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3D objects (artifacts) are made to fulfill functions. Designing an object often starts with

defining a list of functionalities or affordances (action possibilities) that it should provide,

known as functional requirements. Today, designing 3D object models is still a slow

and difficult activity, with few Computer-Aided Design (CAD) tools capable to explore

the design solution space. The purpose of this study is to explore shape generation

conditioned on desired affordances. We introduce an algorithm for generating voxelgrid

object shapes which afford the desired functionalities. We follow the principle form follows

function, and assume that object forms are related to affordances they provide (their

functions). First, we use an artificial neural network to learn a function-to-form mapping

from a dataset of affordance-labeled objects. Then, we combine forms providing one or

more desired affordances, generating an object shape expected to provide all of them.

Finally, we verify in simulation whether the generated object indeed possesses the desired

affordances, by defining and executing affordance tests on it. Examples are provided

using the affordances contain-ability, sit-ability, and support-ability.

Keywords: affordance, generative design, computer aided design (CAD) algorithms, voxel grids, shape generation,

affordance testing

1. MOTIVATION

Design cycles of products are lengthy, as they usually involve thousands of decisions on the form
of the product that will implement the desired functionalities/affordances. Despite efforts in the
last two decades to accelerate the workflow using CAD techniques (Kurtoglu, 2007; Autodesk
Inc., 2017), most of the design process is still done manually. In an attempt to solve this
pertinent problem, the Defense Advanced Research Projects Agency (DARPA) launched in 2017
the Fundamental Design call for research projects on conceptual design of mechanical systems, that
would enable the generation of novel design configurations (DARPA, 2017). The purpose of our
study is to explore automatic shape generation conditioned on desired affordances, as illustrated in
Figures 1, 2.

This paper also has another motivation stemming from robotics. Traditionally, research
in autonomous robots deals with the problem of recognizing affordances of objects in the
environment: i.e., given an object, what actions does it afford to do? This paper addresses the inverse
problem: given some affordances, what shape would provide them?
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FIGURE 1 | Generated object shape providing the contain-ability and

support-ability affordances.

FIGURE 2 | Illustration of the affordance combination concept: combining the

sit- and lean-abilities of chairs with the support-ability of tables, to obtain a

hybrid object providing abilities to sit, lean, and support.

This paper presents a method for automatic generation of
object voxelgrid shapes with desired affordances. It does so
by automatically relating object forms to their affordances,
and then applying this knowledge to conceive new object
forms that satisfy given functional requirements. In a sense,
this method performs affordance arithmetic—by analogy with
shape arithmetic (Wu et al., 2016)—through manipulation
of latent vectors corresponding to affordances (as opposed
to shapes). Figures 2, 3 illustrate the concept of combining
features describing two different objects to create another object
possessing the affordances of both initial objects. A second
contribution is the introduction of experiments to verify the
presence of affordances in generated object shapes using a physics
simulator—both by defining explicit tests in the simulator, and by
using state-of-art affordance detectors. To summarize, this paper
presents a novel method for extracting and combining forms into
novel objects with desired affordances, and introduces tests for
objectively checking the presence of affordances.

The remainder of the paper is organized as follows. Section 2
presents an overview of related work in object design, shape
descriptors, and object affordances. Section 3 describes our
methodology, detailing the envisioned workflow for using this
technology. It also describes operators for manipulating object
forms. In section 4 we discuss obtained results and describe the
drawbacks of the method. Finally, section 5 draws a conclusion
and lists opportunities for future work.

2. RELATED LITERATURE

The literature review is organized in three sections, detailing the
state-of-the-art in the three fields at the intersection of which
this study finds itself: object design, object shape descriptors (for
manipulation of object forms), and learning of object affordances
(for relating object forms to affordances).

2.1. Object Design
The idea of getting inspiration from previous designs when
conceiving a new object is not new and in the literature
it is referred to as Analogical reasoning or Design reuse. A
standard practice in design is to consult knowledge ontologies
(Bryant et al., 2005; Kurtoglu and Campbell, 2009; Bhatt et al.,
2012) that contain function-to-form mappings (Umeda and
Tomiyama, 1997; Funkhouser et al., 2004; Kurtoglu, 2007).
However, the knowledge acquisition required to populate
such ontologies involves a (non-automated) process known as
functional decomposition, in which a human analyses existing
objects by disassembling them into components and notes the
functionality provided by each component. A related review
on object functionality inference from shape information was
presented by Hu et al. (2018).

Recently, generative design emerged as an automated
technique for exploring the space of 3D object shapes (Bentley,
1996; Autodesk Inc., 2017, 2018). It formulates the shape search
as an optimization problem, requiring an initial solution, a
definition of parameters to optimize, and rules for exploring
the search space. However, it is far from trivial to identify
rules for intelligent exploration of the shape space, that
would provide results in reasonable time. Mitra et al. (2014)
presented a survey of structure-aware shape processing methods,
specifically detailing the problems of segmenting object parts,
parameterizing them, and identifying correlations between parts.
In a similar context of generative design, Umetani (2017)
employed an AutoEncoder to explore the space of car shapes.

2.2. Object Shape Descriptors
Object shape descriptions serve two purposes: (1) they contain
object shape features, which are used to study the form-
to-function relationship, and (2) they serve as basis for the
reconstruction of 3D object models. State-of-the-art techniques
for automatically extracting object descriptors are based on
Neural Networks, typically Convolutional Neural Networks,
which have superseded methods based on hand-crafted features.

Auto-Encoders (Girdhar et al., 2016) and Generative
Adversarial Networks (Wu et al., 2016) are two popular
approaches in generating 3D shapes from descriptions.
These techniques learn a mapping from a low-
dimensional (probabilistic) latent space to the space of
3D objects, allowing to explore the 3D object manifold.
Recently, shape programs (Tian et al., 2019) were proposed
for representing 3D object models composed of multiple parts,
using programs that assemble parameterized shape primitives
into a single object. It is a promising approach, generating
high-level object descriptions (shape programs) which are easily
interpretable by humans, as opposed to latent representations.
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FIGURE 3 | Illustration of the affordance combination concept: the features that describe wooden beams and flat roads can be combined, to obtain an object design

that possesses both float-ability and traverse-ability: a pontoon bridge. (A) Wooden beams have the float-ability affordance. (B) Flat roads have the traverse-ability

affordance. (C) Flat wooden roads offer both float-ability and traverse-ability.

In this study, we used a Variational AutoEncoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014) to both extract
features describing 3D objects, and reconstruct the 3D shape of
an object when given such a description.

2.3. Object Affordances
A field of research that also focuses on linking object shapes with
their functionality is that of affordance learning. It is based on the
notion of affordance that defines an action that an object provides
(or affords) to an agent (Gibson, 1979). In the context of this
paper, we are interested in approaches that map object features
to corresponding object affordances. The affordances that we
study are the affordances in the habitat of humans, according
to the formalism used by Baggs and Chemero (2020). In our
use case (design for humans), we implicitly consider the agent
to be human. Thus, we focus on affordances seen from a
human perspective.

To detect affordances of objects, a common approach is
to segment image regions (from RGB-D frames) with specific
properties and tag them with corresponding affordance labels
(Myers et al., 2015). An overview of machine learning approaches
for detecting affordances of tools in 3D visual data is available
in Ciocodeica (2016). Recent reviews on affordances in machine
learning for cognitive robotics include Jamone et al. (2016), Min
et al. (2016), and Zech et al. (2017).

This paper introduces a method to automatically learn shape
descriptors and extract a form-to-function mapping, which is
then employed to generate new objects with desired affordances,
using a voxelgrid representation. The novelty lies in the
extraction of functional forms and the use of affordance arithmetic
(operations on object affordances) through manipulation of
corresponding forms in a feature space. We thus apply the
principle form follows function in an automated design setting,
generating forms based on desired affordances. Following this
principle, we assume that object forms are correlated to
their affordances.

3. METHODOLOGY

The purpose of the study is to explore the possibility of shape
generation conditioned on desired affordances. The main idea is
to train a VAE to reconstruct voxelgrid object models, and then

generate novel shapes by combining latent codes from existing
examples with desired affordances.

The starting point for this research was the assumption that
object affordances arise due to features that objects posses in
relation to an actor (in this case a human user). Therefore, if
we intend to create an object with desired affordances, it should
possess corresponding features. The working hypotheses are:
(i) objects providing the same affordance have common shape
features, (ii) averaging over multiple shapes that provide the
same affordance will extract a form providing that affordance,
that we call functional form, (iii) interpolation between samples
in the latent space can generate novel shapes providing the
combined affordances of those samples. This last assumption is
contentious, as we cannot yet predict the behavior of affordances
when combining their underlying shapes. For this reason, we
verify the presence of these affordances in simulation.We employ
a fixed-size voxelgrid representation for all 3D object models,
which has its benefits (easy to manipulate) and inconveniences
(not a structure-aware representation). In what follows, form and
shape are used interchangeably.

This paper continues by describing our workflow for object
generation (section 3.1), and the affordance arithmetics operators
used for generating shapes with desired affordances (section 3.2).
We leave out the description of the neural network, as it is a
standard Variational AutoEncoder with 3D Convolutional layers
and a bottleneck latent layer (512 latent variables), taking as input
voxelgrid models of dimension 64× 64× 64. It is trained on the
ModelNet40 object dataset (Wu et al., 2015) using a weighted
reconstruction loss, penalizing the network more strongly for
errors in reconstructing full voxels. In terms of agents perceiving
the affordances, all the objects in ModelNet40 were designed
for humans. We employed the object categories that have a
direct relationship between form and function (e.g., bathtubs,
bowls, chairs, cups, desks, dressers, toilets), and excluded those
for which this relationship was not present, considering that
voxelgrid models have no moving parts (e.g., airplanes, cars,
guitars, pianos, keyboards, radio). We also excluded the person
category of models.

3.1. Proposed Workflow
Our workflow is composed of two phases: (1) learning phase,
in which a neural network is trained to generate feature-
based representations of objects and to faithfully reconstruct
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objects using this representation, and (2) request phase, in
which a user requests the generation of a novel object with
some desired affordances among those present in the training
dataset of affordance-labeled objects. The algorithm then picks
object categories providing those affordances, extracts the
corresponding shape features (generating the form-to-function
mapping), and combines them to generate a feature description
of a new object. This description is then converted into a 3D
voxelgrid model of the desired object.

The affordance labeling is done manually, with each object
category in the dataset being assigned a list of affordances (using a
CSV file). This assignment is done by the authors. In this context,
multiple object categories can share the same affordance (e.g.,
sit-ability of chairs, sofas, toilets).

3.2. Operators for Manipulating Object
Forms
In this section we describe the operators employed for
manipulating object forms. First, we will describe the extraction
of the functional form of an object category, which is the set of
features that provides the affordances of that category. Second,
we will describe how we combine two object descriptions into a
single new one, which is expected to have the affordances of both
input objects.

3.2.1. Extract the Functional Form of an Object

Category
Every category of objects possesses a set of affordances that
defines it. From a form follows function perspective, all object
samples contained in a category share a set of features that
provide its set of affordances. We call this set of features the
functional form of a category of objects. Multiple methods may
exist for extracting it. For example, Larsen et al. (2016) isolated
face features (e.g., presence of glasses, bangs, mustache) by
computing the difference between the mean vector for categories
with the attribute, and the mean vector for categories without the
attribute. This was possible since all 2D images in the dataset
belonged to a single category—faces, which were aligned and
cropped. Unfortunately, this feature-extraction method is not
applicable in our case, as there is no notion of alignment between
the different categories of objects. In our particular case, we
compute the vector of shape features that are responsible for the
presence of affordances as the average latent vector of an object
category. This functional form of an object category can then
be visualized by inputting the obtained latent-vector description
into the decoder trained to reconstruct 3D volumes. Figure 6
illustrates some results obtained using this method.

Next, we assign an importance value to each latent variable
composing the functional form of a category. We do this by
computing the element-wise Kullback-Leibler (KL) divergence
between the Probability Density Function (PDF) of these
variables with the PDF of variables describing (1) a void volume,
and (2) a non-informative distribution of independent Gaussians
with zero mean and unit variance (called prior). The motivation
behind using these two KL divergences for ranking the variables
is to identify (1) which variables make the shape different from
a void volume, to capture the filled voxels of the model, and (2)

which variables distinguish the shape description from that of a
Gaussian prior. Both of these KL divergences are normalized, so
as to have unit norm. Then, an importance vector is defined as the
weighted sum of the normalized KL divergences with a void and
a prior distribution, with the corresponding weights wvoid = 1/2
and wprior = 1/2 chosen empirically.

3.2.2. Combine Functional Forms of Two Object

Categories
In order to combine two object descriptions (i.e., two latent
vectors containing these descriptions), we need to identify which
variables in each vector are important for encoding the object
shape. In a degenerate case, if all the variables are critical for
encoding the object shape, then their values cannot be changed,
and therefore the object cannot be combined with another
one (or a conflict resolution function must be devised). The
hypothesis is that not all the variables are critical for representing
the object shape, meaning that some variables’ values can be
neglected when combining two object descriptions. We identify
which variables are important for an object description using the
importance vector method described above.

The combination of two object descriptions is guided by their
corresponding importance vectors. For simplicity, we describe
the combination as being made between two object descriptions,
although the method is applicable to any number of objects.
A straightforward approach for generating a combined object
description would be to overlay the combined feature vector onto
a latent representation of a void space. This would leave out
the irrelevant features of the functional forms employed in the
combination. Such a combination would be commutative: the
order in which objects are combined would not matter. However,
although reasonable, this approach did not result in satisfactory
outputs, the resulting models being mostly void. We hypothesize
that it is because the samples from distinct categories are not
spatially aligned, as compared to the example of face features
taken from cropped and aligned face images (Larsen et al., 2016).

An alternative solution is the following. One object serves
as a base object, from which are taken the initial values
of the latent variables’ distributions for the combined object
description. The other object serves as top object, whose latent
variables’ distributions are combined with those of the base
object according to the rules described in Table 1. The degree
to which two object categories are combined can be controlled
by varying the amount of information kept from each object
description (i.e., the percentage of variables considered important
for an object description). This combination operator is non-
commutative, meaning that the combination of two objects can
generate different results, depending on the order of objects in
the combining operation.

We automatically generate a set of results, obtained using
different thresholds for variable selection (0.5, 0.6, 0.7, 0.8,
0.95; one result per threshold value). The threshold value is a
parameter of the algorithm, and is used as an additional degree
of freedom, which allows the designer to put more emphasis on
one affordance compared to the other.

Four cases appear when combining two latent vector
descriptions of objects, as seen in Table 1. These rules can be
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TABLE 1 | Interaction cases between latent variables contained in the

descriptions of two different objects (Objbase,Objtop), which appear when

attempting to combine them.

# Latent variable

from Objbase

Latent variable

from Objtop

Latent variable

from Objcombined

1 Non-important Non-important Value of base object

2 Non-important Important Value of important variable

3 Important Non-important Value of important variable

4 Important Important Average of the two values

resumed as follows: if both variable distributions are important
then average them (case 4 in the table), if only one is important
then keep the important one (cases 2 and 3), else keep the base
values (case 1). Figure 7 shows some outcomes of using these
combination rules, including the impact of the order in which
objects are combined, and of different threshold levels for the
importance vectors (50, 60, 70, 80, and 95%).

4. RESULTS AND DISCUSSION

In this section we provide our results on the (a) capacity of
the VAE to describe and reconstruct objects, (b) extraction of
functional forms for different object categories, (c) generation of
novel objects through the combination of feature representations
of object categories containing desired affordances, and (d)
affordance testing for the generated objects. At the end of this
section, we discuss limitations of the proposed method.

4.1. Object Representation and
Reconstruction
Figure 4 illustrates 3D object samples and their corresponding
reconstructions generated by the network. The satisfactory
quality of reconstructions suggests that the encoder network can
generate descriptions of objects in a feature (latent vector) space,
and that the decoder network can successfully reconstruct objects
from descriptions generated by the encoder. Our reconstructions
are similar in quality to those shown in Wu et al. (2016), as
we employ a similar 3D-convolutional architecture. Although
we train on more object categories (30), the model has enough
capacity to reconstruct samples from all categories relatively well.
The reconstruction fidelity is reported in Figure 5.

4.2. Functional Form Extraction Results
Through the extraction of functional forms of different object
categories, we expected to identify forms that provide affordances
offered by those categories of objects. Figure 6 shows results
on functional form extraction for tables, chairs, and monitors.
Relevant features have been extracted, such as the flatness of
tables providing support-ability, the seats and backrests of chairs
providing sit-ability and lean-ability, and the flatness of monitors
providing display-ability, respectively. Since supports differ in the
selected tables, they are not in the set of common shape features
(Figure 6A). In the chairs example, most selected samples had

armrests, which led to this feature becoming part of the functional
form (Figure 6B).

4.3. Object Combination Results
The ability to extract a shape representation that constitutes the
functional form of a category, coupled with the ability to combine
it with another object representation, makes it possible to extract
and combine shape features that provide desired affordances.

4.3.1. Sit-Ability and Contain-Ability
In this experiment, we extract the sit-ability and contain-ability
of toilet seats and bathtubs, respectively, in order to combine
them into a new object providing both of these affordances. The
obtained results may be interpreted as bidets (Figures 7, 8). For
the extraction of functional forms, we used only aligned models
within each object category (no rotations).

4.3.2. Sit-Ability and Support-Ability
We combine the sit and support abilities of chairs and tables,
respectively, in an attempt to recreate a study chair, which
has a small elbow table. The result in Figure 9C is similar to
the illustration in Figure 2. For the extraction of functional
forms, we used only aligned models within each object category
(no rotations).

4.3.3. Contain-Ability and Support-Ability
This experiment displays the combination of support-ability and
contain-ability affordances with the intent of creating something
similar to a workdesk in a bathtub. The result is shown in
Figures 10, 12. For the extraction of functional forms, we used
the rotations of each object model by 0/90/180/270 degrees. This
explains the difference between the functional forms of bathtubs
and tables in Figures 7, 9 and those in Figure 10.

To ensure that the employed algorithm does not simply
generate models by copying samples from the dataset, we
compare the generated objects with the most similar samples
from the dataset, based on the similarity of outputs of the one-
before-last layer of the decoder. The result from Figure 10D

suggests that generated objects are distinct from samples in the
training set.

4.4. Affordance Confirmation Tests
We analyzed the generated objects using two methods: (1)
verification of affordance presence using state-of-art affordance
detectors, (2) testing affordance presence in a physics simulation.
These are detailed below.

4.4.1. Affordance Detectors
We attempted to identify the presence of the desired affordances
(contain-ability, support-ability) using affordance detectors
developed by other groups.

The affordance detector of Myers et al. (2015) was trained
on real images, and does not generalize to synthetic images
of objects in the Gazebo simulator. It failed to recognize the
containability affordance in both standard (e.g., bowl, saucepan)
and generated objects.

We also tried the affordance detector of Do et al. (2018), called
AffordanceNet. While it worked on objects viewed in simulation
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FIGURE 4 | Examples of original voxelized objects (top) and their reconstructions (bottom) generated by the VAE. Objects taken from the ModelNet dataset (Wu

et al., 2015). Visualizer: viewvox (Min, 2004).

FIGURE 5 | Reconstruction fidelity: F1 score on the train and test datasets.

Since typically <10% of the voxelgrid volume is occupied by filled voxels in the

training dataset (ModelNet40), a network that generates only empty volumes

will have a ≈ 90% reconstruction score. Hence our use of weighting, valuing

filled voxels proportionately more than empty ones.

(including those of objects from the ModelNet40 dataset), it
had difficulties with recognizing properly the affordances of
generated objects (Figure 11A). We found experimentally that

the failure cases for affordance detection were caused by the
rugged surfaces of objects, and the fact that AffordanceNet was
not trained on images of rugged objects. After applying Poisson
smoothing to the surface of the object in Figure 11A, the detector
correctly identified the presence of contain-ability, although it
still struggled to locate it properly (Figure 11B).

4.4.2. Affordance Testing in Simulation
To verify that the generated objects indeed provide the
requested affordances, we developed affordance tests to execute
in simulation. For this purpose, the generated voxelgrid model
is converted into a mesh using the marching cubes method
(Lorensen and Cline, 1987), after which we compute its inertia
matrix and create the Spatial Data File (SDF) for importing it into
the Gazebo simulator (Koenig and Howard, 2004) with a Bullet
physics engine. These computations are made using the Trimesh
(Dawson-Haggerty et al., 2019) Python library. All the objects
in employed ModelNet40 dataset were made for humans, and
therefore implicitly consider humans as actors interacting with
these objects. They also contain the human-designer bias.

To verify for supportability, we suspend the object (to remove
influence from the object bottom shape) and verify which of
its regions can support a stable object with a flat base, by
dropping from above from different (x,y) locations a cube with
mass 1 kg and a down-oriented flat face, and checking how this
influences the (x,y) coordinates of the cube centroid. If only
its z coordinate (altitude from ground) changes, while the (x,y)

Frontiers in Neurorobotics | www.frontiersin.org 6 May 2020 | Volume 14 | Article 22

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Andries et al. Generating Shapes With Desired Affordances

FIGURE 6 | Functional forms extracted for (A) tables, (B) chairs, and (C) monitors taken from the ModelNet dataset (Wu et al., 2015). For each object category, the

original samples are shown on top, the reconstructions on bottom, and the extracted functional form on the right.

FIGURE 7 | Combining features of sit-ability and contain-ability, extracted from toilets (A) and bathtubs (C), into a novel object form, which can be interpreted as a

bidet. (B) Toilet functional form with the bathtub functional form overlaid onto it. (D) Bathtub functional form with the toilet functional form overlaid onto it. A gradual

transformation is displayed, combining the 50, 60, 70, 80, 95% of the functional forms. From left to right, the combination looks less like a toilet/bathtub, and more like

a bidet.

coordinates remain the same (meaning the cube landed flat on
the object) then that location is marked as providing stability.
On the contrary, if the object region below the cube is not flat,
the cube tumbles over, landing on (x,y) coordinates distinct from
the initial ones. If the cube missed the object and landed on
the floor directly below its drop coordinates, then this location is
marked as empty. Since we are looking to reproduce the support
functionality of tables, we only consider the support-ability
of surfaces above the object centroid. Without this criterion,
bathtubs with a flat bottom score high in the support-ability

evaluation. Figure 12C shows the calculated support-ability map
of the generated object, while Figure 13A shows the computed
support-ability scores for a dozen of tables, bathtubs, and their
functional combination. A video of a support-ability test can be
seen in the Supplementary Material1.

To verify contain-ability, we pour spheres into the object until
they overflow and fall on the ground, andmeasure the ratio of the
total volume of spheres contained inside the object vs. the volume

1Support-ability test: https://www.youtube.com/watch?v=jnKjk5eQ_dg.
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FIGURE 8 | Another example of combining sit-ability of toilets with contain-ability of bathtubs. Below: the 3D printed versions (voxelized and smoothed) of the

selected combination, obtained at 85% threshold.

of object’s convex hull (Figure 12E). A video of a contain-ability
test can be seen in the Supplementary Material of this paper2.

This allows to compare the contain-ability of two different
objects. Figure 13B shows the contain-ability measurements for
some ModelNet40 object samples (≈ 12 objects per category).

We also compute a 2D contain-ability map of the object
(Figure 12D), which highlights the regions capable of containing
an object, preventing it from touching the ground. To compute
this map, the procedure is as follows: (1) Discretize the plane on
top of the object using a grid, (2) At each discretized location:
(2a) Identify if there is an object below, by dropping a ball and
observing if it lands on the ground directly below it (same x,y
coordinates), (2b) If there is an object below, identify if this object
location provides contain-ability by repeatedly dropping a sphere
with different angular velocity (roll, pitch) and observing if it
always ends above the ground (inside the object) after a given
time (T = 12 real time seconds).

2Contain-ability test: https://www.youtube.com/watch?v=GbvFFesxUrQ.

We observe from the measurements in Figure 13

that the generated object manages to retain affordances
from both its parent objects, but with a trade-off in
its performance.

4.5. Limitations
The proposed method currently has a set of limitations:

1. Intra-category alignment: The method used for extracting
functional forms from object categories, which employs
averaging the gaussians describing the voxel locations,
requires all samples inside an object category to be aligned.We
intend to remove this requirement by aligning samples using
the method proposed by Suwajanakorn et al. (2018).

2. Inter-category alignment: The current setup (voxelgrid
representation, feature transfer in latent representation
space) allows transfer of shape features only between
aligned object forms. While the concept of alignment
is meaningful for objects within a single category, it is
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FIGURE 9 | Combination of sit- and support- abilities from chairs and tables, which can be interpreted as a study chair. (A) Functional form of chairs. (B) Functional

form of tables. (C) Combined object seen from different perspectives (threshold = 0.8). Note the flat surface in front of the chair, and also the flat surface on top of the

backrest. On the right is the 3D printed shape in blue, with automatically generated support in white. (D) Combined object seen from different perspectives, and in 3D

printed form (threshold = 0.7).

FIGURE 10 | Combining features of contain-ability and support-ability into a novel object form providing both affordances. (A1) Table functional form, with its

characteristic flatness providing support-ability. (A2) Bathtub functional form, providing contain-ability with its convex shape. (B) Bathtub shape with a flat surface on

top, providing both contain-ability and support-ability, as seen in ViewVox (top) and Gazebo (bottom). (C) Smoothed, 3D printed version of this combined shape, seen

from different angles. (D) Objects from the training set that are closest to the generated object, in terms of similarity of activation values in the one-before-last layer of

the decoder.

(arguably) meaningless for objects of different categories
(e.g., alignment of spoons with sofas, monitors, screens
with curtains).

3. Combination feasibility: The combination method does not
state if a solution to the posed problem does not exist (i.e., if
combining two different sets of affordances is possible, like
stability and rollability).

4. Scale variation: The different scales of objects are not
considered when combining objects. Training the neural
network on object models which are correctly sized
relative to each other would solve this issue. A naïve
solution would be to increase the size of the input voxel

cube, to fit inside detailed descriptions of both small-
scale objects (e.g., spoons, forks, chairs) and large scale
objects (e.g., dressers, sofas), which would also increase the
training time.

5. Shape representation: Voxelgrids, like meshes and
point clouds, are a low-level representation of shapes.
Training deep learning models to encode high-resolution
voxelgrids requires a high memory and time complexity.
Moreover, voxelgrids are incapable to encode curved
shapes. In addition, not all voxegrid states correspond
to valid shapes, as they can contain more than one
connected component.
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FIGURE 11 | Affordance detection results using AffordanceNet (Do et al., 2018). (A) The AffordanceNet detector correctly identified support-ability (in light blue) and

wrap-grasp-ability (in mustard color), and incorrectly identified hit-ability (in purple). (B) On a smoothed version of the object, and in different lighting conditions,

AffordanceNet correctly identified wrap-grasp-ability (mustard), contain-ability (red), although with imperfect segmentation. It incorrectly identified hit-ability (purple)

and support-ability (light blue).

FIGURE 12 | The generated object with contain-ability and support-ability (similar to a bathtub-workdesk, or bathdesk) in (A) perspective view and (B) top-down

view. (C) Result of the support-ability test: white pixels show locations with support-ability. (D) Contain-ability map. (E) Still frame from the contain-ability test with

spheres. (F) Demonstration that the workdesk-bathtub can fit an iCub humanoid robot, and support a tin can.

FIGURE 13 | (A) Support-ability scores for bathtubs, tables, and generated bathdesk objects. These afford support-ability, albeit to a lesser degree than tables. (B)

Contain-ability scores for bathtubs, beds, benches, tables (a dozen samples from each category), and of generated bathdesk objects.

6. Shape centering: Since we trained the network on samples
centered in the voxelgrid volume, the features describe
mostly voxels in the center of the bounding cube. This
aligns shapes by their centroid location, allowing easy intra-
category alignment of samples. However, centroid alignment
is not always a correct alignment for transferring and
combining shape features. Thus, combining two different
feature descriptions makes them compete for the center
voxels in this bounding volume. Introducing an operator

for spatially offsetting some shape features would allow to
construct composite objects.

5. CONCLUSION AND FUTURE WORK

We have presented a method for generating voxelgrid
objects with desired affordances, by first extracting a
form-to-function mapping from a dataset of objects,
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and then manipulating and combining these forms
through affordance arithmetic. The method relies on
a neural network Variational Auto-Encoder to extract
feature-based descriptions of objects. These descriptions
allow shape manipulation and shape arithmetics in a
latent feature space, before being transformed back into
3D voxelgrid models. We then test the presence of
desired affordances in a physical simulator and with an
affordance detector.

In contrast to an ontology-based approach, where
modifications can be done deterministically, all object
shape manipulations are probabilistic in our case. Thus,
generated inexact models serve only as design suggestions.
However, a production-grade technology would require less
noisy object-modeling results. We are currently investigating
the possibility of incorporating a GAN-style discriminator
(Wu et al., 2016) in our framework in order to encourage
the generation of objects with smooth surfaces similar to
those of existing man-made objects. However, due to the
inherent instability of Generative Adversarial Network (GAN)
training, our results currently do not show an improvement
over the proposed VAE-only architecture. We also plan
to implement a training procedure to encourage neurons
in the latent layer to represent specific transformations
(rotation, scale) following the approach of Kulkarni et al.
(2015).

Our models still lack information about materials from
which objects are composed, their colors or textures, and
the articulations between subparts. Adding it would make
the approach much more practical. Using a deterministic
and interpretable object structure representation (Tian
et al., 2019) may also constrain and simplify the shape
generation problem.

The voxelgrid representation comes with a trade-off
(easy to use, but low model resolution, high computational
complexity for training the neural network), and it is possible
to revise this decision in our future work. This would require
considering alternative low-level representations such as
point clouds, mesh representations, or high-level procedural,
structural, hierarchical representations. The difficulty of
combining features from different object categories caused
by the absence of spatial alignment between objects suggests
that spatial descriptions (like voxelgrids) are not well-adapted
for generating shapes combining multiple features. Thus,
representations such as Constructive solid geometry (Foley
et al., 1996) that define a shape as a sequence of modifications
applied to an existing solid part, may be better adapted for
shape generation.

In addition, instead of using a dataset containing an
implicit mapping of form-to-function (with affordance-labeled
object categories), we intend to learn object affordances
automatically, by letting a robot interact autonomously with
a set of objects. This is related to the currently active
field of affordance learning in robotics. Moreover, the use
of 3D shape descriptors developed in this research will

facilitate affordance learning and knowledge transfer for
autonomous robots.

In the future, models of furniture with specific functionalities
generated by our algorithm could be assembled in the physical
world using re-configurable modular robots (Khodr et al.,
2019). This would allow the creation of custom shapes for
transformer-furniture.
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