introduced to represent the bias of
knowledge transfer between tasks. The TV is constructed by the
current fitness information of other tasks and has promising
direction and adaptive length. A potential superiority solution
with the probability to navigate other tasks called transfer spark
(TS) is generated by adding the TV as the bias to the current
firework. A novel multitask optimization fireworks algorithm
(MTO-FWA) utilizing the TS to exchange implicit information
between tasks is proposed.

The rest of this paper is organized as follows. Section
Preliminary introduces the basics of MTO and the benchmark
EMT algorithmMFEA. Section Method describes the basic FWA
algorithm, the proposed MTO-FWA, and the promotion of
MTO-FWA on multiobjective optimization problems. Section
Experiments demonstrates the experiment results on both
single-objective and multiobjective MTO problems to assess
the effectiveness of MTO-FWA. Finally, Section Conclusion
concludes this paper and elaborates on future work.

PRELIMINARY

The section presents the key concept of MTO and the benchmark
EMT algorithmMFEA.

Multitask Optimization
In general, conventional optimization problems can be divided
into two categories: single-objective optimization (SOO)
problems and multiobjective optimization (MOO) problems
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(Liang et al., 2019). They are both committed to seeking the
optimal solution of an optimization task. The difference is
that SOO has only one objective function, while MOO needs
to optimize multiple conflicting objective functions. The
purpose of the SOO is to search out the solution with the
best function value, while the goal of the MOO problem is to
obtain a solution set with splendid convergence and diversity.
Inspired by the cognitive ability of humans to multitasking, the
knowledge acquired from solving the problem can enlighten
the optimization of related problems (Gupta et al., 2016b).
MTO is devoted to implementing an evolutionary search on
multiple optimization tasks simultaneously to improve the
convergence by seamlessly transferring knowledge between
multiple optimization problems.

Unlike SOO and MOO, MTO is a new paradigm that aims

to seek out the optimal solutions for multiple tasks at once. As

shown in Figure 1, the input to the MTO consists of multiple

optimization tasks, each of which can be a SOO or MOO

problem. All the tasks are handled by the MTO paradigms

simultaneously, so the output of the MTO contains the optimal

solution for each task separately.

tX1,X2, ¨ ¨ ¨ ,XKu

= targminT1 pX1q , argminT2 pX2q , ¨ ¨ ¨ , argminTK pXKqu

(1)

The formal representation of MTO is shown in formula
(1), where Xj denotes the optimal solution of the jth task
Tj (j= 1,2,. . .K).

Multifactorial Evolutionary Algorithm
Inspired by the multifactorial inheritance (Rice et al., 1978;
Cloninger et al., 1979), a novel EMT paradigm multifactorial
optimization is proposed. Each task Tj is considered as a factor
affecting individual evolution in the K-factorial environment [4,
5]. MFEA is a popular implementation that integrates genetic
operators in genetic algorithm into multifactorial optimization
(Gupta et al., 2016b, 2017; Bali et al., 2017; Feng et al., 2017; Wen
and Ting, 2017; Binh et al., 2018, 2019; Li et al., 2018; Thanh
et al., 2018; Zhong et al., 2018; Zhou et al., 2018, 2019; Liang

FIGURE 1 | Illustration of multitask optimization.
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et al., 2019; Shang et al., 2019; Yin et al., 2019; Yu et al., 2019;
Zheng et al., 2019). All the individuals are encoded into a unified
search space Y, and each individual can be decoded to optimize
different component problems to effectively realize cross-domain
knowledge transfer. In general, Y is normalized to [0, 1]D, where
D is the number of dimensions of the unified search space.
D = max {Dj ǫ t1,2,...Ku}, where Dj indicates the number of
dimensions of the jth task. By coding, a single chromosome
y P Y can signify a combination of chromosomes corresponding
to K different tasks. By decoding, the chromosomes in the
unified search space can be differentiated into K chromosomes
specific to the task. To evaluate the performance of a solution
in the uniform search space on different tasks, MFEA proposes
some definitions.

Factorial Cost: The factorial cost of individual pi is defined as
ψ i
j which is applied to measure the performance of individual

pi on a specific task Tj. When the pi is the feasible solution

of task Tj and satisfies the constraint conditions, ψ i
j is the

fitness value of Tj. Otherwise, ψ
i
j is a very large value and

indicates that the individual pi is not a candidate solution of
task Tj.

Factorial Rank: The factorial rank rij indicates the rank of

fitness values ψ i
j for an individual pi on a given task Tj by sorting

the ψ i
j in ascending order.

Scalar Fitness: To illustrate the best performance that an
individual can achieve in all tasks. The scalar fitness ϕi is defined
based on the best factorial rank of individual pi among all the
tasks that can be expressed as ϕi =

1
minj ǫ t1,2... kur

i
j

.

Skill Factor: The skill factor τi of individual pi represents the
task that pi shows the best performance, which is defined as
τi = argminjt r

i
ju.

Besides the traditional genetic operators, MFEA also
applies the assortative mating to control the strength of
genetic information transfer between tasks and vertical
cultural transmission to enhance the efficiency of implicit
knowledge transfer.

Assortative Mating: For two randomly selected individuals,
if their skill factor is the same or satisfied the threshold called
random mating probability (RMP), they can perform crossover
to exchange their respective genetic information or they can
only mutate. Intuitively, individuals with the uniform skill factor
have a high probability of performing the crossover operator but
individuals from different tasks can only exchange their genetic
information in a small probability.

Vertical Cultural Transmission: Inspired by the multifactorial
inheritance, MFEA believes that offspring will share the
same cultural environment with their parents; that is,
offspring should inherit their skill factors from their parents.
If the offspring is obtained by the crossover operator, it
will inherit the skill factor of either parent with equal
probability. Otherwise, if the offspring is generated by the
mutation operator, its skill factor will be completely inherited
from the only parent. Based on the previous definitions,
the pseudocode of the basic MFEA algorithm is shown
in Algorithm 1.

Algorithm 1: The Pseudocode of MFEA

N, the size of population;
K, the number of the optimization tasks;
Randomly generate N individuals as the initial population P.
Assign initial skill factor to each individual in P randomly.
Evaluate the factorial cost of each individual
while the maximum number of evaluations is not reached:

Generate the offspring population Q according to assortative
mating mechanism.
Offspring inherit the skill factor based on vertical cultural
transmission strategy.
Evaluate individuals in Q.
Merge P and Q to generate new population R = P

Ť
Q.

Update the scalar fitness ϕ and skill factor τ of every
individual in R.
Select the fittest N individuals from R as the new P.

end while

METHODS

This section introduces the basic FWA, the MTO-FWA based on
the TS, and the extended multiobjective MTO-FWA.

The Basic FWA
Illuminated by the phenomenon that fireworks exploding to
generate some explosion sparks and illuminate a surrounding
area, a novel swarm intelligence algorithm FWA is proposed
(Tan and Zhu, 2010). It believes that the fireworks explosion
phenomenon is analogical to the process of searching the optimal
solution. If there is a promising area around the current search
space, fireworks will migrate to that area and generate explosion
sparks to perform the local search.

The prime procedure of FWA is as follows: first, randomly
initialize a set of fireworks and evaluate each firework
according to the objective function Then, each firework
performs a local search through an explosion operation. To
save computational resources and improve search efficiency,
the resource allocation strategy is used to allocate the
scope and frequency of each fireworks local search. In
general, individuals with better fitness function values are
considered more likely to lead to global optimum, and
therefore are allocated more search resources. Based on the
above ideas, fireworks with better fitness values will generate
a mass of sparks and possess smaller explosion amplitudes,
and fireworks with worse fitness values can only generate
a smaller amount of sparks and have wider explosion
amplitudes relatively. After the explosion, the Gaussian mutation
operation is applied to produce Gaussian mutation sparks
to increase the diversity of the population. Finally, the next
generation of fireworks is selected from the candidate set
including fireworks, and the sparks produced by explosion and
Gaussian mutation based on their performance. The processes
repeat iteratively until the maximum number of evaluations
is reached.
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Explosion Operation
In the basic FWA algorithm (Tan and Zhu, 2010), the number of
sparks and explosion amplitude of each firework xi are shown in
formula (2) and (3), respectively:

Si = Ŝ ¨
fmax − f pxiq + ǫřN

i = 1 pfmax − f pxiqq + ǫ
(2)

Ai = Â ¨
f pxiq − fmin + ǫřN

i = 1 pf pxiq − fminq + ǫ
(3)

where Ŝ and Â are two artificial parameters to control the
total number of fireworks and the total amount of explosion
amplitude, respectively, N represents the population size, fmax

and fmin denote the maximum and minimum objective values
among the total fireworks, and ǫ indicate a tiny real value to
prevent zero as the denominator. To avoid this, good fireworks
have too many explosion sparks, but bad fireworks have very few
explosion sparks. Two other constants parameters a, b P[0,1] are
introduced to bound the Si to a proper range.

Si =

$
’’’&
’’’%

round
´
a ¨ Ŝ

¯
, x ă a ¨ Ŝ

round
´
b ¨ Ŝ

¯
, x ą b ¨ Ŝ

round
´
Ŝ
¯
, otherwise

(4)

Conventional FWA does not conduct the explosion operation
on each dimension of fireworks, but randomly selects Dexplosion

dimensions for explosion operation. Each dimension d of
explosion spark eis, which can be indicated as edis with sP[1, Si],
d P[1, Dexplosion], conducts explosion operation according to
formula (5).

edis = xdi + Ai ¨ random(−1, 1) (5)

The spark generated by the explosion may exceed the boundary
of the search space. FWA proposed the mapping rule to map it
back to the search space as expressed in formula (6).

edis = xdmin + edismod(xdmax − xdmin) (6)

The outline of the explosion process is provided in Algorithm 2.

Algorithm 2: The Pseudocode of explosion

for s= 1 Ñ Si do
Initialize the explosion spark: eis = xi

Dexplosion = round(D ¨ random(0, 1))
Stochastically choose Dexplosion dimensions of eis.
for each dimension d of Dexplosion dimensions do

eis
d = eis

d + Ai ¨ random(−1, 1)
if edis is out of the threshold value then

edis = xdmin + edismod(xdmax − xdmin)
end if

end for
end for

Gaussian Mutation Operator
Some specific sparks are generated by the Gaussian explosion,
which adds an offset that satisfies a Gaussian distribution to the
spark to increase the diversity of population. The process of the
Gaussian explosion is shown in formula (7).

ĕdi = xdi ¨ Gaussian(1, 1) (7)

Similar to the explosion process, the Gaussian mutation also
randomly selects Dgaussian dimensions to mutate. ĕdi indicates
the d dimension of the Gaussian mutation spark with
d P[1, Dgaussian].

Selection Mechanism
At each iteration of the algorithm, N individuals should be
retained for the next generation. The individual with the best
fitness is preferentially kept among all the current sparks and
fireworks. Then, the remaining N – 1 individuals are chosen
with the probability that is proportional to their distance from
other individuals to maintain the diversity of sparks. Manhattan
distance (Chiu et al., 2016) is usually used tomeasure the distance
between a solution with other solutions. The choosing probability
of the individual xi represents as Pb pxiq defined in formula (8),
where M denotes the solution set containing all the current
individuals of both fireworks and sparks.

Pb pxiq =
Manhattan distance(xi)ř

i P M Manhattan distance(xi)
(8)

The Structure of the FWA
Algorithm 3 summarizes the FWA framework. After the
fireworks explode, the explosion sparks and Gaussian mutation
sparks are generated based on Algorithm 2 and formula (7),
respectively. The explosion sparks are generated according to the
explosion operator, and the number and amplitude of the spark
depend on the fitness of the firework. The Gaussian mutation
sparks are generated by the Gaussian explosion process, whose
number is denoted by Gas. Finally, N individuals remain for the
next generation according to the selection mechanism.

Multitask Optimization Firework Algorithm
For MTO problems, the objective function landscape is
heterogeneous, and the worst case is that they are not
similar or intersecting. The key of EMT is to effectively
utilize the implicit genetic information complementation from
different tasks to improve the overall efficiency. Therefore, the
interaction and transfer of information between different tasks
are very important.

Swarm intelligence algorithms frequently possess multiple
populations, which can grow the cognition of search space and
further the diversity of solutions. This is very promising for
exploring the heterogeneous search space of MTO problems.
Different tasks can be assigned to different populations,
and the cooperation between different populations provides
an interpretable theoretical basis for information interaction
between tasks. Different from the crossover process of randomly
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Algorithm 3: The Pseudocode of FWA

N, the size of population;
Gas, the number of Gaussian mutation spark;
Randomly generate N initial fireworks.
while the maximum number of evaluations is not reached:

for each firework xi do
Calculate the number of sparks Si and the explosion
amplitude Ai according to formula (2) and (3).
Generate explosion sparks of the firework xi based
on Algorithm 2.

end for
for gas= 1:Gas do

Obtain a Gaussian mutation spark for a randomly
selected firework xj using formula (7).

end for
Evaluate all the fireworks and sparks.
Select N suitable solutions to constitute the fireworks of
next iteration according to the selection mechanism.

end while

selected individuals in MFEA, information interaction between
populations utilizes information from the whole population,
which can effectively avoid random noise and negative
knowledge transfer.

Unlike other swarm intelligence algorithms, FWA naturally
possesses multiple populations on account of that every spark
is generated near its parent firework and therefore they have
similar properties. Just based on such an evolutionary strategy,
each firework and its generated sparks are constituted as a task
module, and each one is allocated a specific task. Disparate
task modules exchange information to facilitate the exchange of
implicit genetic information and individuals within a module
compete with each other to promote convergence.

Compared with the conventional FWA, the main motivation
of MTO-FWA can be summarized as two points.

1) Combine fireworks and their sparks into a task module to
solve a specific task. Competition comes fromwithinmodules,
and communication between tasks is based not on individuals
but the module population. The comparison between the
task module structure and the conventional FWA structure
is shown in Figure 2.

2) A TS is proposed to solve information transfer and knowledge
reuse between different tasks.

Explosion Operation
The traditional method controlling the number of sparks is
sensitive to the maximum fitness value in the population, and
the resource allocation gap between individuals is uncontrollable.
The individuals with the highest adaptive value may get all the
resources, while those with the lowest adaptive value may not
get any resources. The traditional FWA solves this problem by
setting thresholds, but this is crude and inelegant. Therefore,
we use the power-law distribution (Li et al., 2017) to allocate
spark number, through fitness rank rather than the fitness value

to determine the number of spark explosion fireworks, which is
shown in formula (9).

Sr = Ŝ ¨
r−α

řN
r = 1 r

−α
(9)

N represents the total number of fireworks, r denotes the
fitness rank of fireworks, and α indicates the artificial parameter
controlling the distribution of resource allocation. The larger the
α, more explosion sparks a good firework produces.

For the amplitude, the dynamic control algorithm (Li et al.,
2017) is used, and the explosion amplitude of all fireworks is
controlled dynamically, as shown in formula (10).

f pxq =

$
’&
’%

A1
i , g = 1

CrA
g−1
i , f (x

g
i ) ě f (x

g−1
i )

CaA
g−1
i , f

´
x
g
i

¯
ă f (x

g−1
i )

(10)

where A
g
i denotes the explosion amplitude of the ith firework

in generation g. In the initialization generation, the explosion
amplitude is set to a large real value, usually the diameter of the
search space. If the function value of the offspring firework is
larger than that of the parent fireworks, the explosion amplitude
will be multiplied by a shrink coefficient Cr ă 1 to reduce the
explosion amplitude so as to exploit a better solution in the
local scope. Instead, the amplitude of the explosion is multiplied
by an amplification coefficient Ca ą 1 to attempt to make the
largest progress. In other words, the explosion amplitude is
very large at the beginning of the iteration and shrinks to a
smaller value in the later stages of the iteration by the dynamic
tuning strategy.

It should be emphasized that the proposed MTO-FWA has
the same mapping rules as FWA. The difference is that the
explosion operator works in each dimension of fireworks instead
of the Dexplosion dimensions randomly selected, which has been
proven to bemore effective than themethod of randomly selected
dimensions (Li and Tan, 2018).

Guiding Spark
Different from the conventional FWA, the proposed MTO-FWA
uses the guiding spark (GS) (Li et al., 2017) instead of the
Gaussian mutation operator. The GS can guide the fireworks
in a good direction by adding a guiding vector that indicates
the dominant direction and step size to the fireworks location.
The guiding vector is obtained by calculating the average of
the differences between the pre-σSi sparks and the post-σSi
sparks after all the sparks are sorted by their fitness values f (eis)
in the ascending order. By using the deviation between the
top population and the bottom population, the random noise
can be effectively reduced, the fireworks can be guided in the
right direction, and the step length can be adjusted adaptively
with the distance from the minimum value of the objective
function. The generation of GS for the ith firework is shown in
formula (11).

1i =
1

σSi
(
ÿσSi

s = 1
eis −

ÿSi

s = Si−σSi+ 1
eis)

GSi = xi +1i (11)

Frontiers in Neurorobotics | www.frontiersin.org 6 January 2020 | Volume 13 | Article 109

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xu et al. A FWA for Evolutionary Multitasking

FIGURE 2 | (A) The framework of conventional FWA vs. (B) the framework of MTO-FWA.

where σ is the ratio parameter, eis represents the sth explosion
spark generated by the ith fireworks, 1i indicates the guiding
vector of the i th fireworks, and GSi denotes the GS of the i th
fireworks. It is worth noting that only one GS is generated for
each firework.

Transfer Spark
The TS is proposed to exchange information between different
tasks in MTO-FWA. Each firework, explosion spark, and GS
will be assigned a skill factor, and the spark inherits the skill
factor from their parents. The firework and its sparks constitute
a task module with the same skill factor. To avoid excessive
evaluations, individuals will only evaluate the fitness values of
the tasks they are assigned. In the MTO problem, according to
the concept of implicit genetic information complementation,
the location information of a task module can greatly help
optimize another task. Based on this, assume the ith firework for
the optimization task j denoted as FWi

j , it generates a unique

spark for optimizing the task k according to the information
from the task k. This information from task k is denoted as
TV i

jk
. This spark is different from other sparks generated by

FWi
j as its skill factor is k. Since it can transfer the information

from other tasks, this type of spark is named TS. The TS
generated by FWi

j under the guiding of TV i
jk

is represented

as TSi
jk
. TV i

jk
and TSi

jk
can be obtained by equations (12) and

(13), respectively.

TV i
jk =

2

σMj + σMk
(
ÿσMk

i = 1
xik−

ÿσMj

i = 1
xij)

r−α

řNj

r = 1 r
−α

(12)

TSijk = FWi
j + TV i

jk (13)

where Mk and Mj denote the total number of the individuals
that the skill factor is k and j, respectively. In general,
Mk is equal to Mj. σMk represents the best σMk th
individuals in ascending order of fitness value of task k,
and σMj indicates the best σMj th individuals of task
j. The average value of the difference of each of the

best σMth individuals is taken as a deviation. Then, each
firework will be assigned deviation using the power-law
distribution according to the fitness rank. The fireworks that
perform better on task j are considered to have more genetic
advantages and will be given more information from task k.
In contrast, individuals who perform poorly on the original
task can only be assigned a small amount of exchanged
genetic information.

Conventional EMT algorithms randomly select individuals
with different skill factors to crossover for genetic information
transfer. In FWA, the locations and fitness values of the
sparks generated by the explosion contain a lot of information
about the objective function. Even the inferior solution that
will be eliminated in the selection process still contains the
genetic information that can play a great positive role in
understanding the fitness landscape of the objective function
and transferring the genetic information between tasks. In
general, this information is ignored and not effectively utilized.
Given this, we use dominant subpopulations rather than a

single optimal individual for transferring genetic information
in MTO. Second, by using subpopulations for information

transfer, the uncorrelated values will be canceled out. Most
of the dimensions of the best spark are good, but the rest

are not, which means that to learn from the single best

individual is to learn its good and bad at the same time.
However, learning from a good population is another matter.
Only the common characteristics of the population will be
transferred, and other information will be regarded as random
noise canceling each other, so the transferred knowledge will be
more accurate.

Most EMT algorithms use crossover operators to transfer

knowledge between tasks, such as SBX crossover operators. The
idea is to do a local search around the parents from different tasks,

andmost of the offspring will fall closer to their parents, and a few

will fall in between. TV, which is essentially a similar effect, can

be thought of as the average of the σM vectors pointing from task

j to task k, and the generated solution TSjk will fluctuate between
the superior subpopulations of xj and xk.
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Selection Mechanism
All the individuals in the same task module have the same
skill factor, and an individual with the best fitness in a task
module is kept as candidate firework, instead of selecting
from the entire individual pool. Then, all candidate fireworks
and TSs are then combined and grouped according to skill
factor. Afterward, the selection probability is assigned according
to the fitness value of the individual, and each group will
select N solutions according to this probability as the next
generation of fireworks. For task j, the selection strategy is shown
in Algorithm 4.

Algorithm 4: Selection mechanism

Nj, the population size of task j;
Keep the individual with the best fitness in each task module with
skill factor τj as the candidate solution.
Merge the candidate solutions and the all the TS with skill factor
τj as set Uj.
Assign the selection probability of the solution inUj according to

factorial rank rij .

Select Nj solutions in Uj according to the selection probability as
the fireworks in the next generation.

The Structure of the MTO-FWA
Algorithm 5 summarizes the MTO-FWA framework. Assume
that K tasks are optimized simultaneously; first, all the fireworks
are initialized randomly and each one is evaluated by all the
tasks. Then, each firework is assigned a skill factor τ according
to their performance. After a firework exploding, Si sparks with
different explosion amplitude Ai are generated according to
formulas (9) and (10). After that, a GS is generated by using
the knowledge of exploding fireworks according to formula (11),
and the skill factors of the explosion sparks and the GS are
all set to τ . Afterward, K−1 TS are generated for other K−1
tasks, respectively, to share knowledge according to formulas
(12) and (13). Finally, each task applies the selection strategy to
pick the appropriate solutions for the next generation according
to Algorithm 4.

Multitask Optimization Firework Algorithm
for MOO
Multiobjective problems have two or more conflicting objectives
for simultaneous optimization. Due to the lack of prior
knowledge of the objective functions, we always study plentiful
obtained solutions and retain the non-dominated solutions, the
Pareto solution set, as the approximation of the true Pareto
optimal set. Based on the fact that FWA is adept in using a
single indicator to conclude the number of explosion sparks and
the explosion amplitude, considering that MOO requires both
convergence and diversity, the S-metric indicator (Liu et al.,
2015) is introduced into FWA instead of the fitness value to select
and evaluate the solutions. It should be noted that in the proposed
multitask firework algorithm for MOO (MOMTO-FWA), except
for the indicator modified to S-metric, the explosion operator,

Algorithm 5: The overall framework of MTO-FWA

Randomly initialize fireworks.
Evaluate the objective values of different tasks for each firework.
Assign skill factor τ to each firework according to the fitness value
while not reach stop criteria

for each firework xi do
Calculate the number of sparks si according to
formula (9), the explosion
amplitude Ai based on formula (10).
Obtain locations of explosion sparks of the firework
xi and assign skill factor τ .
Generate a GS according to formula (11) and assign
skill factor τ .
for each remaining K-1 tasks do

Produce a TS according to formula (12) and (13),
then assign skill factor τ̆ .

end for
end for
for each task do

Select the solutions for the next generation
according to Algorithm 4.

end for
end while

the GS, the TS, and the MTO-FWA are consistent. The
following sections highlight the S-metric and the external archive
mechanism for preserving non-dominated solutions.

S-Metric
The S-metric indicator can be regarded as the size of the space
dominated by the solution or solution set (While et al., 2006).
The S-metric for a solution set M = tm1,m2, ¨ ¨ ¨mi ¨ ¨ ¨mnu is
indicated as formula (14) (Emmerich et al., 2005).

S pMq : = ^(
ď

mPM

tx|m ă x ă xref u) (14)

where ^ denotes the Lebesgue measure, ă denotes the
dominance relationship, and xref indicates the reference point
dominated by all the solutions. Homoplastically, the S-metric for
a single solution is represented as formula (15).

S pmiq = 1S pM,miq : = S pMq − S(Mztmiu) (15)

The S-metric of a solution mi can be considered as the region
that is only dominated by mi but not by other solutions in
the population.

External Archive Mechanism
To ensure the quality of the solution, MOMTO-FWA uses an
external archive mechanism to save the advantageous solutions
for the entire iteration of each task. The number of individuals
in the external archive remains at a fixed value E. For a single
task k, the Ek solutions are selected from a pool of candidates
Mk consisting of all fireworks, explosion sparks, GS, and TS with
the same skill factor of τk. By selecting the optimal solution
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with the largest S-metric and updating the S-metric of remaining
solutions, the selected Ek solutions gain the maximum S-metric
in all the Ek sets. It has been proven that the solution set that
has the theoretic maximum of S-metric comes necessarily from
the True Pareto Front (Fleischer, 2003). The concrete mechanism
of update the external archive of the specific task is shown
in Algorithm 6.

Algorithm 6: Updating strategy for the external archive

Mk, all the individuals with the same skill factor τt including the
fireworks, explosion sparks,TS, andGS; EAk, the external archive;
|EAk, the external archive of next generation; qeak, the selected
individual save into EAk;
Candidates pool Uk =Mk

Ť
EAk.

Calculate the S-metric for every candidate in Uk.
While ||EAk| ăEk
qeakÐarg maxuPUk

(S−metric(u)).

Save qeak into |EAk.
remove qeak from Uk.
Update the S-metric for each candidate in Uk.

end while
Save |EAk as the external archive of next generation.

EXPERIMENTS

In this section, the proposed MTO-FWA is compared with other
state-of-the-art EMT algorithms. The performance of MTO-
FWA is comprehensively evaluated by the single-objective MTO
test suite and the performance of MOMTO-FWA is assessed by
the multiobjective MTO test suite.

Experiments on MTO for Single-Objective
Problems
The performances of EMT algorithms are evaluated by the
classical single-objective MTO test suite presented in the
evolutionary MTO technical report (Da et al., 2017). The
similarity of the fitness landscape and the degree of intersection
of the global optima are the two key factors affecting genetic
complementarity between different tasks. In other words, if
the values of the corresponding dimensions of the global
optima of different tasks are closer, the genetic information
of the task is more likely to generate complementarity.
Homoplastically, the more similar the fitness landscape of
the optimization functions of the different tasks, the more
helpful the knowledge an individual learns from one task
to optimize other tasks indirectly. Therefore, based on the
degree of intersection of the global optima, the designed
benchmark problems can be divided into complete intersection
(CI), partial intersection (PI), and no intersection (NI)
categories. According to the similarity in the fitness landscape,
the designed benchmark problems can be categorized as
High Similarity (HS), Medium Similarity (MS), and Low
Similarity (LS) classes. Based on the combination of the

above two classification strategies, nine continuous MTO
benchmark problems for SOO are proposed, each problem
consisting of two classical SOO functions including the Sphere,
Rosenbrock, Ackley, Rastrgin, Griewank, Weierstrass, and
Schwefel functions.

As a typical swarm intelligence algorithm, the proposedMTO-
FWA is compared not only with the classical basic MFEA
algorithm but also with MFDE and MFPSO (Feng et al.,
2017), the two swarm intelligence EMT algorithms. For a fair
comparison, the population number for a single task is set to
100, and the maximum number of fitness evaluation for a single
task is set to 100,000, using the average results of 30 independent
runs for comparison. The MFEA uses simulated binary crossover
operator (SBX) and polynomial mutation methods produce
offspring to reproduce offspring, the RMP is set to 0.3, pc and
ηc in SBX are set to 1 and 2, respectively, and the parameters in
polynomial mutation pm and ηm are set to 1 and 5, respectively.
In MFPSO, the w decreases linearly from 0.9 to 0.4; c1, c2,
and c3 are all set to 0.2; and the RMP is also set to 0.3.
In MFDE, the RMP is set to 0.3, and F and CR are set to
0.5 and 0.9. To ensure fairness, in MTO-FWA, the RMP is
also set as 0.3; Cr , Ca, σ , and α are set to 0.9, 1.2, 0.2,
and 0.

Table 1 shows the average and standard deviation of the
objective function values of all algorithms that run 30 times
independently on the classical single-objective MTO test suite.
The superior average objective value results are highlighted in
bold. TheWilcoxon rank sum test is performed at the significance
level of 5%, and the proposedMTO-FWA is compared with other
EMT algorithms. Significantly better and worse results than the
basic MFEA are presented as “+” and “−”.

As can be seen from Table 1, MTO-FWA shows obvious
advantages in the average objective value of all the tasks in the
classic MTO test problems compared with the basic MFEA.
Compared with MFPSO and MFDE, MTO-FWA also shows
better performance on both 15 out of 18 tasks, respectively, in
the classical single-objective MTO test suite. The above statistical
results verify the competitiveness and potential of the MTO-
FWA algorithm in solving single-objective MTO. It is worth
emphasizing that MTO-FWA reveals better performance than
other EMT algorithms in most low and medium similarity
test problems such as CIMS, CILS, PIMS, PILS, NIMS, and
NILS. It is mainly due to the fact that the proposed TS can
provide useful direction and step size and reduce the probability
of negative information transfer by using information about
the entire population rather than individual individuals. MFEA
cannot mitigate the impact of negative knowledge transfer, which
leads to the crossing process randomly happening with a lot
of noise. Compared to MFPSO, MTO-FWA achieved better
results on NIMS and NILS problems, because TV integrates
information about the many sparks around the fireworks;
therefore, it can provide better directions than the vector in
PSO. Compared with MFDE, the MTO-FWA achieved better
results on CIMS, CILS, PILS, and NIMS problems. It can be
considered that the information used is the difference between
two or more randomly selected individuals in DE, which is
unpredictable. The information used in MTO-FWA comes
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TABLE 1 | Averaged objective value and standard deviation obtained by

MTO-FWA, MFPSO, MFDE, and MFEA on the single-objective multitask problem.

MTO-FWA MFPSO MFDE MFEA

CIHS T1 4.638E–7+

(3.264E−7)

2.147E−1+

(4.836E−2)

9.696E−4+

(3.625E−3)

3.684E−1

(6.462E−2)

T2 8.672E−5+

(6.218E−5)

7.865E0+

(3.692E1)

2.256E0+

(7.854E0)

1.875E2

(3.854E1)

CIMS T1 8.239E−5+

(1.173E−4)

5.871E−2+

(3.106E−2)

9.872E−4+

(2.765E−3)

4.426E0

(5.832E−1)

T2 9.634E−6+

(2.928E−5)

5.938E0+

(2.812E1)

3.672E−3+

(1.361E−2)

2.234E2

(5.364E1)

CILS T1 2.316E0+

(4.176E−2)

5.326E0+

(9.162E0)

2.203E1–

(3.851E−2)

2.017E1

(6.797E2)

T2 1.173E4–

(1.161E3)

2.172E3+

(4.163E3)

1.183E4–

(1.506E3)

3.694E3

(5.361E2)

PIHS T1 7.124E1+

(1.763E1)

2.012E2+

(1.368E2)

7.629E1+

(1.128E1)

5.768E2

(9.744E1)

T2 5.647E−6+

(4.293E−6)

3.625E3–

1.367E2

2.196E−5+

(2.861E−5)

9.736E0

(1.852E0)

PIMS T1 7.072E−4+

(8.106E−4)

2.953E0+

(3.157E−1)

9.529E−4+

(8.694E−4)

3.573E0

(5.821E−1)

T2 8.168E1+

(1.632E1)

1.176E2+

(1.583E2)

6.654E1+

(2.216E1)

6.914E2

(3.128E2)

PILS T1 1.263E−1+

(2.684E−1)

9.521E−3+

(5.130E−2)

3.613E−1+

(5.148E−1)

2.001E1

(9.424E−2)

T2 3.564E−2+

(6.845E−2)

4.672E−2+

(1.396E−1)

2.175E−1+

(4.673E−1)

1.962E1

(2.765E0)

NIHS T1 8.521E1+

(3.262E1)

4.216E1+

(2.723E1)

8.812E1+

(4.171E1)

9.894E2

(4.328E2)

T2 2.716E1+

(9.864E0)

3.672E1+

(1.128E2)

1.976E1+

(1.493E1)

2.627E2

(7.632E1)

NIMS T1 1.184E−3+

(2.651E−3)

4.691E−1–

2.966E−1

1.987E−3+

(4.282E−3)

4.248E−1

(6.384E−2)

T2 2.658E0+

(1.113E0)

1.332E1+

(1.942E0)

2.968E0+

(1.062E0)

2.772E1

(2.961E0)

NILS T1 1.012E2+

(2.106E1)

3.167E2+

(1.176E2)

9.478E1+

(1.971E1)

6.271E2

(1.034E2)

T2 2.125E3+

(2.946E2)

9.116E3–

(7.126E3SS)

3.916E3–

(7.136E2)

3.643E3

(3.767E2)

“+” and “−” denote the algorithm statistically significant better and worse than MFEA,

respectively.

from the difference between the two populations, so it is
more specific.

Experiments on MTO for Multiobjective
Problems
Similar to the above study for single-objective MTO, this
experimental study considers the nine multiobjective multitask
problems built in the recent technical report (Yuan et al., 2017).
Analogously, the test problems can be classified as high similarity
(HS), medium similarity (MS), and low similarity (LS), three

TABLE 2 | Averaged value and standard deviation of the IGD obtained by

MOMTO-FWA, MOMFEA, and NSGA-II on the multiobjective multitask problem.

MOMTO-FWA MOMFEA NSGA-II

CIHS T1 2.437E−4+

(5.507E−5)

3.422E−4

(9.643E−5)

1.733E−3–

(2.345E−4)

T2 2.757E−4+

(8.144E−5)

2.339E−3

(5.491E−4)

4.418E−3–

(6.989E−4)

CIMS T1 1.066E−1–

(1.303E−2)

5.932E−2

(7.136E−2)

1.306E−1–

(5.421E−2)

T2 1.263E−2–

(9.682E−3)

1.259E−2

(9.080E−3)

2.714E−2–

(1.589E−2)

CILS T1 1.466E−4+

(1.013E−5)

2.701E−4

(2.943E−5)

2.524E−1–

(6.195E−2)

T2 1.448E−4+

(6.575E−6)

1.867E−4

(8.093E−6)

2.022E−4–

(8.687E−6)

PIHS T1 3.186E−4+

(9.145E−5)

8.317E−4

(1.179E−3)

1.0581E−3–

(3.854E−4)

T2 3.424E−4+

(1.470E−4)

4.091E−2

(1.885E−2)

5.480E−2–

(2.087E−2)

PIMS T1 7.767E−4+

(3.510E−4)

2.862E−3

(1.257E−3)

5.033E−3–

(1.367E−3)

T2 1.094E1+

(3.423E0)

1.388E1

(4.159E0)

1.559E1–

(3.700E0)

PILS T1 4.307E−4–

(6.266E−4)

3.495E−4

(3.003E−4)

2.209E−4+

(1.357E−4)

T2 3.834E−4+

(1.044E−4)

1.109E−2

(2.350E−3)

6.343E−1–

(5.097E−4)

NIHS T1 1.465E0+

(1.072E−2)

1.552E0

(1.469E−2)

9.376E1–

(7.172E0)

T2 2.709E−4+

(6.558E−5)

4.961E−4

(1.058E−4)

8.450E−4–

(1.731E−4)

NIMS T1 1.571E−1+

(6.445E−2)

2.133E−1

(2.352E−1)

5.846E−1–

(5.182E−1)

T2 2.623E−3+

(1.667E−3)

3.541E−2

(6.654E−2)

6.518E−2–

(5.992E−2)

NILS T1 1.574E−3–

(1.121E−3)

8.351E−4

(5.645E−5)

8.277E−4+

(5.807E−5)

T2 3.827E−3+

(5.133E−4)

6.432E−1

(4.165E−4)

6.422E−1+

(3.896E−4)

“+” and “−” denote the algorithm statistically significant better and worse than MOMFEA,

respectively.

categories according to the similarity in the fitness landscape, and
each category can be divided into three sub-categories, complete
intersection (CI), partial intersection (PI), and no intersection
(NI) by the degree of intersection of the value of optima in each
dimension. Each MTO problem consists of two MOO problems,
each consisting of two or three objective functions commonly
studied in the literature. Meanwhile, the proposed MOMTO-
FWA is also compared with the well-known NSGA-II (Deb
et al., 2002), since it is frequently applied as the underlying
basic solver by many multiobjective EMT algorithms. For a
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fair comparison, the population number for a single task is set
to 100, and the maximum number of fitness evaluation for a
single task is set to 100,000, using the average results of 30
independent runs for comparison. Both MOMFEA and NSGA-
II use SBX, and polynomial variations use the same parameter
values. In SBX, pc and ηc are set to 0.9 and 20, respectively.
As for polynomial mutation, pm and ηm are set to 1/D6 and
20, respectively.

Table 2 shows the average and standard deviation of the IGD
of all algorithms that run 30 times independently on the classical
multiobjective MTO test suite. The superior average IGD values
are highlighted in bold. TheWilcoxon rank sum test is performed
at the significance level of 5%, and the proposed MOMTO-
FWA is compared with other multiobjective EMT algorithms.
Significantly better and worse results than the basic MOMFEA
are presented as “+” and “−.”

As can be seen from Table 2, MOMTO-FWA shows
obvious advantages in the average IGD value on 14 out of
18 tasks in the classic multiobjective MTO test problems
compared with the basic MOMFEA. Compared with NSGA-
II, MOMTO-FWA also shows better performance on 16
out of 18 tasks in the multiobjective MTO test suite. It

is worth emphasizing that MOMTO-FWA reveals better
performance than other multiobjective EMT algorithms in
most low and medium similarity test problems such as CILS,
PIMS, PILS-T2, NIMS, and NILS-T2 problems. Compared to
MOMFEA, MOMTO-FWA achieved better results on CIHS,
CILS, PIHS, PIMS, PILS-T2, NIHS, NIMS, and NILS-T2
problems, Even if it cannot surpass the performance of
MOMFEA on CIMS, PILS-T1, and NILS-T1 problems, the
performance of MOMTO-FWA is not much different. This
may be because MOMFEA uses non-dominant ranking, while
MOMTO-FWA uses S-metric as the evaluation index. In the
later stage of the algorithm, the archiving-based mechanism
reduces the diversity of solutions. Encouragingly, MOMTO-
FWA achieves much better results than MOMFEA and NSGA-
II on PIHS-T2, PIMS-T1, PILS-T2, NIMS-T2, and NILS-T2.
It can be considered that the knowledge learning from simple
tasks provides inspiration for solving difficult tasks and thus
improves accuracy.

Figure 3 shows the average IGD values of MOMFEA, NSGA-
II, and the proposed MOMTO-FWA after 30 independent runs
on the classic multiobjective multitask test set. It should be noted
that to indicate the changes in IGD more clearly, the starting

FIGURE 3 | The average IGD with the number of evaluation for MOMFEA, NSGA-II, and MOMTO-FWA on the multiobjective multitask benchmark problem.
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point of the evaluation in Figure 3 starts from the 2000th
evaluation, not from the 0th evaluation. Therefore, the algorithm
has a preeminent starting point on some test problems, which
does not mean that the random initialization of the population
has undergone artificial intervention, but the population has
converged to a state with a better IGD value within 2,000
evaluations. It is obvious from Figure 3 that the proposed
MOMTO-FWA has terrific exploration ability and can quickly
find out a better solution when the value of the fitness function
of the initial population is terrible. In all the test problems,
MOMTO-FWA is always on top in terms of IGD value within
20,000 evaluations. Besides, the proposed MOMTO-FWA
converges faster than MOMFEA and NSGA-II in
most problems.

CONCLUSION

In this paper, we propose the strategy named TS to enable
the FWA to solve MTO problems. The core idea is to
bind a firework and its generated explosion sparks and GS
into a task module to solve a specific problem. Through
the performance of other task modules, a TS is generated
around the firework to transfer the implicit genetic information
between tasks. For the single-objective MTO problem, the
objective function value corresponding to the task is used
as the indicator to measure the performance of the task
module to control the number of explosion sparks and the
explosion amplitude. For multiobjective multitask problems,
S-metric is applied to evaluate individual performance. The
evaluation method based on the indicator is simple and effective,
which is unified for utilizing the FWA to solve the SOO
and MOO in MTO. Experimental results have shown that the
proposed MTO-FWA can get promising results compared with

the state-of-the-art multitask evolutionary algorithms on both
SOO and MOO. There are several future research directions.
One direction is to improve the efficiency of information
sharing and transfer between fireworks. In addition, our current
research focuses on the numerical optimization of two tasks.
The many task problems and the simultaneous optimization of
discrete and numerical tasks are the focus of the next phase of
our research.
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